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HAZARD LEVEL

These are high-consequence antibiotic-resistant threats because of

“nﬁim significant risks identified across several criteria. These threats may not be

-, currently widespread but have the potential to become so and require urgent
e e @ e 6 public health attention to identify infections and to limit transmission.

Clostridium difficile (C. difficile), Carbapenem-resistant Enterobacteriaceae (CRE), Drug-resistant Neisseria
gonorrhoeae (cephalosporin resistance)

HAZARD LEVEL These are significant aut\bmm resistant threats. For varying reasons (e.q.,
stnlous low or declininc estic ( > or reasonable availabi hty of therapeutic
agents), they are not cc red urgent, but these threats will worsen
e @ @ and may become urgent without ongoing public health monitoring
e e prevention activities.

Multidrug-resistant Acinetobacter, Drug-resistant Campylobacter, Fluconazole-resistant Candida (a funqus),
Extended spectrum B-lactamase producing Enterobacteriaceae (ESBLs), Vancomycin-resistant Enterococcus
(VRE), Multidrug-resistant Pseudomonas aeruginosa, Drug-resistant Non-typhoidal Salmonello, Drug-resistant
Salmonella Typhi, Drug-resistant Shigella, Methicillin-resistant Staphylococcus aureus ('1R§A,. Drug-resistant
Streptococcus pneumonio, Drug-resistant tuberculosis (MDR and XDR)

HAZARD LEVEL These are bacteria for which the threat of antibiotic resistance is low, and/

cnuctnu‘ua or there are multiple therapeutic options for resistant infections. The

bacterial pathogens cause severe illness. Threats in this category require
e e e 6 @ monitoring and in some cases rapid incident or outbreak response.

Vancomycin-resistant Staphylococcus aureus (VRSA), Erythromycin-resistant Streptococcus Group A,
Clindamycin-resistant Streptococcus Group B

Source: CDC biggest drug-resistant threats,
https://www.cdc.gov/drugresistance/biggest_threats.html

C.diff
N. gonorrhoeae

P. aeruginosa
MR Staph. aureus

Candida
Campylobacter

Strep Group A
Strep Group B



Deaths attributable
to AMR every year
compared to other
major causes of death

AMR in 2050
10 million

Tetanus
60,000
Road traffic
accidents Cancer
1.2 million o 8.2 million
V) AMRnow
700,000
(low estimate)
\ /
Measles - Cholera
130,000 100,000~
120,000
Diarrhoeal
disease § _Diabetes
1.4 million 1.5 million

Source: The Review on Antimicrobial Resistance, 2014 (J. O’Neil), UK
http://amr-review.org
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Over the last 30 years, no major new types of antibiotics have been developed
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IN THE LAB

Novel Phage Therapy Saves Patient with Multidrug- A virus, fished out of a lake, may have
Resistant Bacterial Infection saved a man’s life — and advanced

| science
April 25, 2017 | Scott LaFee and Heather Buschman, PhD

By CARL ZIMMER @carlzimmer / DECEMBER 7, 2016

Phage Therapy

Phage Therapy Infected with a multidrug-resistant

bacterium, Tom Patterson was comatose and
near-death. Physicians and scientists at UC San
Diego Health, with many collaborators, used an
experimental bacteriophage therapy — viruses
that target and consume bacteria — to save his
life. The success may be a catalyst to developing
new remedies to the growing global threat of
antimicrobial resistance.

A. baumannii P. aeruginosa
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A world first: Pherecydes Pharma launches multicenter
clinical study of phage therapy in serious burn victims

For the first time, an industry-standard clinical trial is evaluating the tolerance and
effectiveness of phages in fighting sensitive antibiotic-resistant infections

Povidone ; . Usual
Control Silver Sulfadiazine treatment
PP1131 P. aeruginosa
Infection
suspected DO D1 D2 D3 D4 D5 D6 D D21

100 nm

Pherecydes

Daily dressing and samples for 7 days

Dr. Patrick Jault, Critical Care, HIA Percy Clamart, France



One year later...

