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Framework 
 

 Multiple scattering of photons/waves by a cold atomic gas.   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  Anderson localisation phase transition occurs in d > 2

Numerical calculations on the Anderson Hamiltonian 

 A reminder !
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Realisations of the Anderson Hamiltonian

Quantum evolution of the atomic kicked rotor
(localisation of the momentum in phase space (d=3))

(P. Szriftgiser et al. 2010, for the experiment, theory : Casati, Chirikov, (’79) 
Fishman, Grempel, Prange, (’84), Guarneri et al. (’89), 

21

Finite Time Scaling Results
Q[ ��v cKK

2.04.6 r cK
3.04.1 r v

Experiment:

1.06.6 r cK
01.059.1 r v

Simulations:

- Experimental observation of the Anderson transition with atomic matter waves,  Chabé, Lemarié, Grémaud,

Delande, Szriftgiser, Garreau, Phys. Rev. Lett. 101, 255702 (2008)

- Finding some sense in disorder, Mark Sadgrove, Viewpoint, Physics 1, 41 (2008)

- Lemarié et al, PRA, 80, 043626 (2009)
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Cooperative effects
(superradiance-subradiance)



Cooperative spontaneous radiation (Superradiance) results 
from quantum phase correlations induced between atoms by 
dipole-dipole interactions.  
           
               Superradiant emission can be summarised by 

I ≈ N I ≈ N 2

But the dependence            does not constitute the main distinguishing 
feature of superradiance.  
It is rather the mechanism leading to coherent phasing of atoms.  

I ≈ N 2



Cooperative effects

R. H. Dicke, Phys. Rev. 93, 99 (1954)



Cooperative effects

Dicke states

R. H. Dicke, Phys. Rev. 93, 99 (1954)



A.Gero, E.A, Phys. Rev. Lett. 96, 093601 (2006) 

A.Gero, E.A. , Phys. Rev. A 75, 053413 (2007)
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       Superradiant emission : all atoms must see (in phase) the same         

                 electromagnetic field. 
  

            small volumes (Dicke limit) 

            large systems : Anderson localization may play a role :          

          photon modes are spatially localized in volumes     

        only a fraction              of atoms are coherent so that the       

       emission time      becomes large: 
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– Total Hamiltonian

– Non-interacting Hamiltonian

– Electric dipole representation of the interaction
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Model
N identical two-level atoms located at random positions    (uniform distribution) 
with electric dipole moments      in the quantum radiation field



Model

• Effective Hamiltonian 

– Tracing over the EM field degrees of freedom 

– Atomic raising and lowering operators
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                        is random and complex valued 
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Vij = βij − iγ ij



Real part : interaction potential 

Imaginary part : photon escape rate
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Real part : interaction potential 

Imaginary part : photon escape rate
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Real part : interaction potential 

Imaginary part : photon escape rate
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Which quantity to study ?

• The radiation pattern/intensity of the atomic 
cloud with a single excited atom
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Cooperative spontaneous emission as a many-body eigenvalue problem

Anatoly Svidzinsky and Jun-Tao Chang
Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, Texas 77843, USA

!Received 10 May 2007; revised manuscript received 9 November 2007; published 28 April 2008"

We study emission of a single photon from a spherically symmetric cloud of N atoms !one atom is excited;
N−1 are in the ground state" and present an exact analytical expression for eigenvalues and eigenstates of this
many-body problem. We found that some states decay much faster than the single-atom decay rate, while other
states are trapped and undergo very slow decay. When the size of the atomic cloud is small compared with the
radiation wavelength, we found that the radiation frequency undergoes a large shift.

DOI: 10.1103/PhysRevA.77.043833 PACS number!s": 42.50.Nn, 05.30.Jp, 03.67.Mn

Recent quantum optical experiments and calculations
#1,2$ focus on the problem in which a single photon is stored
in a gas cloud and then retrieved at a later time. The direc-
tionality and spectral content of the cooperatively reemitted
photon is then of interest.

Furthermore, synchrotron radiation experiments involving
N nuclei excited by weak !-ray pulses have features in com-
mon with the present problem #3$. For example, in such ex-
periments a thin disk of nuclei can easily be prepared in a
superposition in which the atoms are all in the ground state
together with a small probability of a uniform excitation of
the state, similar to Eq. !29", added in. The simplest example
of two-atom cooperative decay has been studied in many
publications #4$. The N-atom problem has been also investi-
gated by several authors #5$. Time evolution and directional-
ity of the radiation emitted from a system of two-level atoms
which are excited by a plane-wave pulse have been discussed
in #6$.

