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“If, in some cataclysm, all of scientific 
knowledge were to be destroyed, and only one 
sentence passed on to the next generation of 
creatures, what statement would contain the 
most information in the fewest words? I believe 
it is the atomic hypothesis that all things are 
made of atoms — little particles that move 
around in perpetual motion, attracting each 
other when they are a little distance apart, but 
repelling upon being squeezed into one 
another. In that one sentence, you will see, 
there is an enormous amount of information 
about the world, if just a little imagination and 
thinking are applied.” 



And behaviour 
emerges from 

the spiking activity  
of interacting neurons… 

 
 

And social behavior 
from the interacion 
between agents... 

 

Many issues addressed by contemporary statistical mechanics 
deals with the interaction between out of equilibrium, nonlinear units. 





The units: what dynamics can we expect from a low dimensional, nonlinear system? 

The interaction: what emerges out of the interaction between these nonlinear units? 

Our first course:  
nonlinear dynamics 



Newton, and a prescription that changed science 

The rate of change 
of variables at an instant,  
defined by the variables at 

that instant 

The origin of dynamics 

We then measure 
a finite amount 

of information, and 
unveil the dynamics 

forever 



A “Newtonian” approach to neuroscience 

The “Newtonian labyrinth”: a closed expression for the two body problem. 







A qualitative argument… 









Dynamics is driven 
By the vector field and 

The topology of the  
phase space 



Normal forms: simple vector fields we can obtain algorithmically, 
and are representative of large classes of systems 
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Two time dependent parameters 
Control  many features of the vocalizations:  
air sac pressure and s.v. tension 

Our first steps in the field: the basic mechanics of labial motion 



Complete model Normal form 

   

dx

dt
= y

dy

dt
= -a(t)g 2 - b (t)g 2x - g 2x3 - g x2y + g 2x2 - g xy

Normal form reduction 



The subtle relationship between 
those acoustic features is 

determined by the bifurcation 
type: neither the details of the 
biomechanics, nor by detailed 

neural instructions 



Experimentally, there is a relationship 
Between the richness of the spectrum and 
The fundamental frequency: the lower the  

Frequency, the richer the spectrum. 
 

The spectral Index Content (SCI) is defined to  
Reflect how the energy is distributed in the  

spectrum compared to the energy in the  
Fundamental frequency component 

 

SCI = ( wi

i

å ei E) AFF

Signature of a snilc? 



Tension 
(activity of vS muscle) 

Air sac Pressure 

With Franz Goller, 2003-present 

Direct mesurement of pressure and muscle activity 



sound 

pressure 

Tension (left) 

Tension (right) 

Not that simple, these instructions… 



Reconstructed Instructions, 
Compared with the measured ones 



Strategies to test the model 

BOS 

SYN 

To get a synthetic song, 
we fit a (pressure) and b 
(tension) in the normal 
form model so that BOS 
and SYN share spectral 
Features (Fundamental, 
Spectral content) 



From Dan’s Lab 



From Dan’s Lab 



Testing the model 

Neurons in HVC respond selectively to the bird’s own song (BOS) 



Testing the model 

Neurons in HVC respond selectively to the bird’s own song (BOS) 



A more detailed modeling 

 More detailed modeling of the vocal tract (not just 3 tubes). 
Oropharingeal cavity as a resonator 
 

 Intrinsic noise in the activity of the syringeal muscles 



A more detailed modeling 



A more detailed modeling 



A strategy for studying a hierarchy of importance for the elements in the model 



Tuning surface 
Grouped data: 5 birds 

The resonant cavity is very 
relevant (can be controlled by 
the birds while singing) 

The noise has a particular 
value that maximize the 
responses 

Nature 2013, Amador et al.  
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Beyond periodic orbits 
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And after the autonomous evolution, 



Natural frequency/Forcing frequency 



A caricature by Smale 
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Rossler 

Lorenz 
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What dynamics can we expect from a low dimensional, nonlinear system? 

How does low dimensional dynamics emerge in nature? 



Part 2 



How complex are these gestures? 
 
Can we find them as solutions of simple ODE  
dynamical model? 

They are not that complex either… 
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And they are the solutions of a  
Low dimensional dynamical system 
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And they are the solutions of a  
Low dimensional dynamical system 

H 

How do we obtain 
low dimensional dynamics 

from a large set of excitable units? 



And it is really low dimensional… 





Let us first consider only 
Excitatory neurons, all to all coupling 



Each unit, a phase 
oscillator 



q q

z

z

Plotting all the phases together, the set is  
represented by a cloud. Here, two examples. 

This order parameter, z, describes the synchronicity 



With z, we can write the 
System of equations as 



q q

z

z

But the real question is whether we can write 
equations for the order parameter, which describes 

macroscopically the set of oscillators. 

The strategy, to work with the distribution of phases 



We start with the 
continuity equation 
for the distribution 

We write the velocity 
in terms of z,  

And we write the 
“continuous” version 
of z. 



We write a mode expansion for the distribution, 

And inserting these into the equation of continuity, we would get 
equations  (an infinite set of them!) for the amplitudes. Unless we 

can justify a reduction in the number of equations,  
we won´t make much progress. 



Inserting 
f and dθdt  



Inserting 
f and dθdt  

If we define 

Now one of the modes stands out: 



In other words, if we know how this mode 
evolves, and we can solve the first integral, 
we will have a macroscopic description of  
network. 



Let us assume that (Ott´s ansatz) 

an =a1

n



So, this is a partial differential equation satisfied by the 
amplitude of the first model.  
 
1. Its integral over the frequencies, gives the order parameter 
2. If we know this, we know all the amplitudes  







This is the flow of units crossing θ=π , i.e. spiking  

A really intuitive macroscopic quantity (how many spikes  
there are, globally, per unit of time), computed as a function  

Of the order parameter. 
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The same dynamical elements that we needed for the 
phenomenological model, in order to reproduce the physiological patterns 

when the respiratory system is forced by the telencephalon 



A continuous representation of time at the telencephalon: 
 

“Cool” experiments 

Consistent with one 
Time scale… Long & Fee 



It would be nice to be able to 
Change the frequency… 

In canaries, we 
obtained the 
physiological 

parmeters forcing 
a nonlinear 
structure 
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Canary pressure 
patterns 
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The experimental data 



A good model is a predictive one 





• Topics visited 

 
 Individual out of equilibrium units:  

 

 Isolated, coexisting stationary points -  isolated periodic solutions. 

 

                    Qualitative changes as the parameters are moved. 

 

 When coupled, there is a diversity of regimes:  

 

  Synchronicity among them, leading to a reduction of the dimensionality of    
  the displayed dynamics. 

 

   Spatio-temporal complexity, chaos, turbulence. 



• Supplemental material 



p-p p-p cc

Another situation where there 
Is a snilc… 



p-p p-p cc



Another element in the description 



m < 0m > 0

x’= 0

y’= 0



Bifurcation diagrams 



m

1

2

m



Center manifolds 





Restricted to two modes: 
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