Main Features of the North American Monsoon
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NAM precipitation accounts for more than 60% of total precipitation in the
core monsoon region.
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FIG. 5. (a) Mean (1963-88) seasonal precipitation (units: mm) for July—September from the US-MEXICO merged analysis. The contours
are 50, 100, 200, 400, 600, 800, and 1000 mm and values greater than 100 mm are shaded. (b) Contribution of the precipitation durirg
July—September to the annual total, expressed in percent, from the US-MEXICO merged precipitation analysis. The contour interval is 5%
and values greater than 40% are shaded.
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NAM starts in June along the southwestern slopes on the Sierra Madre
Occidental, moves north through Mexico by late June and reaches the
southwestern USA in early July. Decays from mid-to-late September.
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The “monsoon high” related to enhanced atmospheric heating over the
elevated terrain is characteristic of the NAM (analogous to the Bolivian High).

(o) (b)

MAY 1968-1988

F1G. 7. Mean (1968-88) monthly 925-hPa vector wind (m s '), 200-hPa streamlines, and US-MEXICO precipitation (shading) for (a)
May, (b) June, (c) July, and (d) August. Circulation data are from the NCEP-NCAR Reanalysis. A topography mask has been applied to
the 925-hPa winds. Precipitation amounts are in mm day ' and values greater than 1 mm day ' are shaded. The characteristic vector length
is 1I0ms'.

Lower-level winds show the Gulf of California and Gulf of Mexico low-level jets.
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Until the late 1990’s, oceans were
thought to be the dominant source of
NAM precipitation (Schmitz and
Mullen, 1996).

Then, GCMs with moisture tagging
suggested a significant terrestrial
contribution to NAM precipitation
(Bosilovich et al. 2003)
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Using the Dynamic Recycling Model over the North American Monsoon region.
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Terrestrial sources account for ~ 38% of precip. during the peak NAM season.
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Cotrtuton fom the Aant We also found a south-north progression of
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B e moisture sources.
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Thunderstorms initiate by air rising over mountain ranges in a conditionally
unstable environment. The transition from shallow to deep convection occurs
in mid-afternoon.
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There is a strong signature of occurrence of afternoon convection conditioned
on morning time evaporative fraction, EF, the ratio of latent heating to the
sum of latent and sensible fluxes.
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In fact, large percentage of moisture (13%) originates from the NAM region
and precipitates back (recycled precipitation).

d)

NAM Tracer Flux (ET)

The moisture is very efficiently converted
into precipitation.
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“Monsoon bursts”, intense thunderstorm activity, are associated with
synoptic-scale phenomena: upper-level inverted troughs (IVs), gulf surges,
tropical easterly waves (TEW) and tropical cyclones (TCs).

IVs are easterly moving upper-tropospheric
cyclonic disturbances that are associated with
guasi- geostrophic vertical motion and vorticity

advection.

When an IV is in the region, storms move off
the mountains into the lower terrain rather
SO\ than dissipating thus facilitating severe

T ———————————————.V/-C 1411\

North American monsoon regime, as adapted from Pytlak et al. (2005). The upper-level jet
depicted in this figure is simply an enhanced easterly flow rather than a core of fast moving
easterlies.

Pytlak et al. 2005 and Bieda et al. 2009 14




Northward surges of moist air from the tropical Pacific via the Gulf of
California are related to the amount of convective activity in north- western
Mexico and portions of the southwestern United States.
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Tropical cyclones also carry a large quantity of tropical moisture and, upon
interaction with mountainous topography, contribute to 30% of the local
annual precipitation.
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FIG. 3. Areal rainfall over the southwestern U.S. region calculated from the U.S.-Mexico unified gridded pre-
cipitation dataset: (a) total warm-season precipitation (15 Jun-31 Oct 1992-2005, mm), (b) total TC precipitation
(1992-2005, mm), (c) percentage of warm-season precipitation due to TCs (1992-2005), and (d) percentage of warm-
season precipitation due to TCs in 1992.

