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pre-LECTURE 2 
finishing up Screening Mechanisms



Still, they have not been seen experimentally, therefore the fifth force 
that they mediate must be suppressed in local environments, where GR 
has been tested to high accuracy.  This can happen by mean of the so-

called screening mechanism.

Essentially all attempts to explain cosmic acceleration introduce 
new long range forces, typically mediated by a scalar DOF.

Screening Mechanisms



Small scale tests of gravity that rely on distinct signatures of screening are useful discriminants of 
cosmological models. This is a “recent” realization, destined to complement large scale tests of 

GR

Chameleon

Symmetron

the effective mass of the field depends on the local density of matter, so 
that it is light on cosmological scales (and can source acceleration) and 

heavy in local regions, effectively hiding from local tests of gravity

the vev of the field depends on the local density of matter and the coupling 
of the field to matter is proportional to the vev, so that the scalar couples 
with gravitational strength in regions of low density, but is decoupled and 

screened in regions of high density

it is a kinetic type of screening, in which either first (k-.) or second (V.) 
derivatives of the scalar field become large in dense regions, effectively 

weakening the interaction with matter
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resulting static potential around point source



Khoury and Weltman, Phys.Rev.Lett.93 (2004)
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calculation of environment dependent mass …
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Around ‘spherically symmetric cow’

If we can achieve the following configuration:



Whether this configuration can be achieved, depends on the 
parameters of the theory and on how perturbing is the source. 

If it is strong enough, the chameleon field will settle to the minimum 
corresponding to the inner density, be massive over most of the 

source and the long range force it mediates will be suppressed. The 
interpolation between outer and inner values will happen over a 
thin-shell, further suppressing the intensity of the field outside the 

source. I.e. the source will be screened.

Otherwise the chameleon will change throughout the source, i.e. the 
shell will be thick, and the field won’t be massive enough inside the 
source to hide from local tests, i.e. the source will be unscreened.

Thin-shell configuration



And what happens if we go beyond 
spherical symmetry and/or static 

configurations?

We expect monopole, dipole, etc..radiation in dynamical configurations, 
e.g. different rates of energy loss in binary systems

Viable screening theories make novel predictions for local gravitational 
experiments, offering a rich spectrum of testable predictions, from 

laboratory to extra-galactic scales.

Something observable?

… more on this at the end of the lecture !



f(R) Gravity



f(R) gravity
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Background Cosmology



Hence there is an additional dynamical DOF, dubbed the 
scalaron, which obey the following eom:
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By design, the f(R) theories we consider must have            and             at high curvatures to 
be consistent with our knowledge of the high redshift universe. 

In this limit, the extremum of the effective potential lies at the GR value                         . 
Whether this extremum is a minimum or a maximum is determined by the second derivative 

of the effective potential at the extremum:

f ⌧ R fR ⌧ 1

R = 2 (⇢� 3P )

We will get back to this characteristic lengthscale of the model several times.

Background



Einstein frame
Let’s look at it from another angle! Introducing an auxiliary field we can write a 

dynamically equivalent action:
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If               , the field equation for    gives R=     which reduces the above action to the original one. f�� 6= 0 � �

T. Chiba, Phys. Lett. B 575 (2003) G. Magnano and L. M. Sokolowski, Phys. Rev. D 50, 5039 (1994)
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Now, let us perform a conformal transformation:

e�2!(1 + fR) = 1g̃
µ⌫
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This is the Einstein frame ! The gravitational action has the 
standard Einstein-Hilbert form,
there is an explicit additional scalar DOF which is coupled 
to matter.  
This frame is physically equivalent to the one of the original 
action, i.e. the Jordan frame. The latter is defined by the fact 
that matter fields follow geodesics of the metric. f(R) has a 
universal coupling
and hence allows for a uniquely defined Jordan frame.
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All standard background functions in the Friedmann equation can be expressed in terms of E and its 
derivatives. The resulting equation is a 2nd order ODE for f(R) in terms of derivatives wrt ln(a):
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In order to set the initial conditions, let us consider the general and the particular solutions at early times, when 
the effects of the effective dark energy on the expansion are negligible.  At a certain early value      , the 

