The PANDA Detector @ FAIR

Anastasios Tassos Belias / GSI
The PANDA Detector @ FAIR

Antiprotons @ FAIR
PANDA Detector
Schedule & Opportunities
Facility for Antiproton and Ion Research (FAIR) @ GSI, near Darmstadt, Germany
Facility for Antiproton and Ion Research (FAIR) @ GSI, near Darmstadt, Germany

The facility includes various sections such as the Linear accelerator, UNILAC, ESR, CRYRING, Antiproton ring HESR, Collector ring CR, Ring accelerator SIS18, and Ring accelerator SIS100. Key features include the production of exotic nuclei, antiprotons, and experiments. Filters for existing facility, planned facility, and experiments are highlighted in different colors.
FAIR

... accelerates particle beams from (anti)protons up to uranium ions with

- very high intensities
 - up to a factor of \(\sim 100 \) increase for primary Uranium beams (\(\sim 5 \times 10^{11} U^{28+} \) ions/s),
 - up to a factor of \(\sim 10,000 \) increase for secondary rare isotope beams
- high pulse power (up to \(\sim 50 \text{ kJ} / 50 \text{ ns} \))
- suite of storage cooler rings equipped with stochastic and electron cooling for brilliant beam quality

... develops and exploits innovative particle separation and detection methods, as well as novel computing techniques

... to perform forefront experiments towards the production and investigation of

New Extreme States of Matter.
FAIR – four research pillars

APPA

CBM

NUSTAR

PANDA

Super-FRS
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate \bar{p} in SIS18 / 100
- Produce \bar{p} on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate \bar{p} in SIS18 / 100
- Produce \bar{p} on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce \bar{p} on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce \bar{p} on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce \bar{p} on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce \bar{p} on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity
Antiprotons

Antiproton production
- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce \bar{p} on Ni/Cu target
- Collection in CR, fast cooling
- Full FAIR: Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA at $< 2 \times 10^{32} \, \text{cm}^{-2}\text{s}^{-1}$

Modularised Start Version
- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity: $10^{31} \, \text{cm}^{-2}\text{s}^{-1}$
Antiprotons Unique Probes

Antiprotons are unique:
- New dimension at FAIR wrt GSI
- Hadron physics bridges nuclear and HI physics to basic QCD
- No other \bar{p} facility worldwide
- Successful predecessors have demonstrated the large potential

Unique precision at HESR:
- Stochastic beam cooling
 $\Rightarrow \Delta E \sim 50$ keV
- Tune E_{cm} to scan resonances
- Annihilation at threshold
HESR - High Energy Storage Ring

<table>
<thead>
<tr>
<th>Circumference</th>
<th>575 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum</td>
<td>1.5 – 15 GeV/c</td>
</tr>
<tr>
<td>Electron Cooling</td>
<td>up to 9 GeV/c</td>
</tr>
<tr>
<td>Stochastic Cooling</td>
<td>Full range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>High luminosity (HL)</th>
<th>High resolution (HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp/p</td>
<td>~10^{-4}</td>
<td>~4x10^{-5}</td>
</tr>
<tr>
<td>L(cm^{-2}s^{-1})</td>
<td>2x10^{32}</td>
<td>2x10^{31}</td>
</tr>
<tr>
<td>Stored ̄p</td>
<td>10^{11}</td>
<td>10^{10}</td>
</tr>
</tbody>
</table>
High Energy Storage Ring (HESR)

- **Mode**: High luminosity (HL) vs. High resolution (HR)

<table>
<thead>
<tr>
<th></th>
<th>High luminosity (HL)</th>
<th>High resolution (HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta p/p$</td>
<td>$\sim 10^{-4}$</td>
<td>$\sim 4 \times 10^{-5}$</td>
</tr>
<tr>
<td>$L(\text{cm}^{-2}\text{s}^{-1})$</td>
<td>2×10^{32}</td>
<td>2×10^{31}</td>
</tr>
<tr>
<td>Stored \bar{p}</td>
<td>10^{11}</td>
<td>10^{10}</td>
</tr>
</tbody>
</table>

- **Production Experiments**

 - **$e^+ e^-$**
 - Low hadronic background
 - **$p \bar{p}$**
 - High hadronic background
 - Direct production restricted to 1^- states
 - Direct production of various states

- **Helix dipole magnet**
- **Stochastic kickers**
- **Electron cooler**
- **PANDA**
- **Stochastic pickups**

