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Part 2

Introduction to mesoscopic physics

The tools (some of them)
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{Do coherent effects survive disorder average?}

Quantum probability for electron diffusion between two points

Incoherent propagation !
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.

A new design !

A;
rm » Vanishes upon averaging
RN L

—> P.,(r,1) ZlA r,r’)|?  Diffuson




To a good approximation, the incoherent contribution obeys
a classical diffusion equation



To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1



To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D

[
with D = Ve
3



To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D

L

/)
.\V




To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D

L
r = <r2> = 2/a’ Dt Thouless time
v ' 2
p ! E E . space dimensionality L' =Dt D
T



To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D

L
r 7 <r2> = 2/d Dt Thouless time
w. ' 2
p ! E E . space dimensionality L' =Dt D
L Y& = & t <1,
T




To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D
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Coherent effects

What 1s the first correction i.e., with the
smallest phase shift
When amplitude paths cross

Example :
quantum

crossing

Classical diffusion Exchange of amplitudes
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Occurrence of a quantum crossing after a time t for a
: : : d
photon diffusing in a volume L
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Schematic picture

quantum crossing
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Quantum crossings decrease the diffusion coefficient D :
weak localization

A :wavelength



Physical meaning of this parameter ?
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Electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons
scattered by an elastic disorder.

Classically, the conductance of a cubic sample of size/ "is
given by Ohm’s law: (7 — + 7% where o is the conductivity.

[

3)\5—1 L% = Gcl/(€2/h)

g:

(+.; 1s the classical electrical conductance so that

Gcl/(GQ/h) > 1
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An intermezzo based on our understanding
of coherent effects
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A quantum phase transition: Anderson localization

Expansion 1n powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization)
and becomes size dependent :

D(L) = D£1——1n(L/) (iln )2+....) (d=2)

42 42

This singular perturbation expansion 1s not a simple coimncidence
but an expression of scaling

A renormalization of D(L) changes also g(L):

D(L) a2

g(L)=

45
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Scaling and 1ts meaning :  (P.W. Anderson et al.,1979)

If we know ¢( L), we know 1t at any scale :

g(LA+e)=f(g(L).e)

Expanding, we have ¢ (L(1+¢)) = g(L) (14 ¢B(g) + O(g™))

dln g

with  B(g) = Jln I Gell-Mann - Low function)

Scaling behavior :

slb.W)=1 (%(W))

c(W) is the localization length

49



Numerical calculations on the (universal) Anderson
Hamiltonian
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FIG. 1, Scaling function Ay, /M vs AL/M for the localization length Ay, of a svstem of thickness M for (a) d =2 (M
“4) and (b) d =3 (M= 3). Insets show the scaling parameter Ay as a function of the disorder W.

Anderson localization phase transition occurs in d > 2



End of the intermezzo based on our
understanding of coherent effects
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Weak disorder physics

A< | = g>>1

Probability of a crossing (oc 1/ g) 1s small: phase coherent corrections
to the classical limit are small.

Quantum crossings modity the classical probability (i.e. the Diffuson).

Due to its long range behaviour, the Diffuson propagates (localized)
coherent effects over large distances.

Quantum crossings are independently distributed :
We can generate higher order corrections to the Diffuson
as an expansion in powers of 1/ g
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To the classical probability corresponds
the Drude conductance G,

>

First correction (e< 1/ g) involves one quantum
crossing and the probability p, (7,,) to have a

closed loop:

quantum correction decreases
the conductance: weak localization
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Generally, the interference term vanishes due to the
sum over rq and rg, except for two notable cases:

k + k' ~ 0 : Coherent backscattering

r; — ro =~ 0: closed loops, weak localization and ¢ /2 periodicity
of the Sharvin effect.

Coherent backscattering




« )

AWK = 3 [f(re,r2)[? |14 it (1 ra)

\ r17r2 /

Generally, the interference term vanishes due to the
sum over rq and rg, except for two notable cases:

k + k' ~ 0 : Coherent backscattering

closed loops, weak localization and ¢ /2 periodicity

this case



Cooperon

lassical return probability Interference term
P(r,r,t)=E_(r,r,1)

Return probability is doubled ! If time reversal invariance
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In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 74 contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

Cooperon
P;pni(r, 7', 1) is obtained from the covariant diffusion equation

effective charge 2e



Webb ——
Sample specific interference
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Survives disorder average
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Back to coherent effects for light



An analogous problem: Speckle patterns in optics

Consider the elastic multiple scattering of light transmitted through a
fixed disorder configuration.
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What about speckle patterns ?

1o} o =

aHb {c)
il llizoe

Averaging over disorder does not produce incoherent intensity only, but
also an angular dependent part, the coherent backscattering, which is a
coherence effect. We may conclude:

Elastic disorder 1s not related to decoherence : disorder does not destroy phase
coherence and does not mtroduce irreversibility.



Slab geometry




Fluctuations and correlations

transmission coefficient
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Speckle and conductance fluctuations
e |

TabTa'b' — Tab Ta'b' +5Tab5Ta'b'

Memory effect

Ta'b’ f(a.’a'?b?b’) f(a,a'.b,b")=g(Aa)S(Aa — Ab)
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Correlation function of the
transmission coefficient :

Measure different configurations



Speckle fluctuations vs conductance fluctuations
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2
Landauer description: G = e_ZT .
h ab i

0 crossing: G = G’ =(€2/h)2 g

2 crossings: correction §G* ocaz / g>=(e’ / h)* universal

(very different from the classical self-averaging
limit 6G” L™ )




[ Dephasing and decoherence}

Universal conductance fluctuations

Different contributions either
sensitive or not to dephasing



(a)

()
(. ™\ .
incoherent [mterference termj
.

classical term

The total average intensity is: X g
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Iy = Tyg = Ip - — Ty — Ty — I

(a)

Reciprocity theorem:
It I see you, then you see me.

ro — T, — Iy —TIp — Ty — Ty
(b)
incoherent [interference termj
classical term
The total average intensity 1is: \

| /
AK)P = Y |f(ra,r2)[? |14 eiktk)ra—ra)|

rpg,ro



In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 74 contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

the phase difference becomes: 47w/ ¢g

—= (b /2 periodicity of \ harvin effect
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Dephasing and decoherence

Universal conductance fluctuations




Dephasing and decoherence

Universal conductance fluctuations

2 Cooperonsj

sensitive to an applied
Aharonov-Bohm magnetic flux
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500 1500

[ (b) INZD)
_ 0G? —¢— 0G=
2
500 | 1500 | vanishing of the weak localization

correction for the same magnetic field

i In the presence of incoherent

NATYRN /ﬂ\ A / 15

1.00 +

TV VAT processes L > L :

500 1500 B (G)

5G2 — (




Thank you for your attention.

Mesoscopic Physics of
Electrons and Photons

Eric Akkermans and Gilles Montambaux

Based on Mesoscopic physics of electrons and photons,
by Eric Akkermans and Gilles Montambaux, Cambridge University
Press, 2007



