Phase synchronization and intermittent behavior in healthy and Alzheimer-affected human brain-based neural network

R. C. Budzinski, B. R. R. Boaretto, T. L. Prado, and S. R. Lopes

Universidade Federal do Paraná Departamento de Física Programa de Pós-Graduação em Física Grupo de Física de Plasmas e Dinâmica não-linear

roberto.budzinski@gmail.com

Dorcid:0000-0002-5189-2059

July 18, 2019

PNLD - 2019

Outline

Introduction

- Mathematical modeling
- 3 Connection architecture
- Analysis methods
 - Kuramoto order parameter
 - Recurrence quantification analysis
- Results
 - Phase synchronization
 - Intermittent behavior
- Final considerations
- Acknowledgement

э

Introduction and motivation

The investigation of biological systems by using physics conceptions is a trending topic. Nowadays, it is known that anomalous dynamical properties can be related to neural diseases as Parkinson, epilepsy and Alzheimer 1,2 . In this scenario, the main objective of this work consists of the study of the dynamical properties of a neural network:

- Mathematical modeling of neural behavior,
- complex networks approach,
- Kuramoto order parameter and recurrence quantification analysis.

Roberto Budzinski (UFPR)

¹L. D. Iasemidis, J. C. Sackellares, Neuroscientist 2, 118 (1996)

²L. Aron, B. A. Yankner, Nature 540, 207 (2016)

Introduction and motivation

Previously studies have shown the existence of anomalous synchronization, intermittent transitions, and sensibility to initial conditions in small-world thermally sensitive neural networks.

PNLD - 2019

July 18, 2019 4 / 17

< □ > < □ > < □ > < □ > < □ > < □ >

Objectives

- To investigate the synchronization characteristics of a network of networks based on human brain connectome;
- To investigate the intermittency properties of the neural system;
- To study the influence of external connectome of a healthy and Alzheimer-affected human brain.

PHYSICAL REVIEW E 99, 022402 (2019)

Phase synchronization and intermittent behavior in healthy and Alzheimer-affected human-brain-based neural network

R. C. Budzinski,¹ B. R. R. Boaretto,¹ T. L. Prado,² and S. R. Lopes^{1,*} ¹Departamento de Física, Universidade Federal do Parand, 81531–980, Curitha, PR, Brazil ²Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Volles do Jequitinhonha e Mucuri, 39440–000 Janaiba, MG, Brazil

 (Received 21 August 2018; revised manuscript received 17 October 2018; published 4 February 2019; corrected 7 May 2019)

Roberto Budzinski (UFPR)

PNLD - 2019

July 18, 2019 5 / 17

< □ > < □ > < □ > < □ > < □ > < □ >

Mathematical model

To simulate the non-identical bursting neurons it is used the Rulkov map³:

$$\begin{aligned} x_{t+1,i}^j &= \ \frac{\alpha_i^j}{1 + (x_{t,i}^j)^2} + y_{t,i}^j + I_{\text{int},t,i}^j + I_{\text{ext},t}^j, \\ y_{t+1,i}^j &= \ y_{t,i}^j - \beta x_{t,i}^j + \gamma, \qquad \alpha_i^j \in [4.15, 4.25], \ \beta = \gamma = 0.001. \end{aligned}$$

The coupling equations are given by:

$$I_{\mathrm{int},t,i}^{j} = \frac{\varepsilon_{\mathrm{int}}}{\chi} \sum_{k=1}^{N} e_{i,k} x_{t,k}^{j}, \qquad I_{\mathrm{ext},t}^{j} = \varepsilon_{\mathrm{ext}} \sum_{k=1}^{M} g^{j,k} \overline{V}_{t}^{k},$$

where N = 250, M = 78, and \overline{V}_t^k is the mean field of subnetwork k.

July 18, 2019 6 / 17

³N. F. Rulkov, Physical Review Letters, 86, 183 (2001)

Connection architecture

The network of networks depicts two levels of connection architecture.

- The internal connection scheme is given by a small-world network following the Newman-Watts route⁴.
- The external coupling scheme is based on the human brain connectome from healthy and Alzheimer-affected patients^{5,6}.

