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> Neither of these phenomena is apparent in QCD 's Lagrangian,
HOWEVER, They play a dominant role in determining the
characteristics of real-world QCD!
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Quark propagator: Gluon propagator:
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Ghost propagator:
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Ghost-gluon vertex:
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Quark-gluon vertex:




Dyson-Schwinger equations (DSEs)

> Dyson-Schwinger equations

v A Nonperturbative symmetry-preserving tool for the study of Continuum-
QCD

v Well suited to Relativistic Quantum Field Theory

v" A method connects observables with long-range behaviour of the running
coupling

v Experiment ¢ Theory comparison leads to an understanding of long-range
behaviour of strong running-coupling
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interactions that can take place between the three dressed-quarks that define
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> Mesons: a 2-body bound state problem in QFT
> Bethe-Salpeter Equation

> K - fully amputated, two-particle irreducible, quark-antiquark scattering kernel

> Baryons: a 3-body bound state problem in QFT.

> Faddeev equation: sums all possible quantum field theoretical exchanges and
interactions that can take place between the three dressed-quarks that define
its valence quark content.

Faddeev equation in rainbow-ladder truncation
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2-body correlations: diquarks

> Quantum numbers:
> (1=0, JAP=0"+): isoscalar-scalar diquark
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> (1=0, JAP=1"-): isoscalar-vector diquark
> (|=1, JAP=1"-): isovector-vector diquark
> Tensor diquarks



2-body correlations: diquarks

> Quantum numbers:
> (1=0, JAP=0"+): isoscalar-scalar diquark
> (1=1, JAP=1"+): isovector-pseudovector diquark
> (1=0, JAP=0"-): isoscalar-pesudoscalar diquark
> (1=0, JAP=1"-): isoscalar-vector diquark
> (|=1, JAP=1"-): isovector-vector diquark
> Tensor diquarks

> Three-body bound states



2-body correlations: diquarks

> Quantum numbers:
> (1=0, JAP=0"+): isoscalar-scalar diquark
> (1=1, JAP=1"+): isovector-pseudovector diquark
> (1=0, JAP=0"-): isoscalar-pesudoscalar diquark
> (1=0, JAP=1"-): isoscalar-vector diquark
> (|=1, JAP=1"-): isovector-vector diquark
> Tensor diquarks

> Three-body bound states



2-body correlations: diquarks

> Quantum numbers:
> (1=0, JAP=0"+): isoscalar-scalar diquark
> (1=1, JAP=1"+): isovector-pseudovector diquark
> (1=0, JAP=0"-): isoscalar-pesudoscalar diquark
> (1=0, JAP=1"-): isoscalar-vector diquark
> (|=1, JAP=1"-): isovector-vector diquark
> Tensor diquarks

> Three-body bound states
Quark-Diquark two-body bound states



2-body correlations: diquarks

> Quantum numbers:
> (1=0, JAP=0"+): isoscalar-scalar diquark
> (1=1, JAP=1"+): isovector-pseudovector diquark
> (1=0, JAP=0"-): isoscalar-pesudoscalar diquark
> (1=0, JAP=1"-): isoscalar-vector diquark
> (=1, JAP=1"-): isovector-vector diquark
> Tensor diquarks

> Three-body bound states
Quark-Diquark two-body bound states

Faddeev equation in rainbow-ladder truncation




2-body correlations: diquarks

> Quantum numbers:
> (1=0, JAP=0"+): isoscalar-scalar diquark
> (1=1, JAP=1"+): isovector-pseudovector diquark
> (1=0, JAP=0"-): isoscalar-pesudoscalar diquark
> (1=0, JAP=1"-): isoscalar-vector diquark
> (|=1, JAP=1"-): isovector-vector diquark
> Tensor diquarks

> Three-body bound states
Quark-Diquark two-body bound states

JIES




QCD-kindred model

N




QCD-kindred model

¢ The dressed-quark propagator

N




QCD-kindred model

¢ The dressed-quark propagator
¢ Diquark amplitudes

N




QCD-kindred model

¢ The dressed-quark propagator
¢ Diquark amplitudes
¢ Diquark propagators

N




QCD-kindred model

The dressed-quark propagator
Diquark amplitudes
Diquark propagators
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Faddeev amplitudes
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> Diquark masses (in GeV):
my- = 0.8, my+ =09, my-=12, m-=13,

> The first two values (positive-parity) provide for a good description of numerous
dynamical properties of the nucleon, A-baryon and Roper resonance.

