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Lecture 1. Beyond LCDM - an overview of the gravitational landscape

Lecture 2. f(R) Gravity - what happens to background dynamics and growth of 
structure.

Lecture 3. Model Independent Approaches to Cosmological Tests of Gravity.

Lecture 4. Effective Field Theory (EFT) of Dark Energy - set up and applications to 
cosmological probes.
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That the expansion rate of the Universe is accelerating is now a firmly established aspect of 
cosmology and a testament to the breathtaking convergence of techniques that has emerged in 
observational cosmology. In turn, cosmic acceleration has introduced new wrinkles into almost 

every part of theoretical cosmology:  what is sourcing it ??  

In the standard model of cosmology: the cosmological constant Λ
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cosmological constant problem:
why is the vacuum energy so 

small (or zero)?

cosmic coincidence problem: why are the matter and dark 
energy densities approximately 

equal today?⌦⇤
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A Lorentz invariant theory of a massless spin-2 
particle must be GR at low energies. 

So, to modify GR we can either give mass to the graviton, 
introduce new DOF or break Lorentz invariance

Weinberg-Deser theorem:

Any theory beyond ΛCDM does at least one of the above. 

The new DOF will generally be Lorentz scalars. 
The above scenarios can be achieved in different ways, e.g. through higher 
dimensional setup, higher derivatives (be aware of instabilities!!), explicit additional 
DOF, giving up locality,  ....

In general, by modifying the original action, we change the equations of motion in such a way that 
some of those that were constraint equations become dynamical.

How special is GR ?



The only possible second-order, Euler-Lagrange  equations 
obtainable in a 4D spacetime from an action containing solely the 

4D metric and its derivatives are the Einstein field equations

Lovelock’s theorem:
(1971)
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The only possible second-order, Euler-Lagrange  equations 
obtainable in a 4D spacetime from an action containing solely the 

4D metric and its derivatives are the Einstein field equations
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A nice property of the Lovelock scalars is that any Lagrangian written in 
terms of Lovelock scalars, including non linear functions of them, will not 

contain extra tensorial DOF. 

in 4D

L =
p
�g (↵0 + ↵1R + ↵2G) 1 massless spin-2 DOF

L =
p

�g (↵1f(R) + ↵2f(G)) 1 massless spin-2 DOF + 2 scalar DOF: fG fR,

rµr⌫fR , rµr⌫fG
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L =
p
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�g (↵1f(R) + ↵2f(G)) 1 massless spin-2 DOF + 2 scalar DOF: fG fR,
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More generally, a theory of gravity which maintains second order EOMs for the tensor and has a single 
additional propagating scalar DOF in 4D is:

fRRfGG � f2
RG = 0withL =

p
�gf(R,G)

How special is GR ?



And after Lovelock, came Horndeski !!!
but it took us some decades to notice it…

… so let us forget for a moment about the powerful 
framework provided by Horndeski gravity, and let us have a look at the 

gravitational landscape that emerged in the past decades.

Scalar-tensor theories
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f(R) gravity
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Let us focus on the scalar DOF introduced by most, if not all, of these models. After all, 
that is the ingredient that could take care of cosmic acceleration. 

We have discussed Lovelock gravity, which corresponds to the most general action for the metric leading 
to 2nd order EOMs in D dimensions. Let us now look at a scalar DOF. In Minkowski space there is 

something analogous to Lovelock argument that allows us to identify the most general Lagrangian for a 
scalar DOF with at most 2nd order EOMs in D dimensions. 

Galileons
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to 2nd order EOMs in D dimensions. Let us now look at a scalar DOF. In Minkowski space there is 

something analogous to Lovelock argument that allows us to identify the most general Lagrangian for a 
scalar DOF with at most 2nd order EOMs in D dimensions. 

Studying the decoupling limit of the higher-dimensional DGP model, Nicolis et al. realized that the scalar 
field corresponding to the longitudinal mode of the massive graviton obeyed the galilean shift symmetry, 

inherited from the higher-dimensional Poincaré invariance :

Interestingly, requiring a theory for a scalar field to be galilean invariant and to have EOMs at most of 
2nd order, identifies a finite number of terms !  