Having motivated our interest in the problem, we now
turn to an analysis of the correlated spontaneous emission
from N atoms in free-space. We consider a system of two
level !a and b" atoms; initially, one of them is in the excited
state a and Ea−Eb="#. Initially there are no photons. Atoms
are located at positions r j !j=1, . . . ,N". In the dipole ap-
proximation the interaction of atoms with photons is de-
scribed by the Hamiltonian

Ĥint = %
k

%
j=1

N

gk&$̂ jâk
† exp#i!%k − #"t − ik · r j$ + adj' , !1"

where $̂ j is the lowering operator for atom j, âk is the photon
annihilation operator, and gk is the atom-photon coupling
constant for the k mode. We look for a solution of the
Schrödinger equation for the atoms and the field as a super-
position of Fock states:

& = %
j=1

N

' j!t"(b1b2 ¯ aj ¯ bN)(0) + %
k

!k!t"(b1b2 ¯ bN)(1k) .

!2"

States in the first sum correspond to a zero number of pho-
tons, while in the second sum the photon occupation number
is equal to 1 and all atoms are in the ground state b. For
simplicity we neglect the effects of photon polarization. Sub-
stitution of Eq. !2" into the Schrödinger equation yields the

following equations for ' j!t" and !k!t" !we put "=1":

'̇ j!t" = − i%
k

gk!k!t"exp#− i!%k − #"t + ik · r j$ , !3"

!̇k!t" = − i%
j=1

N

gk' j!t"exp#i!%k − #"t − ik · r j$ . !4"

Integrating Eq. !4" over time gives #!k!0"=0$

!k!t" = − i*
0

t

dt!%
j=1

N

gk' j!t!"exp#i!%k − #"t! − ik · r j$ . !5"

Substituting this into !3" we obtain an equation for ' j!t":

'̇ j!t" = − %
k

%
j!=1

N *
0

t

dt!gk
2' j!!t!"e

i!%k−#"!t!−t"+ik·!rj−rj!". !6"

We proceed by making the Markov approximation in the
manner of Weisskopf and Wigner to obtain

'̇i!t" = − !%
j=1

N

(ij' j!t" , !7"

where for i! j

(ij =
sin!k0(ri − r j("

k0(ri − r j(
− i

cos!k0(ri − r j("
k0(ri − r j(

, !8"

(ii=1, k0=# /c, and ! is the single-atom spontaneous decay
rate,

! =
Vphk0

2gk0

2

)c
,

with Vph the photon volume.
We point out that a rigorous treatment of the problem

beyond the rotating wave approximation Hamiltonian !1"
also yields Eqs. !7" and !8" #7,8$. The imaginary part of (ij in
Eq. !8" appears due to a short-range interaction between at-
oms which is induced by an electromagnetic field and causes
a frequency shift #9$. The frequency shift becomes substan-
tial when the size of the atomic cloud is smaller than the
wavelength; this will be clear from Eq. !26" below.

One can rewrite Eq. !7" in a matrix form

PHYSICAL REVIEW A 77, 043833 !2008"

1050-2947/2008/77!4"/043833!4" ©2008 The American Physical Society043833-1



Photon escape rates are a measure of localization and/or 
cooperative emission.  

Escape rates are not a transport quantity.



!36

More precisely : Photon escape rates

Evolution of the density matrix (Linblad form)

  

� 
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∑ +
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2
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� 

Vij = βij − iγ ij

M. Stephen (1964), R.H. Lehmberg (1970), E. Ressayre and A.Tallet (1976), Ellinger, Cooper 
and P. Zoller (1994)

dρ
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+ρΔ j
−
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Photon escape rates from the atomic gas are  
obtained from the eigenvalues of  the  

euclidean random matrix γ ij



 Eigenvalue density         of the           random matrix 
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P Γ( ) N × N γ ij
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Eigenvalue density        
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P Γ( )

XN

j¼1

!iju
ðkÞ
j ¼ !ku

ðkÞ
i ; (5)

together with the collective operators S$k % PN
i¼1 u

ðkÞ
i S$i ,

enables us to rewrite (4) as hGj _"jGi¼
!0

PN
k¼1 !khGjS&k "Sþk jGi. This last form allows us to in-

terpret the eigenvalues f!kgas the escape rates and the

eigenfunctions fu ðkÞi gas photon modes providing the direc-
tivity of the angular emission [4]. It results from (4) that the
!k’s are independent of the effective dipole-dipole inter-
action #ij so that van der Waals dephasing does not play a
role [5].

The average density of escape rates Pð!Þ, normalized to
unity, is defined by Pð!Þ ¼ &ð1=$ÞImRðz ¼ !þ i0þÞ,
with RðzÞ ¼ ð1=NÞTrðz&½!ij)Þ&1. The average * * * is
taken, at fixed density, over spatial configurations of the
atoms. For Gaussian ensembles of random matrices [6],
Pð!Þ obeys a semicircle law. Here, as we shall see, the
behavior is very different.