> Masses of the odd-parity correlations are based on those computed from a contact
interaction.

> Such values are typical; and in truncations of the two-body scattering problem that
are most widely used (RL), isoscalar- isovector-vector and isovector-vector
correlations are degenerate.

> Normalization condition 2> couplings:
Jo+ — 148, g1+ = 127.,

g =128, g =54, g.—%?}s.

> Faddeev kernels: 22 x 22 matrices are reduced to 16 x 16 !
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We employ a continuum approach to the three valence-quark bound-state problem in relativistic
quantum field theory to predict a range of properties of the proton’s radial excitation and thereby unify them
with those of numerous other hadrons. Our analysis indicates that the nucleon’s first radial excitation is the
Roper resonance. It consists of a core of three dressed quarks, which expresses its valence-quark content
and whose charge radius is 80% larger than the proton analogue. That core is complemented by a meson
cloud, which reduces the observed Roper mass by roughly 20%. The meson cloud materially affects
long-wavelength characteristics of the Roper electroproduction amplitudes but the quark core is revealed to
probes with Q% = 3m3,.

DOI: 10.1103/PhysRevLett.115.171801 PACS numbers: 13.40.Gp, 14.20.Dh, 1420.Gk, 11.15.Tk
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SOLUTIONS & THEIR PROPERTIES

¢ The four lightest baryon (I=1/2, JAP=1/2*{+-})
isospin doublets: nucleon, roper, N(1535),
N(1650)

Masses

Rest-frame orbital angular momentum
Diquark content
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Pointwise structure
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Masses

> We choose gDB=0.43 so as to produce a mass splitting of 0.1 GeV (the empirical
value) between the lowest-mass P=- state (N(1535)) and the first excited P=+ state
(Roper).

> Our computed values for the masses of the four lightest 1/2”{+-} baryon doublets
are listed here, in GeV:

/27 /2~ 1/2~
9pB | My Myaa0) Myas3s)  MN(1650)
0.43 1.19 1.73 1.83 1.91
1.0 1.19 1.73 1.43 1.61

> Pseudoscalar and vector diguarks have no impact on the mass of the two positive-
parity baryons, whereas scalar and pseudovector diquarks are important to the
negative parity systems.
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> |n consequence, a comparison between the empirical values of the resonance pole positions
and the computed masses is not pertinent. Instead, one should compare the masses of the
guark core with values determined for the meson-undressed bare excitations, e.g.,
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> The relative difference is just 1.7%. We consider this to be a success of our calculation.
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(b) delivers the same qualitative picture
as that presented in (a). Therefore, there
is little mixing between partial waves in
the computation of a baryon’s mass.

The nucleon and Roper are primarily S-
wave in nature. On the other hand, the
N(1535)1/27-,N(1650)1/27- are
essentially P-wave in character.

> These observations provide support in

guantum field theory for the constituent-
guark model classifications of these
systems.
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Pointwise structure

> We consider the zeroth Chebyshev moment of all S- and P-wave components in a

given baryon’s Faddeev wave function.
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> We consider the zeroth Chebyshev moment of all S- and P-wave components in a

given baryon’s Faddeev wave function.