In particular, we have  D+1 galileon terms for a Lagrangian in D dimensions. All this, in Minkowski 
space. If we want to covariantize this, in order for it to be valid in curved spacetime, then we need to 

non-minimally couple the scalar to gravity in order to keep EOMs to 2nd order (... breaking the 
galilean invariance).
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Putting all this together, the most general 4D scalar-tensor theory
having second-order field equations is described by the following Galileon Lagrangian:

The above Lagrangian was first discovered by Horndeski in 1974 in a different, but equivalent 
form, in the context of Lovelock gravity. Notice that it is a higher-derivative theory which still gives 2nd 

order EOMs
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C. Deffayet, X. Gao, D. A. Steer and G. Zahariade
G. W. Horndeski, Int. J. Theor. Phys. 10

A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D79, 064036 (2009). 
C. Deffayet, G. Esposito-Farese and A. Vikman, Phys. Rev. D79, 084003 (2009). 
C. Deffayet, S. Deser and G. Esposito-Farese, Phys. Rev. D 80, 064015 (2009).
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Horndeski
(1974)

Second-order scalar-tensor field equations  
in a four-dimensional space 

requesting diffeomorphism inv. and 2nd order eoms., leads to the following action:

Starting from a generic action depending on the metric, a scalar field and their derivatives, in 4D:

p , q � 2

This is equivalent to the Generalized Galileon action.

1 , 3 , 8 , 9where are arbitrary functions of � andX



Beyond Horndeski
Why avoiding higher-order derivatives in the Lagrangian ?

An important postulate of the Ostrogradsky theorem is that the Lagrangian is
nondegenerate. If this is not the case, one can reduce a set of higher-derivative field

equations to a healthy second-order system.

One of the guiding principles we follow is the Ostrogradsky theorem, which
states that a system described by nondegenerate higher-derivative Lagrangian suffers

from ghost-like instabilities. 
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gµ⌫ ! g̃µ⌫ = C(�, X)gµ⌫ +D(�, X)�µ�⌫
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nondegenerate. If this is not the case, one can reduce a set of higher-derivative field

equations to a healthy second-order system.
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states that a system described by nondegenerate higher-derivative Lagrangian suffers

from ghost-like instabilities. 

DHOST: degenerate higher-order scalar-tensor theories

Kobayashi, arXiv:1901.07183Gleyzes et al., Phys.Rev.Lett. 114 (2015) 

They have interesting cosmological phenomenology!

a class of these, can be obtained from Horndeski
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Massive Gravity
It is a vast and extremely challenging territory!

Writing a theory for a massive, spin-2 field is not too difficult. First attempt dates back
to Fierz-Pauli in 1939, who wrote the action for a massive spin-2 on flat space. 

But it gets very complicated as soon as we include interactions with other particles. 
The theory is always fully non-linear, and suffers very easily from instabilities.

I will not say much about modified gravity in these lectures. From the observational 
point of view, we mostly deal with the massless limit of massive gravity, which 

corresponds to a massless graviton plus a scalar field (i.e. the longitudinal mode of the 
massive graviton).

The modern idea is that of linking the mass of the graviton to horizon scale, so that 
the scale of acceleration is technically natural (a symmetry, i.e. gauge invariance, is 

restored in the limit of m       0)
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point of view, we mostly deal with the massless limit of massive gravity, which 

corresponds to a massless graviton plus a scalar field (i.e. the longitudinal mode of the 
massive graviton).

The modern idea is that of linking the mass of the graviton to horizon scale, so that 
the scale of acceleration is technically natural (a symmetry, i.e. gauge invariance, is 

restored in the limit of m       0)

DEGRAVITATION
There is a nice scenario that gives a technically small 

cosmological constant through the degravitation of the vacuum 
energy. It is realized by promoting Newton’s constant to a high-

pass filter (linked to the mass of the graviton).



When modifying gravity, 
be aware of …



Gravity has been tested to great accuracy in the 
solar system and in laboratory. 

All alternative theories are bounded to resemble 
GR very closely on the corresponding scales.

Yet, as we have seen most of these models introduce a scalar field which is coupled to matter 
fields (there’s no good symmetry argument to prevent it) and mediates an additional,

fifth force among them with a long range ~         .
This interaction must be in some way suppressed in high density environments!

m�1
�

Over the past decade it has become clear that this can happen through non-linear 
screening mechanisms. Before this was realized, experiments such as the Cassini one 
were thought to rule out many Brans-Dicke models (all those with the coupling ω 

<40000), including f(R) which corresponds to ω=0 ! 

While there is a plethora of models of dark energy/modified gravity, there are only 
three general classes of screening. I will give a brief overview of this at the end of this 
lecture. There’s an interesting phenomenology associated to these, that still needs to 

be fully explored and exploited.

Khoury and Weltman, Phys.Rev.Lett.93 (2004)

Local tests of gravity



Extra DOFs are exactly what we needed to source cosmic 
acceleration in a dynamical way!

 Yet extra dynamics might bring in instabilities in the system.  
The latter have often a classical and a quantum facet. 