DRUG DEVELOPMENT

Beleaguered phage therapy trial presses on

Setbacks suggest difficult road for much-needed antibiotic alternatives

Kelly Servick (June 23,2016)
Science 352 (6293), 1506. [doi: 10.1126/science.352.6293.1506]

“The trial has faced a series of delays and
shrunk in size and scope, hinting at some of
the many barriers phages will confront in
getting to market...”

In practice, only recruited 15 of the
220 intended patients.



... 90 years before

CHAPTER VI
SreCIFic THERAPY WiTH BACTERIOPHAGE SUSPENSIONS

l. THE SPECIFIC THERAPY OF BACILLARY DYSENTERY

“After being assured that no harmful effects
attended the ingestion of the Shiga-
bacteriophage, this treatment was applied for fz:ifngi*:m"e
therapeutic purposes to patients afflicted with
[culture-confirmed] bacillary dysentery.”

- Dr. Felix d’'Herelle, Bacteriophage and its
Behavior, 1926




“It’s not like there’s been some transformative
development or technology that means that it’s open

season on phage therapy.”
- Dr. Paul Bollyky, Stanford (in Servick, Science, 2016)

Transformative Development |

How a virus can
reverse antibiotic
resistance

2. These bacteria can be
infected by certain viruses
that bind to the pumps.

Paul Turner, Yale
Phage-Antibiotics Synergy
Chan et al,, Sci. Rep, 2016, 10.1038/srep26717
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Phage-Immune Synergy

Leung & Weitz, J. Theor. Biol. (2017)

Roach, Leung...Weitz & Debarbieux, Cell Host Microbe (2017)
Leung & Weitz, Trends in Microbiology (2019)



From Models to Mice:
En Route to a Modern Immunophage Therapy

* The limits of virus-microbe ecology in
dynamic elimination of hosts

* Theoretical principles underlying
“immunophage synergy”

Predator, ml~!

* Curative treatment of otherwise fatal
. . . . 10° :
respiratory diseases using phage in 10 prel” 10

immunomodulated mice




From Models to Mice:
En Route to a Modern Immunophage Therapy

T
* The limits of virus-microbe ecology in A7
dynamic elimination of hosts B \/jp)
* Theoretical principles underlying Z/‘

“immunophage synergy”

e Curative treatment of otherwise fatal
respiratory diseases using phage in
immunomodulated mice



From Models to Mice:
En Route to a Modern Immunophage Therapy

T
2 4 6

Hours post treatment

* The limits of virus-microbe ecology in
dynamic elimination of hosts

saline-mock

* Theoretical principles underlying
“immunophage synergy”

>
Y
. . o
* Curative treatment of otherwise fatal & £
respiratory diseases using phage in S

immunomodulated mice



Part 1:

The limits of virus-microbe ecology in
dynamic elimination of hosts



Nonlinear model of phage-bacteria

population dynamics

Dynamic model

—
=]

media inflow  nutrient consumption gutflow 10
dR = — =
cell division infection and lysis outflow _
dN — —N— ~ = |
— = e¢f(R)N — oNV — wN —
dt &
lysis infection outflow "
av — = = 9 10°
%> — =[NV — ¢NV — WV =
dt o
5
—
Interactions: ~
Resource inflow/outflow
Host growth and outflow )
Viral lysis and outflow 10100

(note: original model
included time delays)

Similar model proposed by Campbell (1961) Evolution 15: 153
& adapted to phage-bacteria chemostats by Levin et al. (1977) Am. Nat. | | 1:3

5

10

Prey, ml~!

"

Counter-clockwise cycles

10



Lotka-Volterra like “counter-clockwise” cycles are
robust to many viral interaction mechanisms

Microscopic Cg
- - -
[}
Population
10° Distributed Fixed 10°
= delays delays &
L 10 .10 T
1
=N = N
10 10
10° 7 3 3 7 10 4 E 6 7
10 10 10 10 10 10 10 10
Host, N + 1T Host, N + 1
Models with an Models with a single delay

infected class between infection and lysis



The same types of cycles can be observed in

virus-host population dynamics (in the lab)
]

“Lotka-Volterra” like cycles
between T4 and E. coli B

Virus

Data: Bohannan & Lenski,
Ecology (1997)

Take-home message:

Population density (ml™!)