- **Production rate**
 - Consecutive measurements at different beam momenta
 - Underlying Resonance
 - Center of mass energy
Antiproton annihilation in Darmstadt
Physics Objectives

HEP: interference of coupled channels

Spectroscopy
New narrow XYZ: Search for partner states
Production of exotic QCD states: Glueballs & hybrids

Strangeness
Strange n-stars
Spectroscopy: Spectroscopy
Polarisation

Nucleon Structure
Generalized parton distributions:
Orbital angular momentum
Drell Yan process:
Transverse structure, valence anti-quarks
Timelike formfactors:
Low and high E, e and \(\mu\) pairs
HI collisions:
Comparing QGP to elementary reactions

Bound States of Strong Interaction

Nuclear Physics

Hadrons in nuclei: Charm and strangeness in the medium

Hypernuclear physics: Double \(\Lambda\) hypernuclei
Hyperon interaction

A. Belias / GSI
Physics Goals

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

- Understand new XYZ states, $D_s(2317)$ and others

Exotic QCD States: glueballs, hybrids, multi-quarks

Spectroscopy with Antiprotons:
- Production of states of all quantum numbers
- Resonance scanning with high resolution

Hadron Structure

Time-like Nucleon Formfactors
- Measurable in annihilation, discrepancy with space-like

Generalized Parton Distributions

Drell-Yan Process

Nuclear Physics

Hyperm nuclei: Production of double Λ-hyperm nuclei

- γ-spectroscopy of hypernuclei, YY interaction

Hadrons in Nuclear Medium
Detector Requirements

Detector requirements:
- 4\pi acceptance
- High rate capability: 2\times10^7 s^{-1} interactions
- Efficient event selection
- Continuous acquisition
- Momentum resolution \sim 1\%
- Vertex info for D, K^0_s, Y
 (c\tau = 317 \, \mu m \ for \ D^\pm)
- Good tracking
- Good PID (\gamma, e, \mu, \pi, K, p)
- Cherenkov, ToF, dE/dx
- \gamma-detection 1 MeV – 10 GeV
- Crystal Calorimeter
PANDA Detector ...

What we need
The PANDA Detector

- Cluster & Pellet Target
- Solenoid Magnet & Yoke
- Muon Chambers
- Dipole Magnet
- Dipole ToF
- Muon Range System
- Barrel DIRC & ToF
- Barrel EMC
- GEM
- FE EMC
- Disc DIRC
- Forward Trk
- Fwd RICH
- Fwd ToF
- Fwd Shashlyk
- BE EMC
- Hyper Nuclear Setup (not shown)
- Luminosity Detector

A. Belias / GSI
The PANDA Detector

Antiproton beam Interaction point

Cluster & Pellet Target
The PANDA Detector

Antiproton beam Interaction point

Target Spectrometer Forward Spectrometer

12m
Magnets

Solenoid Magnet
- Super conducting coil, 2 T central field (B_z)
- Segmented coil for target
- Instrumented iron yoke
- Doors laminated, instrumented, retractable

Status
- Design and production contract with BINP started
- Cooperation with CERN for cold mass
- Conductor production development
 - joint venture, BINP and Russian Inst.
- Yoke production started

Dipole Magnet
- Normal conducting racetrack design, 2 Tm
- Forward tracking detectors partly integrated
- Dipole also bends the beam
 ➔ HESR component

Status
- Design contract with BINP started

- Inner bore: Ø 1.9 m / L: 2.7 m
- Outer yoke: Ø 2.3 m / L: 4.9 m
- Total weight: 300 t

- Vertical acceptance: ± 5°
- Horizontal acceptance: ± 10°
- Total weight: 200 t
Magnet Yoke Octant Production
Interaction region

- Vacuum system, pumps, shutters
- Beam pipe, target cross, flanges
- Interfaces with detectors, target
- Support for pipe, MVD services
- Mounted on central space frame
Luminosity Considerations
- Goal: $2 \times 10^{32} \, cm^{-2} s^{-1}$ for HL mode
- With $10^{11} \bar{p}$ stored and 50 mb cross section:
 $\rightarrow 4 \times 10^{15} \, cm^{-2}$ target density
- 1 μm gold foil has about $5.9 \times 10^{18} \, cm^{-2}$

Cluster Jet Target
- TDR approved by FAIR ECE
- Record of $2 \times 10^{15} \, cm^{-2}$ already achieved
- Continuous development
 - Nozzle improvement
 - Better alignment by tilting device