For instance the DOFs might be ghost-like (~ wrong sign kinetic term), 
develop a gradient instability (~ wrong sign gradient term), be 

tachyonic, propagate superluminally etc...which would make the theory 
unhealthy for different reasons.

One can identify conditions to avoid these instabilities by performing a 
diagnostic of  the dynamics of perturbations at the level of the action.

†

Stability of your theory



Gravitational Waves
‘After straining our eyes, it is now time to strain our ears !’OCTOBER 2017 



GW170817
& GRB170817A

LIGO, Virgo, Fermi,-GBM, INTEGRAL, Astrophys.J. 848 (2017)



The electromagnetic counterpart 
allows us to determine the redshift 

of the source.

GW170817
& GRB170817A

LIGO, Virgo, Fermi,-GBM, INTEGRAL, Astrophys.J. 848 (2017)
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The scream, E. Munch
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↵T / 2X[2G4X � 2G5� � (�̈�H�̇)G5X ],

For Generalized Galileons:

c2
T = 1 ↵T = 0

a caveat: see Rainbow 
paper by de Rham & 
Melville, June 2018



Ezquiaga, Zumalacarregui, PRL 2017

The aftermath of GW170817
& GRB170817A

Einstein-Aether, Generalized Proca, bimetric gravity, … are constrained but still there!  



Generally theories beyond ΛCDM have enough freedom to reproduce ‘any’ 
desired expansion history, being higher order in nature. 

In other words, at the level of background expansion history there is a 
degeneracy among different approaches to the phenomenon of cosmic 

acceleration.

It has become increasingly clear that we need to go beyond geometrical 
probes in order to disentangle the theoretical landscape of cosmic 

acceleration.

Large Scale Structure will provide a powerful testbed. 

But this is a school on Observational Cosmology,  so let me get to the more 
interesting part, i.e. how to test our theory of gravity on cosmological scales?

Cosmological Tests of Gravity
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Going to the perturbed Universe



expansion history:

non-relativistic dynamics 
(growth of structure, pec. vel.):

relativistic dynamics
(weak lensing, ISW):

Perturbed metric and LSS
ds

2 = �a

2(⌧)
⇥
(1 + 2 (⌧, ~x)) d⌧2 � (1 � 2�(⌧, ~x))

⇤
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:  massless particles

weak lensing,
Integrated Sachs-Wolfe effect in CMB

light deflection, time delay

lensing potential

Eddington, 1919

Cosmic Functions of Interest

�+ 



baryons

neutrinos

photons

dark mattergµ⌫

dark energy

Boltzmann eqs.:

Einstein eqs.: Gµ⌫ $ Tµ⌫

df

dt
= C[f ] where f is the phase-space distribution function of a given species

Cosmic Functions of Interest



matter and metric perturbations 
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theory
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EINSTEIN-BOLTZMANN 
 SOLVER 
e.g. CAMB

From Theory to Observables

hi_class
hiclass-code.net

EFTCAMB
eftcamb.org

COOP
cita.utoronto.ca/~zqhuang/coopα

Gal-CAMB

ř

CLASS-LVDM

BD-CAMB
DASh-BD
CLASSig

NL-CAMB

NL-CLASS

CLASS_EOS_fR



Going to non-linear, dense regions



Screening Mechanisms



Still, they have not been seen experimentally, therefore the fifth force 
that they mediate must be suppressed in local environments, where GR 
has been tested to high accuracy.  This can happen by mean of the so-

called screening mechanism.

Essentially all attempts to explain cosmic acceleration introduce 
new long range forces, typically mediated by a scalar DOF.

Screening Mechanisms



Small scale tests of gravity that rely on distinct signatures of screening are useful discriminants of 
cosmological models. This is a “recent” realization, destined to complement large scale tests of 

GR

Chameleon

Symmetron

the effective mass of the field depends on the local density of matter, so 
that it is light on cosmological scales (and can source acceleration) and 

heavy in local regions, effectively hiding from local tests of gravity

the vev of the field depends on the local density of matter and the coupling 
of the field to matter is proportional to the vev, so that the scalar couples 
with gravitational strength in regions of low density, but is decoupled and 

screened in regions of high density

it is a kinetic type of screening, in which either first (k-.) or second (V.) 
derivatives of the scalar field become large in dense regions, effectively 

weakening the interaction with matter

Vainshtein
& 

k-mouflage

PHENOMENOLOGICAL CLASSIFICATION

Screening Mechanisms: types
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Khoury and Weltman, Phys.Rev.Lett.93 (2004)
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for a single, non-relativistic 
matter component

Chameleon Mechanism