Original models of viral-host
dynamics presuppose a “simple” .

one virus, one host relationship. 0 50 10(0 )150 200
Time (hours

Further analysis of this and other cases in:
Weitz, Quantitative Viral Ecology: Dynamics of Viruses and
Their Microbial Hosts, Princeton University Press, 2015.




Yet, virus-host dynamics also exhibit
“cryptic” dynamics, when hosts evolve...

“Lotka-Volterra” like
cycles between T4 and E.
coli B...

Until something happens
at about 200 hrs.

Data: Bohannan & Lenski,
Am. Nat. (1999)
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Eco-evolutionary theory and experiments provide a

counterpoint to standard phage therapy
—

RS
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|. Viruses can kill individual cells. O @ %

2. But, viral populations often coexist with host populations.

oo
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ance amongst bacteria can lead to the
{’control.

Resistant
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|Susceptible
Hosts

| logical af:
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Time (hours)

100 200 300 400 500
Time (hours)



PerrTY

Cocktail of Bacteriophages

= Sold over-the-counter
in Russian pharmacies
Unknown compoasition

mmmwmmm Il.sdnyhllunlv/
*w
oL
T e - - - v - -
c«mum;nnofuph;ewps m‘m' =
‘Genera: 4 Myoviridae; 7 Podoviridas; - 4
2 Siphoviridse: Z unknown Approwal to start efficacy trials

2013

Cocktails

Steven Liu, Cal Poly

Alex Betts, alexbetts.info, OTC phage
cocktails from the Eliava institute

Shawna McCallin et al.,Virology,

Bacteria

B

Bacteria

A

Bacteria

C

Bacteria

D

Ando et al., Cell Systems, 2015




Dynamic counterpoint to standard phage
therapy still remain with cocktails
—

|. Viruses can kill individual cells. Cocktails may kill more, but
not all, and there are trade-offs with coverage.

2. But, viral populations coexist with host populations, even
when there are multiple populations in a community.

—H lamongst —V2.

Host density

Time



Part 2:

Theoretical principles underlying
“immunophage synergy”



A starting point: In vivo examples of phage
therapy efficacy in mice

Phage/bacteria ratio

-+ 0/1
- 0.1/1
> 1/1
a- 10/1

2 4 6 8 10 12
time (days)

Time-course bacterial load in the infected mice as  Survival curves of mice infected with P. aeruginosa
measured by bioluminescence treated with diluent or phage at different dosages

L Debarbieux et al., ]. Infect. Dis. 201, 1096 (2010).



Tripartite model of virus-microbe-immune interactions
First proposed by Levin & Bull, Nat. Micro, 2004

Bacteria

Immune
Response

cell division  infection immune killing
dN — ~ A~
—r = cf/(R)N — 9NV —  XIN
lysis infection  viral decay
dv —— ~ =

immune stimulation
_A

~

dI ,I N
— = -
di N+ Ky



Tripartite model of virus-microbe-immune interactions
First proposed by Levin & Bull, Nat. Micro, 2004

v 4 Some challenges:
e a * Disease state is tied to crossing transient

population threshold — rather than elimination.
Immune system response can grow w/out bound.
* Crucially, phage are not needed to eliminate

e bacteria in the long-term.

a Host control of a phage-sensitive and b Host and phage control of a phage-
phage-resistant population of bacterial sensitive and phage-resistant bacterial
infection in the absence of phage infection in the presence of phage

12_
1x10 1 %1012
1 x 10104 ,
Threshold 10
E ST ./././: _,-\.,\.. s owwwdhreshold 1x10 [ TT——__ ___ Threshod _
=