Pellet Target
- $> 4 \times 10^{15} \, cm^{-2}$ feasible
- Prototype under way
- Pellet tracking prototype
- Towards TDR
The PANDA Detector - Tracking
Micro Vertex Detector

Detector Layout
- Silicon Pixels and Strip detector
- 4 barrels and 6 disks
- Hybrid pixels (100 × 100 µm²)
 - Radout ASIC ToPiX
 - Thinned sensor wafers
- Double sided strips
 - Rectangles and trapezoids
 - Readout ASIC PASTA
- Mixed forward disks (pixels/strips)
- 50 µm vertex resolution, δp/p ~ 2%

Challenges
- Low mass supports
- Cooling in small volume
- Radiation tolerance ~ 10^{14}n_{1MeV.eq}cm^{-2}

Status
- TDR approved by FAIR ECE
- ASIC prototypes tests & adaptation
- Radiation tolerant links from CERN
 - GBTx, Versatile Link and DC/DC
- Detailed service planning
Straw Tube Tracker

Detector Layout
- Layers of drift tubes
- Rin= 150 mm, Rout= 420 mm, l=1500 mm
- Tube made of 27 µm thin Al-mylar, Ø=1cm
- 4600 straws in 21-27 layers, of which 8 layers skewed at 3°
- Self-supporting straw double layers at ~ 1 bar overpressure (Ar/CO2) developed at FZ Jülich
- Resolution: r,φ ~150µm, z ~1mm

Material Budget
- 0.05% X/X0 per layer
- **Total 1.3% X/X0**

Status
- TDR approved by FAIR ECE
- Readout prototypes & beam tests
- Ageing tests: up to 1.2 C/cm²
- Straw series production almost completed
Straw Tube Tracker Developments

Mechanics status
- Modules assembly scheme
- Prototype frame installed

Electronics Candidates
- ASIC PASTTREC and TDC-FPGA
 - time and ToT
 - fully qualified, 70% PID quality
- Sampling FADC
 - time and pulse area
 - tested in beam, further cosmic tests
- Start with ASIC and TDC-FPGA
 - later upgrades for High Luminosity runs

Testbeam campaigns 2018/2019
- Characterize further readout, PID tests
- Optimize operational parameters

Full Straw Tube Prototypes in HADES at GSI 2019: Installation – 2020: Data Taking
GEM Tracker

Forward Tracking inside Solenoid
- Tracking in high occupancy region
- Important for large parts of physics

Detector design
- 3 stations with 4 projections each → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils developed at CERN
 (50μm Kapton, 2-5μm copper coating)
- ADC readout for cluster centroids → Approx. 35000 channels total
- Challenge to minimize material

Status
- Advanced mechanical concept
- Demonstrator construction ongoing,
 - GEM foils from TECTRA delays
- Available electronics unstable → Other readout electronics required

Challenges - Opportunities:
- Completion of demonstrator
- Characterization of GEM foils
- Readout electronics
- Full size prototype design
- Lack of manpower → need expert groups
Forward Tracker

Tracking in Forward Spectrometer
- Straw tubes, same as in STT (Barrel), vertically arranged in double layers
- 3 stations with 2 chambers each
 - FT1&2: between solenoid and dipole
 - FT3&4: in the dipole gap
 - FT5&6: large chambers behind dipole
- 4 projections 0°/±5°/0° per chamber
- Readout ASIC PASTTREC and TDC-FPGA
 - later upgrades for High Luminosity runs

Status
- TDR approved by FAIR ECE
- Testbeam campaigns 2018/2019
- Ongoing stereoscopic scans
- Aging tests: up to 1 C/cm²

Full Straw Tube Prototypes in HADES at GSI
2019: Installation – 2020: Data Taking
Outer Tracker of LHCb in PANDA

The proposed idea:
- LHCb replaces its outer tracker with scintillating fibres for high intensity
- Short modules 2.4m, 20% of all PANDA could use these modules

Conceptual layout:
- Using all short modules inc. spares:
 → cover 4m with 2x4 planes
- Somewhat larger hole around beampipe
- Radiation length 2x higher than PANDA

Project assessment status:
- Spares can be delivered to GSI
- Active planes need to cool down
- Electronics: interface to TRB needed
- Mechanics: proposal for Thailand
Luminosity Detector

Elastic scattering:
- Coulomb part calculable
- Scattering of \vec{p} at low t
- Precision tracking of scattered \vec{p}
- Acceptance 3-8 mrad