The random matrix !ij depends on the distances rij
between atoms and on the angles %ij. We expect localiza-
tion properties to depend on rij rather than on %ij. We
therefore consider the scalar model [7] obtained from (3)
by averaging !ij over %ij and thus given by the N + N
random matrix [8]

!ij % h!iji¼
sinxij
xij

; (6)

where xij ¼ k0rij are interatomic distances expressed in
units of the wavelength & ¼ 2$=k0. We have checked that
the vectorial and scalar behaviors of Pð!Þ are qualitatively
the same [9]. This point is important, since one may think
that the scalar case (6) is the far-field limit obtained by
dropping in (3) the near-field terms responsible for coop-
erative effects. This is not the case, and !ij is well defined
for xij ¼ 0 so that Tr½!ij) ¼ N. The eigenvalues of !ij are
nonnegative since the 3D Fourier transform of sincjxj is
'ðjkj& 1Þ , 0.

We now consider N atoms enclosed in a cubic volume
L3, with a uniform density n . The disorder strength is
defined by the dimensionless parameterW ¼ 1=k0l, where
l ¼ 1=n ( is the elastic mean free path and ( ’ &2 is the
resonant scattering cross section [10]. Introducing the
number N? % ðk0LÞ2=4 of transverse photon modes leads
to W ¼ $

2
&
L

N
N?

.

Characteristic behaviors of Pð!Þ for different values of
W and size a ¼ L=& are displayed in Fig. 1. For a dilute
gas (W - 1), we recover the single atom limit !ij ! 'ij;
namely, Pð!Þ is narrowly peaked around ! ¼ 1 (in units of
!0) as expected from resonant scattering of a photon by a
single atom [Fig. 1(a)]. For stronger disorder, Pð!Þ be-
comes broader and shifted towards lower values of !
[Fig. 1(b)]. Eventually, for large enough disorder, most of
the eigenvalues get close to ! ¼ 0 [Fig. 1(c)]. Such a
vanishing escape rate corresponds to photons localized in

the atomic gas. By increasing furtherW, at a fixed number
N of atoms, yet another behavior shows up for xij - 1
[Fig. 1(d)] where Pð!Þ, obtained from the escape matrix
with all entries equal to one (!ij ¼ 1), has two eigenvalues.
One at ! ¼ 0 is the (N & 1)-degenerate subradiant mode,
and the second ! ¼ N is the nondegenerate superradiant
mode. This is the Dicke limit [11] reached when atoms are
enclosed in a volume much smaller than &3. Using the
definition of the average density of escape rates, we obtain
that

Pð!Þ ¼ N & 1

N
'ð!Þ þ 1

N
'ð!& NÞ: (7)

A quantitative characterization of the behavior of Pð!Þ is
obtained by considering the relative number of statesR1
1 d!Pð!Þ having an escape rate larger than 1. We then

introduce the conveniently normalized function Cða;WÞ
defined between 0 and 1 by

Cða;WÞ ¼ 1& 2
Z 1

1
d!Pð!Þ: (8)

Cða;WÞ thus defined measures the relative number of
states having a vanishing escape rate. At finite size, we
expect Cða;WÞ to have a scaling form [12], namely,

dlnCða;WÞ
dlna

¼ #ðCÞ; (9)

whose solution Cða;WÞ is a function of a=)ðWÞ alone. We
have verified this scaling behavior over a broad range of
size and disorder. For a , 1, the results displayed in Fig. 2
collapse on a single curve (Fig. 3) when plotted as a
function of the parameter 2$aW ¼ $2N=N?. The Dicke
limit [Fig. 1(d)] is reached for small volumes L - & and
N? ’ 1, so that the scaling parameter becomes N=N? ’
N. Using (7) and (8) leads to Cða;WÞ ¼ 1& ð2=NÞ dis-
played in Fig. 4.
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FIG. 1 (color online). Behavior of Pð!Þ for different values of
disorder W and size a ¼ L=&, with N ¼ 216. (a) Low disorder,
(b),(c) larger disorder, and (d) Dicke limit.
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P Γ( )

XN

j¼1

!iju
ðkÞ
j ¼ !ku

ðkÞ
i ; (5)

together with the collective operators S$k % PN
i¼1 u

ðkÞ
i S$i ,

enables us to rewrite (4) as hGj _"jGi¼
!0

PN
k¼1 !khGjS&k "Sþk jGi. This last form allows us to in-

terpret the eigenvalues f!kgas the escape rates and the

eigenfunctions fu ðkÞi gas photon modes providing the direc-
tivity of the angular emission [4]. It results from (4) that the
!k’s are independent of the effective dipole-dipole inter-
action #ij so that van der Waals dephasing does not play a
role [5].