7\1)(10 ’/S \\. 1 % 108 A \

B 1510047 \ = /[

é \ / “5“ 1 % 106+

4] \ o
i) \ 1 % 104+

2 R |
1x10 | 1% .102_'
1x 109 T e T 7

. 1100
0 & 10 15 20 25
. 1 :
Time () 0 5 0 15 20 25



Proposed immunophage synergy model
Leung & Weitz, J. Theor. Biol (2017)

]
A 1 STy I%{ iy T
B @—TBITLE _¢BP—  €IB g
dt Ko

AP VIRIFERRESS 9T
= = B¢BP — wP
dt
I une sti latio
==
dl B
— = ol
dt B+ Ky

We begin with a modified Levin-Bull model and extend it in two key ways:



Proposed immunophage synergy model
Leung & Weitz, J. Theor. Biol (2017)

]
z’7 [ 'ﬂgﬁ:ﬁ' I%Ijjﬁlﬂ |mml1ﬂ? ﬂ!ing
B B _ g Il_L B _¢BP- OB
dt Ko ¢

1 = Po
Immune stimplation
PR 5 28 =h
d—l =al 1- ! 5
dt Kr B+ Ky

We begin with a modified Levin-Bull model and extend it in two key ways:

. Immune stimulation has a biological “carrying capacity”



Proposed immunophage synergy model

Leung & Weitz, J. Theor. Biol (2017)

dB B el B
—=rB 1—— —0BP-—
a Ko 7 1+ B/Kp
qP VIREERSS T
— = p¢BP — wP
dt

Immune stimplation

L R h

dl I B
— =al 1-—
dt K B+ Ky

We begin with a modified Levin-Bull model and extend it in two key ways:
. Immune stimulation has a biological “carrying capacity”

2. Bacteria can initiate density-dependent defenses (e.g.,
biofilms) to evade the immune response



Proposed immunophage synergy model
Leung & Weitz, J. Theor. Biol (2017)

Phage
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Bacteria
100 » » » »
0 20 40 60 80 100

Time (h)

Immunophage synergy model — dynamics w/out immune response



Proposed immunophage synergy model

Leung & Weitz, J. Theor. Biol (2017)

10

10

10 |

10° }

Bacteria |

10 |

Density (ml-')

107

10

Immune

0 20

Immunophage synergy model — dynamics w/out phage
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80
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Proposed immunophage synergy model

Leung & Weitz, J. Theor. Biol (2017)

10

10

108} Phage
:\
E Imnmune
~ 10°}
>
‘v
S 10
() Bacteria
107 }
0
10 . . \ .
0 20 40 ) 60 80 100
Time (h)

Immunophage synergy model — tripartite dynamics



Hypothesis: phage drive equilibrium microbial densities
to levels controllable by the immune response

I By < BY Bacteria extinction (synergy)
II BY < Bp < B} Coexistence
I11 Bp > By Phage extinction
—~ % Log bacteria density — 5 Log phage density
ol - - 9 e opl 10.5
E r . E .
~ B=B U 'l' 8.9 S B :B v, 10
< D . < —Dr ,
g 13 ; g 13 p
o © . + 19.5
j. o
=) c
g II L 1 II 9
o a,
2 3 8.5
-g 0.5 g 0.5 :
g I e B ”giﬁﬁ
T0.5 1 Ii5 2 05 1 1.5 2
Phage decay rate w (h'') Phage decay rate w (h™')

Discrepancy: the model seems to work more robustly
than fixed point comparison predicts (see Region Il).



Stability of fixed points extends the predicted
region of immunophage synergy

o Log bacteria density
x 10
S 2 I'
= L.
£ B~=B} ,
_e- 1.5 'l
-~ 0’
=) 4
« .
[ 5
c! .
5 1 I1A
= 3
atg
o
()
5
9 05
[0)
oo
(o}
: -
Q- 0.05 " .
0.5 ] 1.5

Phage decay rate w (h')

ITA. Dynamic instability
enables synergy

Case A
10]
10
- R~ I\
- -y,
£
N 3 N
Z
o — Phage
a .
10° } — Bacteria
10*
0 20 40 . 60 80 100
Time (h)
1012
Case B
10]
N
£ e
g 8
210
z
0 — Phage
a .
10 — Bacteria
10*
0 20 40 . 60 80 100
Time (h)