Ritchie et al. 2011 16



Zonal wind anomalies in the eastern tropical Pacific associated with the MJO
tend to precede above-normal precipitation in the monsoon region of North
America from several days to over a week later.
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Tropical and North Pacific SSTs are related to
the occurrence of the teleconnection
patterns in June and July.

A high (low) North Pacific Oscillation phase and .~
El Nifio (La Nifia) conditions favor a weaker F Nife High NPO Phase

(stronger) and southward (northward) displaced

monsoon ridge. Ridge 2 | -
ET.

\
These teleconnection patterns affect the |
timing and large-scale distribution of — bubi
monsoon moisture. R

FiG. 14. Idealized relationship of monsoon

I Castro et al. 2001 18



Monsoon onset and interannual variability is found to be proportional land-
sea temperature contrasts.
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Observed Changes
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There has been a significant warming trend in the NAM region
especially during winter and the summer months. The tails of the
temperature distributions also show a significant increase.
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Figure 8. Observed CRU seasonal temperature trends (°Cdecade™!) for (a) DJF and (b) JJA
of 1980-2010. Statistical significant trends at the 95% level or greater are shown with dots.

Cavazos et al., 2019




Recent work with a very dense observational network of 59 rain gauges
finds an increase in summer rainfall intensities in the region of
southeastern Arizona beginning in the 1970s across a wide range of sub-
daily time-scales.
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There have been changes in the spatial
distribution of IVs during the 1951-2010
analysis period, which are associated with
a strengthening of the monsoon ridge.
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Long-term increase in atmospheric
moisture and instability is associated with
an increase in extreme monsoon
precipitation in observations and
simulations of severe weather events.
Precipitation is becoming more intense
within the context of the diurnal cycle of
convection.

Luong et al. 2017

(b) Changes in daily Maurer precipitation extremes
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“NAM rainfall is becoming more 'thermodynamically
dominated.” It is more phase locked to the terrain and there
is less tendency to organize and propagate. But when the
fewer IV events do help to organize the convection, now
those events tend to be more intense, because they are
occurring in a more favorable thermodynamic environment.”
Chris Castro, personal communication.
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Figure 5. (a) Statistically significant annual trends in each
of the six precipitation regions. Annual time series anoma-
lies and linear trends (dashed lines) of R95p in (b) ANM
and (c¢) MON. One (two) asterisks in Figure 5a indicate sta-
tistical significance at the 90% (95%) level.

The analysis of summer (June—October)
daily precipitation indices also reveals
the occurrence of significant positive
trends in extreme precipitation in
northwest Mexico mainly due to tropical
cyclone activity.

Arriaga-Ramirez and Cavazos 2010
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Projected Changes
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Analysis of CMIP5 GCMs show significant declines in early monsoon season
precipitation (June-July) and increases in late monsoon season (September-
October) precipitation, indicating a shift in seasonality toward delayed onset
and withdrawal of the monsoon.

APrecip, RCP 8.5, mm d-! (2080-2099 vs 1980-1999)
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Figure 7. Multi-model mean precipitation differences (mmday™), calculated as mean precipitation for
2080-2099 (RCP 8.5 scenario) minus the mean precipitation for 1980-1999 (historical scenario) for the
extended monsoon season (May-October). Core NAM region is outlined with the black dashed lines. Grey
crosses indicate cells for which the sign of the change in at least 9 of the 11 models agrees with the sign of
the change in the multi-model mean.

Cook and Seager (2013) 28




Global-scale analyses of
the CMIP3 model
projections for the twenty-
first century indicate a
strong, coherent
decreased precipitation
response over Central
America and the Intra-
America Seas region.

