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Mesoscopic Physics of Photons 



Part 2
•            Introduction to mesoscopic physics

• The Aharonov-Bohm effect in disordered conductors.
• Phase coherence and effect of disorder. 
• Average coherence:                 effect and coherent 

backscattering.
• Phase coherence and self-averaging: universal 

fluctuations.
• Classical probability and quantum crossings.
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The tools (some of them)



Incoherent propagation !
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Quantum probability for electron diffusion between two points 

P(r,r ') = ai
∗(r,r ') aj (r,r ')

i, j
∑

r

r'

P(r,r ') = aj (r,r ')
2

j
∑ + ai

∗(r,r ')aj (r,r ')
i≠ j
∑

vanishes on average

Do coherent effects survive disorder average?

aj

ai
∗

 δ i − δ j ≫ 1

ai
∗ aj = ai aj e

i δi −δ j( )
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ai*
r r'

r'r

(a)

(b)

Before averaging : speckle pattern  (full coherence)
Configuration average: most of the contributions vanish because 
of large phase differences.

Diffuson Pcl(r, r
′) =

∑

j

|Aj(r, r′)|2

Ai

A
∗

j
Vanishes upon averaging

Ai

A
∗

j

A new design !
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To a good approximation, the incoherent contribution obeys 
a classical diffusion equation 

∂
∂t

− DΔ⎛
⎝⎜

⎞
⎠⎟
P(r,r ',t) = δ (r − r ')δ (t)

Incoherent electrons diffuse in the conductor with a  
diffusion coefficient D

L

l

r2 = 2d Dt

space dimensionality

 l ≪ L

L2 = DτD

Thouless time

 t ≪ τD  t ≫ τD

⇔ −iω + Dq2( )P(q,ω ) = 1

with  D =
vgl
3
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?
What is the first correction i.e., with the  

smallest phase shift ? 
When amplitude paths cross

Example :

Classical diffusion

quantum 
crossing

Exchange of amplitudes

Coherent effects 
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Occurrence of a quantum crossing after a time t for a 
photon diffusing in a volume Ld

p× (t) =
λd−1ct
Ld

The time spent by a diffusing photon is             so that   τD = L
2

D

p× (τD ) =
λd−1cτD
Ld

≡
1
g

g = D
cλ d−1 L

d−2
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λd−1 lVolume

Quantum crossings decrease the diffusion coefficient D : 
weak localization

λ : wavelength



Physical meaning of this parameter ?

g = D
cλ d−1 L

d−2



A metal can be modeled as a quantum gas of electrons 
scattered by an elastic disorder. 

Classically, the conductance of a cubic sample  of size     is 
given by Ohm’s law:                    where    is the conductivity.               G = σL

d−2

L
d

σ

g =
le

3λd−1
Ld−2 = Gcl/(e2/h)

     is the classical electrical conductance so that             

Gcl/(e2/h) ≫ 1

Gcl

Electrical conductance of a metal
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Classical transport : Gcl = g ×
e2

h
with g ≫ 1

Quantum corrections:  ∆G = Gcl ×
1

g

so that ∆G ≃

e2

h

A direct consequence:  quantum corrections to electrical 
transport
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g

A direct consequence:  quantum corrections to electrical 
transport

so that                   is universal∆G ≃
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h

 Independent of the microscopic 
(and often unknown) disorder - 
Depends only on the geometry
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An intermezzo based on our understanding 
of coherent effects 
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Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)



�42

Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)



�43

Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)



�44

Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)



�45

Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)



�46

Scaling and its meaning : 

If we know          , we know it at any scale :  

g (L(1 + ϵ)) = g(L)
(

1 + ϵβ(g) + O(g−5)
)

β(g) =
d ln g

d lnL

Expanding, we have

with                                              (Gell-Mann - Low function) 

Scaling behavior :                   

(P.W. Anderson et al.,1979)

g(L)

g L(1+ ε)( )= f g(L),ε( )

ξ(W ) is the localization length

g(L,W ) = f L
ξ(W )( )
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g(L,W )

L
ξ(W )

d = 3

Anderson phase 
transition

d = 2

B.Kramer, A. McKinnon, 1981

  Anderson localization phase transition occurs in d > 2

Numerical calculations on the (universal) Anderson 
Hamiltonian 



End of the intermezzo based on our 
understanding of coherent effects 



Weak disorder limit: 

Probability of a crossing               is small: phase coherent corrections 
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson).
    
Due to its long range behavior, the Diffuson propagates (localized) 
coherent effects over large distances.