homogeneous part of the eq. is satisfied by a power law ansatz             . Substituting this ansatz in and solving 
the quadratic equation for p yields:
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The decaying mode solution corresponding to      leads to a large f(R) at early times which makes it 
unacceptable, and we set its amplitude to zero.  The particular solution at      can be found by substituting
yp = ApEe↵(ai) in the ODE. One then finds:
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Put together, the initial conditions at     are

and A is the remaining arbitrary constant that can be used to parametrize different f(R) models with the 
same expansion history.
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There is a family of f(R) models for each expansion history. 

As a label for each family, it is common to use the boundary 
condition at a=0, B0, defined as the today value of: 

Which is the characteristic lengthscale of the scalaron in units 
of the horizon scale.

B =
fRR

1 + fR
R0 H

H 0

Designer approach
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Designer approach



Conditions of viability:

fRR > 0

1 + fR > 0

fR < 0 negative, monotonically increasing function of R that asymptotes to zero from below

to have a stable high-curvature regime

Dolgov, Kawasaki, Phys.Lett.B 573 (2003),  I.Navarro, K. van Acoyelen, JCAP 0702:022, 2007
A. Starobinsky, JETP Lett. 86 (2007) 157-163 ,  T.Chiba, Smith, A. Erickcek, Phys. Rev. D75 124014 (2007)

must be small at recent epochs to pass local tests of gravity|f0
R| � 10�6

to have a positive effective Newton constant

Amendola et al., Phys. Rev. Lett. 98 131302

L. Pogosian, A. Silvestri, Phys. Rev. D77 (2008) 023503

Y.-S. Song, W. Hu, I. Sawicki, A. Erickcek, Phys. Rev. D75 044004 (2007)
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Generally theories beyond ΛCDM have enough freedom to reproduce ‘any’ 
desired expansion history, being higher order in nature. 

In other words, at the level of background expansion history there is a 
degeneracy among different approaches to the phenomenon of cosmic 

acceleration.

In the past decade it has become increasingly clear that we need to go 
beyond geometrical probes in order to disentangle the theoretical landscape 

of cosmic acceleration.

In other words, the growth of structure is expected to be a powerful 
testbed, 

in particular through combinations of different observables. 

Take home message



Structure Formation



Now let us close the system with the fluid equations for matter. Let us focus on 
CDM since we are interested in late times clustering:
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LSS in a nutshell



 LCDM:

LSS in a nutshell



 LCDM:

- relativistic and non-relativistic probes respond to the same metric potential

- the growth of structure is scale-independent

LSS in a nutshell
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2F
= � a2

2M2
P

⇢

F
�

E0i :
h
�̇+ H 

i
� 1

2

˙�fR
F

+
1

2
H�fR

F
+

1

2

Ḟ
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Ḟ

F

⇣
2�̇+ 2H +  ̇

⌘
=

1

F

a2

M2
P

�P

Eij :

k2 (�� ) � k2 �fR
F

=
3a2

2M2
P

(⇢+ P )

F
� .

F ⌘ 1 + fR



E00 :
h
k2�+ 3H

⇣
�̇+ H 

⌘i
+

3

2
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⌘ �fR
F

�
¨�fR
F

� H
˙�fR
F

� 2k2

3

�fR
F

+ 2
F̈

F
 

+
Ḟ
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entering the QS regime!



in LCDM in DE/MG

Often employed on sub-horizon scales. It significantly simplifies the work because it 
reduces the Einstein equations, and any equation for additional scalar d.o.f., to algebraic 

relations in Fourier space.  What does it effectively correspond to? 
Is it always a good approximation? 

sub-horizon scales: k » aH sub-horizon scales: k » aH 

time derivatives of metric potentials 
negligible w.r.t. space derivatives

time derivatives negligible w.r.t. space derivatives

and

for both metric potentials and additional scalars, i.e.

On Quasi-Static approximation
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time and scale dependent 
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