The average density of escape rates Pð!Þ, normalized to
unity, is defined by Pð!Þ ¼ &ð1=$ÞImRðz ¼ !þ i0þÞ,
with RðzÞ ¼ ð1=NÞTrðz&½!ij)Þ&1. The average * * * is
taken, at fixed density, over spatial configurations of the
atoms. For Gaussian ensembles of random matrices [6],
Pð!Þ obeys a semicircle law. Here, as we shall see, the
behavior is very different.

The random matrix !ij depends on the distances rij
between atoms and on the angles %ij. We expect localiza-
tion properties to depend on rij rather than on %ij. We
therefore consider the scalar model [7] obtained from (3)
by averaging !ij over %ij and thus given by the N + N
random matrix [8]

!ij % h!iji¼
sinxij
xij

; (6)

where xij ¼ k0rij are interatomic distances expressed in
units of the wavelength & ¼ 2$=k0. We have checked that
the vectorial and scalar behaviors of Pð!Þ are qualitatively
the same [9]. This point is important, since one may think
that the scalar case (6) is the far-field limit obtained by
dropping in (3) the near-field terms responsible for coop-
erative effects. This is not the case, and !ij is well defined
for xij ¼ 0 so that Tr½!ij) ¼ N. The eigenvalues of !ij are
nonnegative since the 3D Fourier transform of sincjxj is
'ðjkj& 1Þ , 0.

We now consider N atoms enclosed in a cubic volume
L3, with a uniform density n . The disorder strength is
defined by the dimensionless parameterW ¼ 1=k0l, where
l ¼ 1=n ( is the elastic mean free path and ( ’ &2 is the
resonant scattering cross section [10]. Introducing the
number N? % ðk0LÞ2=4 of transverse photon modes leads
to W ¼ $

2
&
L

N
N?

.

Characteristic behaviors of Pð!Þ for different values of
W and size a ¼ L=& are displayed in Fig. 1. For a dilute
gas (W - 1), we recover the single atom limit !ij ! 'ij;
namely, Pð!Þ is narrowly peaked around ! ¼ 1 (in units of
!0) as expected from resonant scattering of a photon by a
single atom [Fig. 1(a)]. For stronger disorder, Pð!Þ be-
comes broader and shifted towards lower values of !
[Fig. 1(b)]. Eventually, for large enough disorder, most of
the eigenvalues get close to ! ¼ 0 [Fig. 1(c)]. Such a
vanishing escape rate corresponds to photons localized in

the atomic gas. By increasing furtherW, at a fixed number
N of atoms, yet another behavior shows up for xij - 1
[Fig. 1(d)] where Pð!Þ, obtained from the escape matrix
with all entries equal to one (!ij ¼ 1), has two eigenvalues.
One at ! ¼ 0 is the (N & 1)-degenerate subradiant mode,
and the second ! ¼ N is the nondegenerate superradiant
mode. This is the Dicke limit [11] reached when atoms are
enclosed in a volume much smaller than &3. Using the
definition of the average density of escape rates, we obtain
that

Pð!Þ ¼ N & 1

N
'ð!Þ þ 1

N
'ð!& NÞ: (7)

A quantitative characterization of the behavior of Pð!Þ is
obtained by considering the relative number of statesR1
1 d!Pð!Þ having an escape rate larger than 1. We then

introduce the conveniently normalized function Cða;WÞ
defined between 0 and 1 by

Cða;WÞ ¼ 1& 2
Z 1

1
d!Pð!Þ: (8)

Cða;WÞ thus defined measures the relative number of
states having a vanishing escape rate. At finite size, we
expect Cða;WÞ to have a scaling form [12], namely,

dlnCða;WÞ
dlna

¼ #ðCÞ; (9)

whose solution Cða;WÞ is a function of a=)ðWÞ alone. We
have verified this scaling behavior over a broad range of
size and disorder. For a , 1, the results displayed in Fig. 2
collapse on a single curve (Fig. 3) when plotted as a
function of the parameter 2$aW ¼ $2N=N?. The Dicke
limit [Fig. 1(d)] is reached for small volumes L - & and
N? ’ 1, so that the scaling parameter becomes N=N? ’
N. Using (7) and (8) leads to Cða;WÞ ¼ 1& ð2=NÞ dis-
played in Fig. 4.
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P Γ( )

XN
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!iju
ðkÞ
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together with the collective operators S$k % PN
i¼1 u

ðkÞ
i S$i ,

enables us to rewrite (4) as hGj _"jGi¼
!0

PN
k¼1 !khGjS&k "Sþk jGi. This last form allows us to in-

terpret the eigenvalues f!kgas the escape rates and the

eigenfunctions fu ðkÞi gas photon modes providing the direc-
tivity of the angular emission [4]. It results from (4) that the
!k’s are independent of the effective dipole-dipole inter-
action #ij so that van der Waals dephasing does not play a
role [5].