IIB. Dynamic stability
enables coexistence



Sufficient conditions for robust immunophage
synergy leading to bacterial elimination

Phage adsorption rate ¢ (ml h'')

I Bp < BIU
Ila Bf < Bp < B/’
I1b B! <Bp < B}
I Bp > B}
i Log bacteria density
x 10
2 9
I P
. 8.9
1.5 ",' 88
"" 8.7
| P 1A
s 8.6
- 8.5
8.4

. 2 111
1 1.5 2
Phage decay rate w (h*')

Bacteria elimination (fixed synergy)

Bacteria elimination (dynamic synergy)

Phage adsorption rate ¢ (ml h™')

&

Stable coexistence

Phage extinction

Log phage density

2pe — 105
I RS
B~=BY .~ 10
1.5 . |
9.5
| 1A I B
8.5
0.5 -
IIB BB} s
| ‘-—”IcH:]
0.5 ] 5 2

Phage decay rate w (h™')



Synopsis of the Proposed Mechanism of
Phage-Immune Synergy

Bacteria Density —>»

.\b

Time —>»



Synopsis of the Proposed Mechanism of
Phage-Immune Synergy
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Synopsis of the Proposed Mechanism of
Phage-Immune Synergy
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Synopsis of the Proposed Mechanism of
Phage-Immune Synergy

Biofilm before phage treatment Biofilm after phage treatment

Bacteria Density —>»

D Alemayehu et al., mBio 3, e00029-12 (2012)

Time —>»



Synopsis of the Proposed Mechanism of
Phage-Immune Synergy
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Synopsis of the Proposed Mechanism of
Phage-Immune Synergy
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Synopsis of the Proposed Mechanism of
Phage-Immune Synergy
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Part 3:

Curative treatment of otherwise fatal
respiratory diseases using phage in
immunomodulated mice
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One of the first presenters on “phage
therapy” focus session... Dwayne Roach

MicrobeWiki

Dr. Dwayne Roach
Pasteur Institute

Bacteria:
Multi-drug resistant Pseudomonas aeruginosa, fatal acute
pneumonia model

, , Phage:
Prof. Laurent Debarbieux PAK_PI, shown to prevent fatal acute pneumonia in vivo
Pasteur Institute

Focus:

Phage therapy efficacy in immunomodulated mice.

Prof. James Di Santo
Pasteur Institute



That moment when...
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That moment when...

one thinks this just might work.
_
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The challenge, bridging in vitro models

to In vivo outcomes
]

A WT treatment B Phage and bacteria only
Challenge | - Theory 107 ———————— 18 e
Direct scaling of in vitro model - -

;91010 | == - - - - 4 g 107 [T e i
to lungs leads to nearly = 7, = :
immediate mixing and bacterial I % e ety @

.. . o 10°f L 10°}
elimination. o S Fingr -
= = hostimmunity - = phage
. . ‘ s-ensﬂwe--bac!ena ; ) 1= ~s.ensiﬁve-l3acteria
10 0 1 2 3 4 5 10 0 1 2 3 4 5
Hours post infection Hours post infection

Challenge 2 - Immunology
Can we diagnose the basis for
the failure of phage therapy given
immunomodulated mice?

| Effector
cells




Alternative forms for the “attack” rates of

phage in vivo
S

Linear

F(P) (h™")

0 2 4 6 8 10
Phage (PFU/g) x 108

Levin & Bull, Nature Reviews Micro, 2004
Leung & Weitz, JTB (2017)



Alternative forms for the “attack” rates of

phage in vivo
_

Heterogeneous
Linear mixing (HM)
60 . 0.014 . . .
50} . 0.012}
a0} R 0.01}
i "~ 0.008}
=30} 1 =
% 2. 0.006}
20} -
0.004}
10} l 0.002}
0 B B B il 0 a ' il il
0 2 4 6 8 10 0 2 4 6 8 10
Phage (PFU/g) 108 Phage (PFU/g) x 108
Levin & Bull, Nature Reviews Micro, 2004 Roach, Leung, ...,Weitz &