Detector layout:
- Roman pot system at $z=11$ m
- Silicon pixels (80x80 μm2):
 - 4 layers of HV MAPS (50 μm thick)
- CVD diamond supports (200 μm)
- Retractable half planes in sec. vacuum

HV MAPS:
- Development for Mu3e Experiment at PSI
- Active pixel sensor in HV CMOS
 - faster and more rad. hard
- Digital processing on chip

Status:
- TDR submitted to FAIR ECE
- Mechanical vessel, cooling, vacuum, design ready
- New MuPix prototype 1x2 cm2 in test
- FPGA readout tests
The PANDA Detector - Calorimetry
Target Spectrometer EMC

PANDA PWO Crystals
- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- New producer CRYTUR

Barrel Calorimeter
- 11000 PWO Crystals
- LAAPD readout, 2x1cm²
- $\sigma(E)/E \approx 1.5\%/\sqrt{E} + \text{const.}$

Forward Endcap
- 4000 PWO crystals
- High occupancy in center
- LA APD and VPTT

Large Area APDs

<table>
<thead>
<tr>
<th>CMS</th>
<th>PANDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x5 mm²</td>
<td>10x10 mm² and 7x14 mm²</td>
</tr>
</tbody>
</table>

Backward Endcap for hermeticity,
- 530 PWO crystals
Target Spectrometer EMC – Status (1)

Barrel EMC
PWO Crystal Production
- New producer CRYTUR (CZ)
 - High quality crystals received
- EoI to fund remaining crystals

APD Screening
- Screening of 30000 APDs
- Facility in full shift operation

- All alveoles produced
- APD readout APFEL ASIC produced
- First slice (of 16) assembled

Backward Endcap EMC
- Submodule design ready
- Prepare series production
- Readout new ASIC tests successful

Activities at MAMI - BWE EMC data taking with A1 spectrometer for high-resolution electron scattering in coincidence with hadrons
Forward Endcap EMC Status

- Production & Assembly well advanced
- All crystals are produced

- VPTT all characterized
 - Modules production done
- APD screening progress
 - Modules assembly started

- FADCs for digitization
 - SADC board (+Vers. Link) in production

- Test stand for Module calibration with cosmics
- Cooling system available, controls tests
- Pre-assembly support prepared

- First detector system to be fully assembled

A. Belias / GSI
Forward Spectrometer Calorimeter

Forward electromagnetic calorimeter
- Interleaved scintillator and absorber layers
 - 0.3 mm lead and 1.5 mm scintillator
 - total depth 680 mm (380 layers)
 - transverse size 55x55 mm²
- WLS fibers for light collection
- PMTs for photon readout
- FADCs for digitization
- Active area size 297x154 cm²

Status
- TDR approved by FAIR ECE
- SADC readout board in production
- Module design 2 x 2 cells of 5.5 x 5.5 cm² verified
- Tests with electrons and tagged photons:
 → **Energy resolution**
 - \(\frac{\sigma_E}{E} = 5.6/E \oplus 2.4/\sqrt{E} [\text{GeV}] \oplus 1.3 \% \) (1-19 GeV e⁻)
 - \(\frac{\sigma_E}{E} = 3.7/\sqrt{E} [\text{GeV}] \oplus 4.3 \% \) (50-400 MeV γ)
 → **Time resolution** 100 ps/√E [GeV]
The PANDA Detector – Particle ID

- Dipole
- ToF
- Fwd
- RICH
- Disc
- DIRC
- Barrel
- Muon Chambers
- Muon Range System
- Fwd ToF
- Fwd RICH
- Disc DIRC
- Barrel DIRC & ToF
Detection of Internally Reflected Cherenkov light pioneered by BaBar

- Cherenkov detector with SiO$_2$ radiator
- Detected patterns give β of particles

Barrel DIRC

- Design similar to BaBar DIRC
- Polar angle coverage: $22^\circ < \theta < 140^\circ$
- PID goal:
 - 3σ π/K separation up to 3.5 GeV/c
- Barrel DIRC Leader: J. Schwiening (GSI)

Endcap Disc DIRC

- Novel type of DIRC
- Polar angle coverage: $5^\circ < \theta < 22^\circ$
- PID goal:
 - 3σ π/K separation up to 4 GeV/c
Barrel DIRC

Optimization and challenges
- Barrel Ø: 1 m, L: 2.5 m
- Focusing by lenses/mirrors
- More compact design
- Magnetic field → MCP PMT
- Fast readout to suppress BG