⁴M. E. J. Newman, D. J. Watts, Physical Review E, 60, 7332 (1999) ⁵C.Y. Lo, P.N. Wang, K.H. Chou, J. Wang, Y. He, C.P. Lin, Journal of Neuroscience, 30, 16876 (2010) ⁶F. A. S. Ferrari, R. L. Viana, A. S. Reis, K. C. Iarosz, I. L. Caldas, A. M: Batistā, Physica A; 496, 162 (2018). ○

Roberto Budzinski (UFPR)

PNLD - 2019

July 18, 2019 7 / 17

Analysis procedures

Two approaches are used to perform the analyses of this work:

- To investigate the synchronization characteristics, it is used the Kuramoto order parameter⁷, which need (individual) information of each neuron, where a phase association is necessary.
- To investigate the intermittency properties, it is used the recurrence quantification analysis (determinism)⁸, which needs a time series that represent the dynamical system. Here, it is used the time series of the mean field of the systems, described as:

$$\overline{V}_t^k = \frac{1}{N} \sum_{i=1}^N x_{t,i}^k, \qquad \overline{V}_{\text{global},t} = \frac{1}{NM} \sum_{i=1}^N \sum_{k=1}^M x_{t,i}^k.$$

⁷Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Vol. 19 (Springer, Berlin, 2012)

Roberto Budzinski (UFPR)

PNLD - 2019

July 18, 2019 8 / 17

⁸N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Physics Reports, 438, 237 (2007) + (=) =)

Kuramoto order parameter

The Kuramoto order parameter is able to evaluate phase synchronization of the network by the association of a phase to its neurons⁹.

PNLD - 2019

Recurrence quantification analysis

The recurrence quantification analysis (RQA) is a tool to analyze dynamical systems, which is based on the recurrence matrix.

$$\mathbf{R}_{ij}(\mu) = \Theta(\mu - ||\mathbf{w}_i - \mathbf{w}_j||), \quad \mathbf{w}_i \in \mathbb{R}, \, i, j = 1, 2, \cdots, S.$$

In the RQA scenario, the determinism is able to investigate synchronization of networks¹⁰.

10 R. C Budzinski, B. R. R. Boaretto, T. L. Prado, S. R. Lopes, Chaos, Solitons and Fractals, 123, 35, 2019 🔊 🤇 🤆

Phase synchronization

In order to investigate the phase synchronization, it is considered the temporal average (after a transient time) of Kuramoto order parameter for each subnetwork and for the entire system.

Intermittency characteristics

In order to investigate the intermittent behavior of the network of networks, it is possible to use the temporal standard deviation of the determinism¹¹.

$$\sigma(\Delta) = \sqrt{\frac{1}{T} \sum_{i=1}^{T} [\Delta(i) - \langle \Delta \rangle]^2}.$$

¹¹R. C. Budzinski, B. R. R. Boaretto, K. L. Rossi, T. L. Prado, J. Kurths, S. R. Lopes, Physica A, 507, 321, 2018 C

Roberto Budzinski (UFPR)

PNLD - 2019

July 18, 2019 12 / 17

Intermittency characteristics

Considering a long time series of the determinism of global network mean field it is possible to analyze the PDF of $\Delta.$

July 18, 2019

13 / 17

Intermittent behavior

Intermittency characteristics

To the region (2), both networks depict the existence of two states of Δ . It is possible to evaluate the time of existence of each state.

Roberto Budzinski (UFPR)

July 18, 2019

14 / 17

Final considerations

It is analyzed a network of networks composed of $19\,500$ bursting neurons based on the human brain of healthy and Alzheimer-affected patients.

- Phase synchronization: It is observed a similar level of phase synchronization of subnetworks. On the other hand, considering the entire system (global), the Alzheimer-affected human brain depicts a higher level of phase synchronization;
- Intermittent behavior: By using of the determinism of the network mean field it is observed that both networks depict intermittent behavior, however, the unhealthy case depicts a higher level of intermittency. Besides that, the two cases show the existence of two-states intermittency.

3

イロト イポト イヨト イヨト

Acknowledgement

- To the colleagues B.B.R. Boaretto, K.L. Rossi, A.C. Conte, T.L. Prado, S.R. Lopes;
- To F.A.S. Ferrari, R.L. Viana, A.S. Reis, K.C. Iarosz, I.L. Caldas, A.M. Batista, C.Y. Lo, P.N. Wang, K.H. Chou, J. Wang, Y. He, and C.P. Lin for the matrices data, which were kindly provided;
- To the Departamento de Física (UFPR), Programa de Pós-graudação em Física (UFPR), CT-INFRA (LCPAD UFPR) and Dr. Carlos de Carvalho (UFPR) for the technical support.
- To CAPES and CNPq for the financial support;
- To the organizing committee and staff of the PNLD 2019.

Phase synchronization and intermittent behavior in healthy and Alzheimer-affected human brain-based neural network

R. C. Budzinski, B. R. R. Boaretto, T. L. Prado, and S. R. Lopes

Universidade Federal do Paraná Departamento de Física Programa de Pós-Graduação em Física Grupo de Física de Plasmas e Dinâmica não-linear

roberto.budzinski@gmail.com

Dorcid:0000-0002-5189-2059

July 18, 2019

PNLD - 2019