Leung & Weitz, JTB (2017) Debarbieux, CHM (2017)




F(P) (h™")

Alternative forms for the “attack” rates of

phage in vivo

Heterogeneous
Linear mixing (HM)
60 T 0.014 r 7 v
50 0.012f
aok _ 0.01F
"< 0.008
30 1 i
2 0.006
20| -
0.004
10r 0.002}
0 'l 'l 'l B 0 Il 'l ] ]
0 2 4 6 8 10 0 2 4 6 8 10
Phage (PFU/g) %108 Phage (PFU/qg) x108

Levin & Bull, Nature Reviews Micro, 2004

Roach, Leung, ..., Weitz &
Leung & Weitz, JTB (2017)

Debarbieux, CHM (2017)

F(P) (h™")

Phage
saturation (PS)
0.8 T
0.6
0.4
0.2
o L.
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Phage therapy is inefficient in the innate
immunity activation deficient host (Myd88-)
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Phage therapy is efficient in the innate and

adaptive lymphocyte deficient host.
_
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Inhaled monophage therapy (MOI of 10) after a 2h delay provided
Rag2-/-112rg-/- mice void of all innate lymphoid cells, B-cells and T-cells,
exhibits a 90% survival probability from acute respiratory infection
by P. aeruginosa (107 CFU) (n=6 per group).

Conclusion: synergy is not with
innate lymphoid, B-cells and T-cells

Roach, Leung, ..., Weitz & Debarbieux, CHM.



Phage-neutrophil alliance is required for
effective therapy
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Anti-granulocyte receptor-1 (Grl) monoclonal antibody was
used to deplete neutrophils in wild-type mice 24h before an

intranasal inoculum of P. aeruginosa (n=4 per group). Roach L Weitz & Debarbi CHM
oach, Leung, ...,Weitz ebarbieux, .



Efficient non-immune priming phage

prophylaxis in the immunocompetent host
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Wild-type mice received a single inhaled monophage
dose (10° PFU) which gave prophylaxis for 4d against
P.aeruginosa (107 CFU) pneumonia (n=6 per group).

Roach, Leung, ...,Weitz & Debarbieux, CHM.



Efficient non-immune priming phage

prophylaxis in the immunocompetent host
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Tentative conclusion:
Wild-type mice received a single inhaled monophage

dose (10° PFU) which gave prophylaxis for 4d against Slgmflcant priming of host |mmun|ty
P.aeruginosa (107 CFU) pneumonia (n=6 per group). does not occur.

Roach, Leung, ..., Weitz & Debarbieux, CHM.



Part 4:

New directions in combining phage
and antibiotics for curative treatment
of multi-drug resistant infections
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Chan et al,, Sci. Rep. 6, 26717 (2016).

A virus, fished out of a lake, may have
saved a man’s life — and advanced
science

/ DECEMBER 7, 2016

By CARL ZIMMER @carlzimmer
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Caveat: phage treatment can fail if targets the wrong strain

or if high levels of phage-resistance is present in the host
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A model of phage-antibiotic combination therapy
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Phage-antibiotic combination restores efficacy to
mis-targeted phage therapy
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Phage-antibiotic-immune synergy provides robust

curative efficacy
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The limitations of antibiotic therapy
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We vary the above initial conditions
and run the model for 96 hours and
compute the bacterial density.
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Phage-antibiotic combination therapy significantly
increases therapeutic robustness
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Conclusions

Tripartite model of phage-immune-bacteria dynamics identifies mechanism for
immunophage synergy to explain successful therapeutic clearance of pathogens.

In vivo analysis shows curative success depends on phage and immune response.
Immunomodulation points to a phage=-neutrophil alliance necessary for therapy.

Synergy resolves the resistance problem — the immune response eliminates
susceptible and resistant pathogens.

Generalized synergy ongoing to include commensals and antibiotics.
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Principles of eco-evolutionary dynamics: Monday Jan 20
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