> Nucleon’s first positive-parity excitation: all S-wave components exhibit a single zero;
and four of the P-wave projections also possess a zero. This pattern of behavior for
the first excited state indicates that it may be interpreted as a radial

1.0
0.8
0.6
0.4
0.2
0.0

—0.2

—0.4}+

0.6 0.8

0.3

0.2

_0.1 -

a,

- (1/3)a; + (2/3) at

a; —ag

Vi — Vg,

Vi

(1/3) vy + (2/3)v5

0.0

0.6 0.8

1.0F — S
0.8} 2
(1/3)at + (2/3)at
0.6} -
P
0.4 —— 3
0.2} - (1/3) ¥ + (2/3) v¢
0.0 == r————— e —— e
—0.2F _ _ -7
—0.4
0.0 0.2 0.4 0.6 0.8
€] GeV
5 —— B3
= af v
0.0S- (1/3)a% + (2/3)a; (1/3) vi + (2/3) v
ay —ag - vy — v
0.0} ===
—0.05}
0.0 0.2 0.4 0.6 0.8



SOLUTIONS & THEIR PROPERTIES:
Pointwise structure

> We consider the zeroth Chebyshev moment of all S- and P-wave components in a
given baryon’s Faddeev wave function.

> Nucleon’s first positive-parity excitation: all S-wave components exhibit a single zero;
and four of the P-wave projections also possess a zero. This pattern of behavior for
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Pointwise structure

> For N(1535)1/27-,N(1650)1/2A- : the contrast with the positive-parity states is STARK.
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Pointwise structure

> For N(1535)1/27-,N(1650)1/2A- : the contrast with the positive-parity states is STARK.

In particular, there is no simple pattern of zeros, with all panels containing at least one function
that possesses a zero.
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For N(1535)1/2”-,N(1650)1/2A- : the contrast with the positive-parity states is STARK.

In particular, there is no simple pattern of zeros, with all panels containing at least one function

that possesses a zero.

In their rest frames, these systems are predominantly P-wave in nature, but possess material S-

wave components; and the first excited state in this negative parity channel—N(1650)1/2"——
has little of the appearance of a radial excitation, since most of the functions depicted in the

right panels of the figure do not possess a zero.
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A continuum approach to the three valence-quark bound-state problem in quantum field theory
is used to compute the spectrum and Poincaré-covariant wave functions for all flavour-SU(3) octet
and decuplet baryons and their first positive-parity excitations. Such analyses predict the existence
of nonpointlike, dynamical quark-quark (diquark) correlations within all baryons; and a uniformly
sound description of the systems studied is obtained by retaining flavour-antitriplet-scalar and
flavour-sextet—pseudovector diquarks. Thus constituted, the rest-frame wave function of every sys-
tem studied is primarily S-wave in character; and the first positive-parity excitation of each octet or
decuplet baryon exhibits the characteristics of a radial excitation. Importantly, every ground-state
octet and decuplet baryon possesses a radial excitation. Hence, the analysis predicts the existence
of positive-parity excitations of the =, =", ) baryons, with masses, respectively (in GeV): 1.75(12),
1.89(03), 2.05(02). These states have not yet been empirically identified. This body of analysis
suggests that the expression of emergent mass generation is the same in all u, d, s baryons and,
notably, that dynamical quark-quark correlations play an essential role in the structure of each one.
It also provides the basis for developing an array of predictions that can be tested in new generation
experiments.



MasSqqaet (GEV)

Octet & Decuplet Baryons

$ 30

Nn=0 Nn:l An=0 An:l zn:O 2,,:1 En=0 En=1

2.5}

Mass geauplet (GEV)

11}

Anzo An=t  Zpo Zner  Eneo Epar {hn=0 (nay




Summary & Outlook




Summary & Outlook

> By including all kinds of diquarks, we performed a comparative study of the four
lightest baryon (I=1/2, JAP=1/2"{+-}) isospin doublets in order to both elucidate their
structural similarities and differences.




Summary & Outlook

> By including all kinds of diquarks, we performed a comparative study of the four
lightest baryon (I=1/2, JAP=1/2"{+-}) isospin doublets in order to both elucidate their
structural similarities and differences.