The average density of escape rates Pð!Þ, normalized to
unity, is defined by Pð!Þ ¼ &ð1=$ÞImRðz ¼ !þ i0þÞ,
with RðzÞ ¼ ð1=NÞTrðz&½!ij)Þ&1. The average * * * is
taken, at fixed density, over spatial configurations of the
atoms. For Gaussian ensembles of random matrices [6],
Pð!Þ obeys a semicircle law. Here, as we shall see, the
behavior is very different.

The random matrix !ij depends on the distances rij
between atoms and on the angles %ij. We expect localiza-
tion properties to depend on rij rather than on %ij. We
therefore consider the scalar model [7] obtained from (3)
by averaging !ij over %ij and thus given by the N + N
random matrix [8]

!ij % h!iji¼
sinxij
xij

; (6)

where xij ¼ k0rij are interatomic distances expressed in
units of the wavelength & ¼ 2$=k0. We have checked that
the vectorial and scalar behaviors of Pð!Þ are qualitatively
the same [9]. This point is important, since one may think
that the scalar case (6) is the far-field limit obtained by
dropping in (3) the near-field terms responsible for coop-
erative effects. This is not the case, and !ij is well defined
for xij ¼ 0 so that Tr½!ij) ¼ N. The eigenvalues of !ij are
nonnegative since the 3D Fourier transform of sincjxj is
'ðjkj& 1Þ , 0.

We now consider N atoms enclosed in a cubic volume
L3, with a uniform density n . The disorder strength is
defined by the dimensionless parameterW ¼ 1=k0l, where
l ¼ 1=n ( is the elastic mean free path and ( ’ &2 is the
resonant scattering cross section [10]. Introducing the
number N? % ðk0LÞ2=4 of transverse photon modes leads
to W ¼ $

2
&
L

N
N?

.

Characteristic behaviors of Pð!Þ for different values of
W and size a ¼ L=& are displayed in Fig. 1. For a dilute
gas (W - 1), we recover the single atom limit !ij ! 'ij;
namely, Pð!Þ is narrowly peaked around ! ¼ 1 (in units of
!0) as expected from resonant scattering of a photon by a
single atom [Fig. 1(a)]. For stronger disorder, Pð!Þ be-
comes broader and shifted towards lower values of !
[Fig. 1(b)]. Eventually, for large enough disorder, most of
the eigenvalues get close to ! ¼ 0 [Fig. 1(c)]. Such a
vanishing escape rate corresponds to photons localized in

the atomic gas. By increasing furtherW, at a fixed number
N of atoms, yet another behavior shows up for xij - 1
[Fig. 1(d)] where Pð!Þ, obtained from the escape matrix
with all entries equal to one (!ij ¼ 1), has two eigenvalues.
One at ! ¼ 0 is the (N & 1)-degenerate subradiant mode,
and the second ! ¼ N is the nondegenerate superradiant
mode. This is the Dicke limit [11] reached when atoms are
enclosed in a volume much smaller than &3. Using the
definition of the average density of escape rates, we obtain
that

Pð!Þ ¼ N & 1

N
'ð!Þ þ 1

N
'ð!& NÞ: (7)

A quantitative characterization of the behavior of Pð!Þ is
obtained by considering the relative number of statesR1
1 d!Pð!Þ having an escape rate larger than 1. We then

introduce the conveniently normalized function Cða;WÞ
defined between 0 and 1 by

Cða;WÞ ¼ 1& 2
Z 1

1
d!Pð!Þ: (8)

Cða;WÞ thus defined measures the relative number of
states having a vanishing escape rate. At finite size, we
expect Cða;WÞ to have a scaling form [12], namely,

dlnCða;WÞ
dlna

¼ #ðCÞ; (9)

whose solution Cða;WÞ is a function of a=)ðWÞ alone. We
have verified this scaling behavior over a broad range of
size and disorder. For a , 1, the results displayed in Fig. 2
collapse on a single curve (Fig. 3) when plotted as a
function of the parameter 2$aW ¼ $2N=N?. The Dicke
limit [Fig. 1(d)] is reached for small volumes L - & and
N? ’ 1, so that the scaling parameter becomes N=N? ’
N. Using (7) and (8) leads to Cða;WÞ ¼ 1& ð2=NÞ dis-
played in Fig. 4.
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To characterize            we look for a scaling function  

Relative number of localized states i.e. having a vanishing escape rate :  

              is defined between 0 and 1. At finite size, we expect 
the scaling form:

P Γ( ) C a,W( )

C a,W( ) = 1− 2 dΓP Γ( )
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C a,W( )

To explain this scaling behavior, we study first the limit
N ! N? which can be understood from simple consider-
ations on the superradiant rate. The electric field E created
by N excited atoms within the volume L3 is obtained from
the electromagnetic energy N@!0 ¼ L2ðc=!ÞE2=8!. The
superradiant escape rate !may also be obtained by assum-
ing that, under the action of the field E, each atom performs
half a Rabi oscillation over a time 1=! ¼ @=Ed. The
dipolar matrix element d is related to the spontaneous

emission rate !0 ¼ 4
3
k30d

2@ . Altogether, ! is specified by

the parameter N
N?

as !
!0

¼ 3!
2

N
N?

. This expression, which

is correct when the electric field E is delocalized over the
atoms, i.e., for N=N? ! 1, emphasizes that the initial
linear behavior of CðN=N?Þ (Fig. 3) is essentially deter-

mined by cooperative effects. In the opposite limit N %
N?, the nth order cumulant of Pð!Þ, is ð1=NÞTr!n

ij ¼
3ðN=N?Þn&1=ðnþ 2Þ, and a resummation leads to the
asymptotic behavior [9]

Pð!Þ ¼
!
1& 3N?

2N

"
"ð!Þ þ 3!

!
N?
N

"
3

(10)

for ! ! N=N? and Pð!Þ ¼ 0 otherwise, so that asymptoti-
cally, CðN=N?Þ ¼ 1& 3ðN?=NÞ (Fig. 3).
To interpolate between the two previous limits, we con-

sider a mapping of the cooperative emission of randomly
distributed atoms onto a stochastic Markov process PNð0Þ
on a one-dimensional lattice with N sites. To define it, we
start from the Dicke limit [11] whose escape rate matrix
!ij ¼ 1 is the adjacency matrix of a complete graph having
spectral density (7). In that limit, the Hamiltonian (2)
commutes with the collective spin operators S( )PN

i¼1 S
(
i , so that Dicke states jS;mi, eigenstates of S2 )

1
2ðSþS& þ S&SþÞ þ 1

4 S
2
z and Sz, are eigenstates of He.

Emission or absorption of a photon, a process which keeps
S unchanged and shifts m by one unit, can then be de-
scribed as a one-dimensional and symmetric Markov pro-
cess with equiprobable jumps PNð0Þi;i(1 ¼ 1=2 between
neighboring m states. Away from the Dicke limit, the
expressions of the collective spin operators for scalar

waves are obtained by taking uðkÞi ¼ e(ik*ri in (5), so that
S(k ¼ PN

i¼1 S
(
i e

(ik*ri . The random phases prevent us from
having the previous angular momentum algebra so that He

does not commute with S2k. Yet, we can still use the Dicke
states basis, but now a photon emission is a process where
both S and m change. This can be described as a modified
Markov process where S-changing events are accounted by
adding random jumps to non-neighboring m states with a
probability #. The modified Markov process PNð#Þ is
defined by the N + N matrix

PNð#Þ ¼ ð1& N#ÞPNð0Þ þ #jeNiheNj: (11)
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Is there a localisation phase transition ?

• Microscopic QED approach 

 N ≫ N⊥Large disorder limit 

• Phenomenological Markov process 
(Small world networks)

For the whole range of disorder
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 N ≫ N⊥Large disorder limit 

P(Γ)Resummation of the cumulants of          leads to the asymptotic 
behavior

P(Γ) = 1− 3N⊥

2N
⎛
⎝⎜

⎞
⎠⎟
δ (Γ) + 3Γ N⊥

N
⎛
⎝⎜

⎞
⎠⎟
3

for Γ ≤ N N⊥

P(Γ) = 0 otherwise

so that 

Microscopic QED approach

C N
N⊥

( ) = 1− 3N⊥

N
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Phenomenological Markov process 
(Small world networks)
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Dependence upon the space dimension ?  

disorder driven localisation transition 
(Anderson) 



One-dimensional random atomic gas : 
Absence of single atom limit (Wigner-Weisskopf)
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A. Gero, E.A. ,EPL 101, 2013

γ ij =
sin k0rij
k0rij

� 

Vij = βij − iγ ijwith but                               instead of γ ij = cosk0rij

           : Same expression of the effective atomic Hamiltonian         , d = 1 He

  

� 

He = !ω0 − i
!Γ0
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One-dimensional random atomic gas : 
Absence of single atom limit (Wigner-Weisskopf)
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γ ij =
sin k0rij
k0rij