 Weak disorder physics 

Quantum crossings are independently distributed : 
          We can generate higher order corrections to the Diffuson 
            as an expansion in powers of 1 / g

∝1 g( )

λ<< l  ⇒ g >> 1
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To the classical probability corresponds 
the Drude conductance Gcl

First correction                 involves one quantum 
crossing and the probability           to have a 
closed loop:

(∝1 / g)

Return probability 

quantum correction decreases  
the conductance: weak localization

L

Weak localization- Electronic transport

τD = L2 D

Z(t) =

∫

drPint(r, r, t) =
( τD

4πt

)d/2

� 

po (τD )

� 

ΔG
Gcl

=− po (τD )

� 

po (τD ) =
1
g

Z(t) dt
τD0

τ D

∫
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|A(k,k′)|2 =
∑

r1,r2

|f(r1, r2)|2
[

1 + ei(k+k′).(r1−r2)
]

Generally, the interference term vanishes due to the 
sum over                  , except for two notable cases:r1 and r2
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In the presence of a dephasing mechanism that breaks time coherence, 
only trajectories with                contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the 
Cooperon acquire opposite phases:

φ
2πφ/φ0 −2πφ/φ0 the phase difference becomes: 4πφ/φ0

t < τφ

Cooperon

φ0/2           periodicity of the Sharvin effect 

is obtained from the covariant diffusion equationPint(r, r
′, t)

(

1

τφ
+

∂

∂t
− D

[

∇r′ + i
2e

h̄
A(r′)

]2
)

Pint(r, r
′, t) = δ(r − r′)δ(t)

effective charge 2e
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Back to coherent effects for light



An analogous problem: Speckle patterns in optics
Consider the elastic multiple scattering of light transmitted through a 
fixed disorder configuration.

Outgoing light builds a speckle pattern i.e., an interference picture:
L
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Elastic disorder is not related to decoherence : disorder does not destroy phase 
coherence and does not introduce irreversibility.

What about speckle patterns ?

Averaging over disorder does not produce incoherent intensity only, but 
also an angular dependent part, the coherent backscattering, which is a 
coherence effect. We may conclude:
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the following sections, we evaluate these various contributions, corresponding respectively
to zero, one and two crossings.

12.3 Average transmission coefficient

In order to calculate the average of the transmission and reflection coefficients, we use the
diffusion approximation to calculate the product of amplitudes depicted in Figure 12.7. In
reflection, the average outgoing intensity is given by (8.6), and the reflection coefficient
is given by the albedo (8.13) (see Exercise 8.2 for the slab geometry). For the average
transmission coefficient, we obtain an analogous relation,5 namely

T ab = 4πR2

cI0S

∫
dr1 dr2 |ψa(r1)|2#(r1, r2)|GR

(r2, r)|2 (12.12)

where #(r1, r2) is the structure factor taken at zero frequency, and ψa(r1) accounts for
an incident plane wave attenuated over the elastic mean free path while entering into the
scattering medium (relation 8.7):

ψa(r1) =
√

cI0

4π
e−|r1−r|/2le eik ŝa ·r1 . (12.13)

r is a point on the interface (Figure 12.7(b)). The average Green function G
R
(r2, R)

accounts for the propagation of the wave between the last scattering event up to a point
R far away from the scattering medium. In this so-called Fraunhoffer limit (relation 8.9),
we have

G
R
(r2, R) = e−|r′−r2|/2le e−ik ŝb·r2

eikR

4πR
, (12.14)

r1 r2

r'r

(a) (b)

sa

sa

sa

sb

sb

sb

Figure 12.7 Schematic representation (a) of the product of two amplitudes ψ corresponding to two
incident plane waves along the directions ŝa emergent along ŝb, (b) of the Diffuson that results from the
pairing of these two amplitudes and that represents the main contribution to the average transmission
coefficient Tab. r and r′ are points on the interface plane whereas (r1, r2) are the extremities of a
multiple scattering trajectory.

5 We assume that the difference in refraction index between the two media is negligible.
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Figure 12.3 Schematic representation of the various setups designed for measurement of the
correlations of the transmission coefficients: (a) transmission coefficient Tab, (b) correlation function
Caba′b′ , (c) transmission coefficient Ta for an incident plane wave ŝa obtained by integration over
all emergent directions, (d) transmission coefficient T obtained by integration over all incident and
emergent directions.

These various quantities are represented schematically in Figure 12.3. As we shall see,
this is the total transmission coefficient T that will play a role analogous to the electrical
conductance. This is the physical content of the Landauer formula (7.141).