> The two lightest (1=1/2, JAP=1/2"+) doublets are dominated by scalar and
pseudovector diquarks; the associated rest-frame Faddeev wave functions are
primarily S-wave in nature; and the first excited state in this 1/2”+ channel has very
much the appearance of a radial excitation of the ground state.
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> By including all kinds of diquarks, we performed a comparative study of the four
lightest baryon (I=1/2, JAP=1/2"{+-}) isospin doublets in order to both elucidate their
structural similarities and differences.

> The two lightest (1=1/2, JAP=1/2"+) doublets are dominated by scalar and
pseudovector diquarks; the associated rest-frame Faddeev wave functions are
primarily S-wave in nature; and the first excited state in this 1/2”+ channel has very
much the appearance of a radial excitation of the ground state.

> In the two lightest (I=1/2, JAP=1/27-) systems, TOO, scalar and pseudovector
diquarks play a material role. In their rest frames, the Faddeev amplitudes describing
the dressed-quark cores of these negative-parity states contain roughly equal
fractions of even and odd parity diquarks; the associated wave functions of these
negative-parity systems are predominantly P-wave in nature, but possess
measurable S-wave components; and, the first excited state in this negative parity
channel has little of the appearance of a radial excitation.
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S(p) = =iy - poy(p?) + o5(p?)

> algebraic form:
Gs(x) = 2mF(2(x + m?))
+ F(b1x)F (b3x)[bo + by F(ex)],  (A3a)
1

Gy (x) = s [1 = F(2(x + m?))], (A3b)

with x = p*/A%, m = m/A,

| —e™

Fx) = (Ad)

Gs(x) = Aog(p?) and 6y (x) = A*6y(p*). The mass scale,
A = 0.566 GeV, and parameter values,

m b() bl b2 b3
0.00897 0.131 290 0.603 0.185°

(AS5)

associated with Eq. (A3) were fixed in a least-squares fit to
light-meson observables [79,80]. [e = 10~* in Eq. (A3a)
acts only to decouple the large- and intermediate-p?

_ domains. | .
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+ F(b1x)F (b3x)[bo + by F(ex)],  (A3a)
1

oy (x) = s [1 = F(2(x + m?))], (A3b)

with x = p*/A%, m = m/A,

| —e™

Fx) = (Ad)

Gs(x) = Aog(p?) and 6y (x) = A*6y(p*). The mass scale,
A = 0.566 GeV, and parameter values,

m b() bl b2 b3
0.00897 0.131 290 0.603 0.185°

(AS5)

associated with Eq. (A3) were fixed in a least-squares fit to
light-meson observables [79,80]. [e = 10~* in Eq. (A3a)
acts only to decouple the large- and intermediate-p?
domains. |
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> The dressed-quark propagator
S(p) = —ir - poy(p?) + o5(p?)

> Based on solutions to the gap equation that we
vertex.

re obtained with a dressed gluon-quark

> Mass function has a real-world value at p”*2 = 0, NOT the highly inflated value typical of Rt

truncation.
> Propagators are entire functions, consistent wit

h sufficient condition for confinement and

completely unlike known results from Rt truncation.

> Parameters in quark propagators were fitted to
ZERO parameters changed in study of baryons.

> Compare with that computed using the
DCSB-improved gap equation kernel (DB).
The parametrization is a sound representation:
numerical results, although simple and introdu
long beforehand.

a diverse array of meson observables.
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FIG. 6. Solid curve (blue)—quark mass function generated by
the parametnzation of the dressed-quark propagator specified by
Egs. (A3) and (A4) (AS5); and band (green)—exemplary range of
numerical results obtained by solving the gap equation with the
modern DCSB-improved kernels described and used in
Refs. [16,81-83].
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> Diquark amplitudes: five types of correlation are possible in a J=1/2 bound state:
isoscalar scalar(1=0,JA"P=0"+), isovector pseudovector, isoscalar pseudoscalar, isoscalar
vector, and isovector vector.