Testbeams at CERN
- Several campaigns with improved prototypes
- Measurements agree well with simulation
- Developments of reconstruction methods
- Optimization of readout options
- π/K separation of 4.3 σ reached

Status
- TDR approved by FAIR ECE
- In-kind contract signed, tendering started
- Mechanics and optics production design
- QA of optics and MCP PMT developed
- Readout with PaDiWA / TDC (DiRICH, GSI)
Endcap Disc DIRC

Novel concept for forward PID
- Based on DIRC principle
- Disc shaped radiator
- Readout at the disc rim

Status
- Advanced design
- Several testbeams at CERN
- TDR submitted to FAIR ECE
- Goal: Full quarter disc prototype

Basic components
- SiO2 radiator disc - 4 quadrants
- Focusing elements
- Optical bandpass filter
- MCP PMT for photon readout in magnetic field
- Readout of MCP PMT with ToFPET ASIC
Barrel Time of Flight

Target Spectrometer
ToF in-between Barrel DIRC and Barrel EMC

Scintillator Tile Hodoscope
- Scintillator tiles 5 mm thick
- Photon readout with SiPMs (3x3 mm²)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
- System time resolution: <100 ps achieved
- ASIC ToFPET for SiPM readout – Co-development
- Layout: long multilayer PCB for transmission (“railboard”)

Status
- TDR approved by FAIR ECE
- Study of scintillator thickness (3-6 mm):
 - 5mm thickness confirmed as optimal
- SiPM radiation hardness studies planned
- Full Prototype readout “railboard” required
- QA of SiPM required

A. Belias / GSI
Forward Time of Flight

Forward Spectrometer PID
- Time of Flight essential
- No start detector
- Relative timing to Barrel ToF

Detector layout
- Scintillator wall at $z=7.5\text{ m}$ made of 140 cm long slabs
- Bicron 408 scintillator
- PMT readout on both ends
- 10 cm slabs on the sides, 5 cm slabs in the center
- Readout FPGA

Status
- TDR approved by FAIR ECE
- Readout optimization ongoing
- Design laser calibration system

Goal: Time-of-flight with $\sigma(t)$ better than 100 ps

Side parts
- 2x23 counters
- 46 plastic scintillators
 - Bicron 408
 - 140x10x2.5 cm
 - 92 Hamamatsu R2083 (2”)

Central part
- 20 counters
- 20 plastic scintillators
 - Bicron 408
 - 140x5x2.5 cm
- 40 Hamamatsu R4998 (1”)
Muon Detector System

Muon system rationale
- Low momenta, high BG of pions
 → Multi-layer range system

Muon system layout
- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Fw Range System: 16+2 layers
- Detectors: Drift tubes with wire & cathode strip readout

Status
- TDR approved by FAIR ECE
- Testbeams at CERN, aging, cosmics
- Aging tests up to 3C/cm²
- Digital FEE (Artix-7) development
- Production designs starting

Testbeam results:
- μ, p and n easily resolved
Forward RICH

Hamamatsu H8500 MaPMT
- flat panel,
- 8x8 anode pixels of 6mm size
- 89% active area ratio
- Bialkali photocathode
- Gain: 1.5\cdot 10^6
- Relatively cheap (\$1800 / unit)
- Robust
- Long lifetime

- 2-layer aerogel \(n_1 = 1.050, n_2 = 1.047 \) (no gas)
- Flat mirrors only
- MaPMT readout
- MC simulated PID performance:
 - \(\pi/K \) up to \(P = 10 \text{ GeV/c} \)
 - \(\mu/\pi \) up to \(P = 2 \text{ GeV/c} \)
Hypernuclear Setup

Principle:
- Produce hypernuclei from captured Ξ

Modified Setup:
- Primary retractable wire/foil target
- Secondary active target to capture Ξ and track products with Si strips
- HP Ge detector for γ-spectroscopy

Primary target:
- Diamond wire
- Piezo motored wire holder

Active secondary target:
- Silicon microstrips
- Absorbers
Data Acquisition System (DAQ)

Continuous Acquisition

- Components:
 - Time distribution: SODA
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network

- Data Flow:
 - Data reduction
 - Local feature extraction
 - Data burst building
 - Event selection
 - Data logging after online reconstruction

Programmable Physics Machine

Online selection schemes and physics algorithms are a key for successful measurements
Intelligent *in-situ* data processing

- cluster finding
- vertex finding
- feature extraction
- track fitting
- vertex fitting
- particle identification
- track finding
- kinematic reconstruction

10^7/sec.