� 

Vij = βij − iγ ijwith but                               instead of γ ij = cosk0rij

                  dilute large sample limit (Wigner-Weisskopf + disorder effects) 
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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Uij = cos k0rij , obtained numerically for a= 1 (k0L= 2π) and
N = 216. The degenerate subradiant mode at Γ= 0 is not
presented. The two superradiant modes are centered at Γ=
(N ±

√

N/2)/2. The solid line is calculated by eq. (12) and the
Rayleigh distribution given in eq. (15).

eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is

54003-p3
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samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜
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1 1 · · · 1
1 1 · · · 1
...
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. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜
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⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1
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⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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of W , a and for N = 216 in a one-dimensional geometry. The
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samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is

54003-p3

Cooperative effects in one-dimensional random atomic gases

0 50 100 150 200
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

a = 0.0216

2πW = 104

superradiant peak (X20)
at Γ = 216

a = 21.6
2πW = 10

 peaks (X2)
at 95 < Γ < 120

 peaks (X2)
at 90 < Γ < 118

 peaks (X2)
at 99 < Γ < 117

a = 2160

2πW = 10−1

a = 216000

2πW = 10−3

(b)

(c) (d)

(a)

Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
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case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜
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⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1
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⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two

85 90 95 100 105 110 115 120 125 130 135
0

20

40

60

80

100

120

140

160

180

Γ

P
(Γ

) 
[a

.u
.]

a = 1

N = 216

Fig. 2: (Colour on-line) Distribution of the eigenvalues of
Uij = cos k0rij , obtained numerically for a= 1 (k0L= 2π) and
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presented. The two superradiant modes are centered at Γ=
(N ±

√
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is

54003-p3

can be written U = 1
2
A†A

with        is the            matrix defined by      A 2 × N A0 j = e
ik0rj and A1 j = e

− ik0rj

U real symmetric matrix, its non vanishing eigenvalues are obtained 
from those of  the          matrix  2 × 2 U †

Cooperative effects in one-dimensional random atomic gases

0 50 100 150 200
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

a = 0.0216

2πW = 104

superradiant peak (X20)
at Γ = 216

a = 21.6
2πW = 10

 peaks (X2)
at 95 < Γ < 120

 peaks (X2)
at 90 < Γ < 118

 peaks (X2)
at 99 < Γ < 117

a = 2160

2πW = 10−1

a = 216000

2πW = 10−3

(b)

(c) (d)

(a)

Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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Uij = cos k0rij , obtained numerically for a= 1 (k0L= 2π) and
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presented. The two superradiant modes are centered at Γ=
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√
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is

54003-p3

Cooperative effects in one-dimensional random atomic gases

0 50 100 150 200
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

0 50 100 150
0

50

100

150

200

250

Γ

N
P

(Γ
)

a = 0.0216

2πW = 104

superradiant peak (X20)
at Γ = 216

a = 21.6
2πW = 10

 peaks (X2)
at 95 < Γ < 120

 peaks (X2)
at 90 < Γ < 118

 peaks (X2)
at 99 < Γ < 117

a = 2160

2πW = 10−1

a = 216000

2πW = 10−3

(b)

(c) (d)

(a)

Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two

85 90 95 100 105 110 115 120 125 130 135
0

20

40

60

80

100

120

140

160

180

Γ

P
(Γ

) 
[a

.u
.]

a = 1

N = 216

Fig. 2: (Colour on-line) Distribution of the eigenvalues of
Uij = cos k0rij , obtained numerically for a= 1 (k0L= 2π) and
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presented. The two superradiant modes are centered at Γ=
(N ±

√

N/2)/2. The solid line is calculated by eq. (12) and the
Rayleigh distribution given in eq. (15).

eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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Uij = cos k0rij , obtained numerically for a= 1 (k0L= 2π) and
N = 216. The degenerate subradiant mode at Γ= 0 is not
presented. The two superradiant modes are centered at Γ=
(N ±

√

N/2)/2. The solid line is calculated by eq. (12) and the
Rayleigh distribution given in eq. (15).

eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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Fig. 1: (Colour on-line) Behavior of NP (Γ) for different values
of W , a and for N = 216 in a one-dimensional geometry. The
single-atom limit is never reached and the photon is always
localized in the atomic gas. Panels (a)–(c) describe large
samples. The Dicke limit is shown in (d).

case [11] is observed. Unlike the three-dimensional geome-
try, the single-atom limit is never reached and the photons
are always localized in the atomic gas.
Let us distinguish between two regimes, Dicke regime

where a≪ 1 and the large-sample regime, where a! 1. In
Dicke regime the coupling matrix is

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1
1 1 · · · 1
...
...