Just like electrical conductance fluctuations, the correlation function δTabδTa′b′ involves
the disorder average of a product of four amplitudes. In order to exhibit the various
contributions to this correlation function, we follow the strategy developed in section 9.2.
The complex scattering amplitude (12.3) takes the form

ψab ∝
∫

dr dr′ eik(ŝa ·r−ŝb·r′)
∑

C
EC , (12.7)

where the amplitude EC corresponds to a given multiple scattering trajectory C. We thus
obtain for the correlation function the average product

∑

C1,C2,C3,C4

Ea,b
C1

E∗a,b
C2

Ea′,b′
C3

E∗a′,b′
C4

, (12.8)

where the notation used is defined in Figure 12.4. The non-vanishing contributions to this
average value of four amplitudes involve two Diffusons. We thus retain in the summation
(12.8) the two terms such that C1 = C2 and C3 = C4, or C1 = C4 and C3 = C2. These
two combinations of amplitudes are depicted schematically in Figure 12.5. The first is
nothing but the product of the average values of the transmission coefficient. The second
combination gives

δTabδTa′b′
(1) =

(
4πR2

cSI0

)2 ∣∣∣ψabψ
∗
a′b′

∣∣∣
2

(12.9)

and the corresponding term in the correlation function Caba′b′ is denoted by C(1)
aba′b′ . For the

specific combination a = a′ and b = b′, which corresponds to a speckle pattern generated

Measure different configurations
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438 Correlations of speckle patterns

(c)

(b)

(a)

Figure 12.8 Right: speckle patterns measured in transmission for different directions of the incident
beam. The arrow is a guide to show the evolution of a particular feature. The first picture is the reference
pattern, corresponding to a given direction of the incident beam. By slowly tilting the incident beam
(10 mdeg, then 20 mdeg), we notice a corresponding shift of the speckle pattern which retains some
“memory” of the reference pattern. If the tilt angle becomes too large, the speckle is distorted. Left:
corresponding behavior of the correlation Caba′b′ as a function of the angle !ŝb. The upper curve (a)
is the autocorrelation (i.e., for a = a′) of the reference speckle pattern. The width is of order 1/kW .
The two other figures (b, c) display the correlation of the second and of the third speckle patterns with
the reference pattern (i.e., a ̸= a′). The correlation is maximum for !ŝb = !ŝa , and this maximum
is F1(kL|!ŝa|). It vanishes for angles larger than |!ŝa| ≃ 1/kL [303].

Exercise 12.1: correlation of a speckle pattern measured in reflection
We denote by Rab the reflection coefficient (i.e., the albedo defined in Chapter 8).
Using a modification of (12.22), show that the angular correlation of Rab is

δRabδRa′b′ =
(

1

(4π)2S

∫
dr1 dr2 eik[!ŝa ·r1 − !ŝb·r2] e − z1/le e − z2/le $(r1, r2)

)2
(12.35)

or equivalently,

δRabδRa′b′ = δ!ŝa ,!ŝb

(
c

4π l2
e

∫ ∞

0
dz1 dz2 e − z1/le e − z2/le Pd (qa , z1, z2)

)2
(12.36)

with qa = k|!ŝa|.
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 limit                     )
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Landauer description : G=

e2

h
Tab

ab
∑

δG2 ∝G
2
/ g2 = (e2 / h)2

� 

δG2 ∝Ld −4



Universal conductance fluctuations

Dephasing and decoherence
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2 Diffusons

2 Cooperons

sensitive to an applied 
Aharonov-Bohm magnetic flux

φ

φ φ

φ

φ

Different contributions either 
sensitive or not to dephasing
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(a)

r1 → ra → rb · · · → ry → rz → r2

r2 → rz → ry · · · → rb → ra → r1

The total average intensity is:

|A(k,k′)|2 =
∑

r1,r2

|f(r1, r2)|2
[

1 + ei(k+k′).(r1−r2)
]

incoherent 
classical term

interference term

   Reciprocity theorem: 
If I see you, then you see me. 

 A reminder !
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In the presence of a dephasing mechanism that breaks time coherence, 
only trajectories with                contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the 
Cooperon acquire opposite phases:

φ
2πφ/φ0 −2πφ/φ0 the phase difference becomes: 4πφ/φ0

t < τφ

Cooperon

φ0/2           periodicity of the Sharvin effect 

is obtained from the covariant diffusion equationPint(r, r
′, t)

(

1

τφ
+

∂

∂t
− D

[

∇r′ + i
2e

h̄
A(r′)

]2
)

Pint(r, r
′, t) = δ(r − r′)δ(t)

effective charge 2e A reminder !
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Thank you for your attention.

Based on Mesoscopic physics of electrons and photons, 
by Eric Akkermans and Gilles Montambaux, Cambridge University 
Press, 2007
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