$<10^4$ events/sec.
Detector Control System (DCS)

Operations parameters:
- HV, LV, currents,
- Gas-flow, cooling

Environmental parameters:
- Temp., Hum.

Interface to HESR, Magnets

Detector Safety

EPICS - Experimental Physics and Industrial Control System
- Decentralized architecture
- Freely scalable
- Allows “partitioning”
Schedule

➢ Construction of Phase 1 systems
➢ Installation periods
 1. Solenoid, Dipole, Supports
 2. All Detectors
➢ Commissioning with protons
➢ Physics with antiprotons
Start Setup (Phase 1)
Full Setup (Phase 2)
Present Status of PANDA
• Most Phase 1 detector TDRs complete
• Preparation for Construction MoUs ongoing
• Sharpened physics focus and detector start sequence

Timeline for PANDA Construction
• Construction of detector systems has started
• Pre-assembly of first components has started
• Installation at FAIR planning 2022 - 2023
• Commissioning with proton beam 2024 - 2025

PANDA physics with antiproton beam 2026
• Versatile physics machine with full detection capabilities
• PANDA will shed light on many of today's QCD puzzles

Opportunities for significant contributions in PANDA
Opportunities – Aspects of Contributions

- **Scope for R&D**
 - Phased schedule allows for R&D
 - Detectors Phase 1 - TDR process
 - Detectors Phase 2
 - Upgrades Higher Luminosity

- **Prototype tests & developments**
 - Readout electronics
 - analog / digital
 - DAQ algorithms FPGA, GPU
 - Detector Controls software

- **First of Series**
 - Detector module integration
 - Mechanical interfaces
 - Operations

- **Production**
 - QA/QC processes
 - Construction, mechanics, supports
 - Detector module assembly
 - Overall detector integration
Opportunities - Detector specific areas

• **GEM Tracker**
 - Readout Electronics – SAMPA (!)

• **Detector Controls**
 - EPICS interface s/w
 - Embedded systems s/w
 - Sensors Driver s/w

• **Tracking**
 - Barrel & Forward Stations
 - Readout Electronics upgrades

• **Barrel ToF**
 - Readout Co-development
 - SiPM Characterization

• **Data Acquisition**
 - Versatile Readout Selection (TRB)
 - Real-time processing (FPGA)
 - On-line feature extraction (GPU/CPU)

• **Disc DIRC / Forward RICH**
 - Readout Co-development
 - Mechanics integration
PANDA Collaboration

More than 450 physicists from 70 institutions in 19 countries

Aligarh Muslim University
U Basel
IHEP Beijing
U Bochum
Magadh U, Bodh Gaya
BARC Mumbai
IIT Bombay
U Bonn
IFIN-HH Bucharest
U & INFN Brescia
U & INFN Catania
NIT, Chandigarh
AGH UST Cracow
JU Cracow
U Cracow
IFJ PAN Cracow
GSI Darmstadt
Karnatak U, Dharwad
TU Dresden
JINR Dubna
U Edinburgh
U Erlangen
NWU Evanston
U & INFN Ferrara
FIAS Frankfurt
LNF-INFN Frascati
U & INFN Genova
U Glasgow
U Gießen
Birla IT&S, Goa
KVI Groningen
Sadar Patel U, Gujart
Gauhati U, Guwahati
IIT Guwahati
Jülich CHP
Saha INP, Kolkata
U Katowice
IMP Lanzhou
INFN Legnaro
U Lund
HI Mainz
U Mainz
U Minsk
ITEP Moscow
MPEI Moscow
U Münster
BINP Novosibirsk
Novosibirsk State U
IPN Orsay
U & INFN Pavia
Charles U, Prague
Czech TU, Prague
IHEP Protvino
PNPI St. Petersburg
U of Sidney
U of Silesia
U Stockholm
KTH Stockholm
Suranree University
South Gujarat U, Surat
U & INFN Torino
Politecnico di Torino
U & INFN Trieste
U Tübingen
TSL Uppsala
U Uppsala
U Valencia
SMI Vienna
SINS Warsaw
TU Warsaw
Welcome to join Exciting Physics

https://panda.gsi.de

Obrigado!
Thank You!
Extra slides
FAIR Groundbreaking Event – 4-July-2017

FAIR Council members.

Klaus Peters – PANDA Spokesperson.
FAIR Construction Field
Construction Site (almost today)