Rauscher et al. 2008

Fig. 9 Average summer (June—
July—August) percent
differences in precipitation,
AlB (2061-2090)-20C (1961~
1990). Positive (negative)
values are in green (brown)

Fig. 10 Number of models
with A1B-20C ensemble
average precipitation
differences greater than (less
than) 0.1 (=0.1) mm day_' in
green (brown)
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However, the monsoon response to GHG increases is sensitive to sea-surface
temperature biases. When minimizing these biases, the model projects a robust
reduction in monsoonal precipitation over the southwestern United States,
contrasting with previous multi-model assessments.
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z = z
e e e
© © ©
= = =
R R R
120 100 80 120 100 80
Longitude (° W) Longitude (° W) Longitude (° W)
-l T T T T -

-50-40-30-25-20-15-10 -2 2 10 15 20 25 30 40 50
Precipitation change (%)

Figure 2 | Impact of increased CO, concentration and SST biases on the North American monsoon precipitation. a-¢, Percentage precipitation change

induced by CO, doubling in FLOR-FA simulations (%, colour shading; 2CO5_FLOR-FA minus CTRL_FLOR-FA) in June (a), July-August (b), and

September-October (¢). d-f, As in a-¢, but for FLOR simulations (2CO5_FLOR minus CTRL_FLOR). Grey contours denote climatological values of
precipitation (mmd~") in the respective control runs. Stippling indicates regions where precipitation differences are statistically significant at the 5% level Pasca Ie et d I . 20 17

on the basis of a t-test.




There are significant problems with GCM-
based studies. In general, the Gulf of
California is not adequately represented at
coarser scales. There are also problems
related to the convective parameterizations.

31



Both local and remote biases may lead to large uncertainties in the NAM
projection under global warming.

GL Sethetal. [129, 133] GC, 19712100 Wet season delays; no precip. change
NAM Cook and Seager [123] GC, 1980-2100 Wet season delays; no precip. change
NAM Torres-Alavez et al. [124] GC, 1979-2099 Wet season delays; no precip. change
NAM Maloney et al. [125] GC, 1961-2099 Wet season delays; no precip. change
NAM Pascale et al. [65] GC, 1-200 CTL Sensitivity to SST biases and warming
301-500 2 xCO; patterns; precip. reduction when SST
biases removed
SWUS Pascale etal. [151] GC, 1-200CTL No change in the number of NAM
301-500 2xCOy surges; more extreme surge precip.;
westward expansion of the NAM high
NAM Bukovsky etal. [152] RC, 1961-2069 Precip. reduction; increase in the
heaviest precip. events
NAM Meyer and Jin [64] RC, 1979-2099 Sensitivity to SST biases and surface

evaporation; precip. increase and
carlier onset after removing SST biases

NAM,CA Colorado-Ruizetal. [126] GC, 1979-2099 Intensification of midsummer drought
CA Rauscheretal. [135] GC, 1979-2099 Intensification of midsummer drought
CA Fuentes-Franco et al. [136] GC, 1979-2099 Intensification of midsummer drought
CONUS Prein et al. [156] RC, 2000-2013 Extreme precip. increasing with temp.

Pascale et al. 2019




Monsoon ridge

IVs track

More intense monsoon ridge A

. H 5 remote effect
~Y\ P&

Aouthward displaced
IVs track2

Se
\
SST %Low! effect ?
warming/
biases

Surges ?
Southward dis ed TEWs 2 "4

before

after

Changes in the NAM will depend on remote (e.g.
warming of oceans) and local (land surface)
processes.

For the NAM, some of the projected processes are
the expansion and northwest- ward shift of the NAM
ridge, the southward shift of the upper-level

inverted troughs (IVs) track, and the strengthening of
the remote stabilizing effect due to SST warming.

The thermodynamic atmospheric background is
changing and becoming more favorable for extreme
precipitation.

Pascale et al. 2019 33



Thus, there is an urgent need to address the systematic SST biases in
GCMs, and enhance the realism of their land surface parameterizations.

What will large-scale shifts implicate for transient weather systems
that are ultimately shaping the diurnal cycle of convection?

We need to reduce the uncertainty associated with the response to
greenhouse warming of the MJO and ENSO to better define the future of
the NAM at the seasonal and interannual timescales.

Pascale et al. 2019
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