> The LEADING structures in the correlation amplitudes for each case are, respectively
(Dirac-flavor-color),

M (k;K) = gy ySCrzﬁf(kz/mf)-).
I::,- (k; K) = igl-yl,Cl_ﬁ F(k*/wi.),
M (kK) = ig(,-Crzﬁf(kz/m(%_).

[ (ki K) = gi-1,rsCEHF (I [a?-),

[, (ki K) = igi-[y,. 7 - KlysCTH F (K /w?.),

> Simple form. Just one parameter: diquark masses.

> Match expectations based on solutions of meson and diquark Bethe-Salpeter
amplitudes.
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> The diquark propagators

+ 1 2 2
A" (K) == F(k*/w}.),

me.

= KIKU ’) ’)
AL (K) = [+ S| - F W),

mi.

> The F-functions: Simplest possible form that is consistent with infrared and

ultraviolet constraints of confinement (IR) and 1/g”2 evolution (UV) of meson
propagators.

> Diquarks are confined.

> free-particle-like at spacelike momenta
> pole-free on the timelike axis

> This is NOT true of RL studies. It enables us to reach arbitrarily high values of
momentum transfer.
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> The Faddeev ampitudes:
y=(pia;,0;) [ro‘ (k; K) ]a'a A (K)[‘/’é(ﬂp u(P) ﬁi
+ 0 1AL (42 P)u(P)]
+[r]a% o-v,P)u P))
+ [0 18 o, (43 P)Y(P)], (9)

> nunrk-dlmmrk vertirec:
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> The Faddeev ampitudes:

v=(piai,0;) = IV (ki K)| a2 A (K)[wé(f’;l’ u(P)]s;
+ [ 1AL, (45 Pu(P)]
+ [M7]A° 0_(K;P)u P)]
+ [0y A i, (4 P)Y(P)]. (9)

> nunrk-dlmmrk vertirec:

@z (¢3P) Z"i (¢2,¢ - P)S!(¢; P)G*,

) where G'') = I (ys) and
-+ 2 . Jxr 2 p . i z +
@- (3 P) = ‘Z:l:a (62,0 - P)ysAL(¢, P)G™, S =1, S=iy-£-¢-PI,
2 Al =y. 1P, A2 = —iP,Ip A =y . Pret
2 i - . A
05 (3 P) =) _pi (0 P)S(EP)GF, iy A4S A5 — iy P s,

i=1

o, (¢3P) = Zv (£2,¢ - P)ys Al (¢ P)GT,
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QCD-kindred model

> Both the Faddeev amplitude and wave function are Poincare covariant, i.e. they are
gualitatively identical in all reference frames.

> Each of the scalar functions that appears is frame independent, but the frame chosen
determines just how the elements should be combined.

> In consequence, the manner by which the dressed quarks’ spin, S, and orbital angular
momentum, L, add to form the total momentum J, is frame dependent: L, S are not
independently Poincare invariant.

> The set of baryon rest-frame quark-diquark angular momentum identifications:
25: S AZ, (A + A),
P S% AL (AF 4 A9,
P (247 - A%)/3,
‘D: (2A4) - A)/3,

> The scalar functions associated with these combinations of Dirac matrices in a Faddeev

wave function possess the identified angular momentum correlation between the quark
and diquark.
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Quark-diquark picture

> A baryon can be viewed as a Borromean
bound-state, the binding within which
has two contributions:
v Formation of tight diquark correlations.

v Quark exchange depicted in the shaded

darea.

> The exchange ensures that diquark correlations within the baryon are fully
dynamical: no quark holds a special place.

> The rearrangement of the quarks guarantees that the baryon's wave function
complies with Pauli statistics.

> Modern diquarks are different from the old static, point-like diquarks which
featured in early attempts to explain the so-called missing resonance
problem.

> The number of states in the spectrum of baryons obtained is similar to that
found in the three-constituent quark model, just as it is in today's LQCD
calculations.