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Thus, the average density of photon escape rate is given
by

P (Γ) =
1

N
[(N − 1)δ(Γ)+ δ(Γ−N)], (10)

as presented in fig. 1(d). Equation (10) holds in Dicke
regime of the three-dimensional case as well. The spectrum
of U given above yields C = 1− 2/N . For the current case
where N ≫ 1, C = 1 indicating photon localization.
Away from the Dicke limit, in the large-sample regime

shown in fig. 1(a)–(c), P (Γ) is calculated as follows. The
N ×N matrix Uij = cos k0rij may be rewritten as U =
1
2A
†A, where A is the 2×N matrix defined by A0j = eik0rj

and A1j = e−ik0rj . As U is a real symmetric matrix, its
non-vanishing eigenvalues can be found from those of U†,
given by

U† =
1

2

(

N M
M∗ N

)

. (11)

Here M =
∑N
k=1 e

2ik0rk is a random variable where k0rk
is uniformly distributed over [0, 2πa]. Since the two
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eigenvalues of eq. (11) are

λ± =
N ± |M |
2

, (12)

the spectrum of U is given by

P (Γ) =
1

N
[(N − 2)δ(Γ)+ δ(Γ−λ+ )+ δ(Γ−λ−)] . (13)

We can estimate |M | by writing

|M |2 =N +
∑

p̸=q

e2ik0(rp−rq), (14)

where the second term involves N(N − 1) terms. On
average over non-correlated disorder the second term
vanishes so that |M |∼

√
N . For the spectrum of U given

in eq. (13) it is evident that C = 1− 4/N . Thus, for large
values of N the photons are localized in the gas.
In order to calculate exactly the distribution function

of |M |, first we assume that a is an integer. In this
special case, the distribution function is just the Rayleigh
distribution,

P (|M |) =
2|M |
N
e−

|M|2

N , (15)

whose mode is
√

N/2. Figure 2 shows the eigenvalue distri-
bution spectrum of U for a= 1 (excluding the degenerate
subradiant mode at Γ= 0) as well as the calculated P (Γ)
given by eqs. (12) and (15).
In the general case, for an arbitrary value of a, we

follow [17], as described below. As N ≫ 1, according to
the Central-Limit theorem, Re(M) is normally distributed
with mean m1 and variance v1. Similarly, Im(M) is
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One-dimensional random atomic gas  

• d=1 : no crossover between localised and delocalised photons.  

• Single atom (Wigner-Weisskopf) limit is never reached.  

• Results in d=1 are valid for both ordered and disordered media 

(M is not a random variable) 

• Cooperative effects (not disorder) is the mechanism underlying  

photon localisation in d=1.  
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In           the same expression of the effective atomic 
Hamiltonian     holds, He

d = 2

γ ij =
sin k0rij
k0rij

� 

Vij = βij − iγ ijwith but                               instead of γ ij = J0 k0rij( )



Two-dimensional random atomic gas : 
Marchenko-Pastur distribution

!65
A. Gero, E.A. ,PRA 88, 2013

In           the same expression of the effective atomic 
Hamiltonian     holds, He

d = 2

γ ij =
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and

GU (z) = 1
N

(
1

z − N
+ N − 1

z

)
, (18)

thus

P (!) = 1
N

[δ(! − N ) + (N − 1)δ(!)]. (19)

In this case the eigenvalue ! = 0 is the (N − 1)-degenerate
subradiant mode and ! = N is the nondegenerate superradiant
mode.

(2) Dilute gas (k0rij ≫ 1). For the two- and three-
dimensional cases, U = I and GU (z) = (z − 1)−1, thus

P (!) = δ(! − 1). (20)

In this limit the single-atom spontaneous emission rate is
recovered. For one dimension, however, U ̸= I and the single-
atom limit is never reached, as noted in Sec. III.

C. Measure of photon localization

In order to characterize P (!) and obtain a measure of
photon localization we use the following function

C = 1 − 2
∫ ∞

1
d!P (!), (21)

normalized to unity. C measures the relative number of states
having a vanishing escape rate. The function C exhibits a
scaling behavior over a broad range of system size and density
both in one [14] and three dimensions [13]. Later on, we will
show that in the two-dimensional case C exhibits a scaling
behavior as well.

In the Dicke limit (k0rij ≪ 1), it is straightforward
from (19) that C = 1 − 2/N in all dimensions. Thus, for
N ≫ 1, C = 1 and the photon is localized in the gas. In the
opposite limit, obtained only in the two- and three-dimensional
cases, (20) yields C = 0, indicating delocalization [27].

It should be noted that the mean value of ! hardly
characterizes P (!) since !mean = [Tr(U )]/N and Tr(U ) = N
in all dimensions, therefore !mean = 1 regardless of the system
parameters. In the next section we will show that C, in a certain
limit, is a function of the variance of P (!).

D. Decomposition of U and Marchenko-Pastur distribution

Beyond the Dicke and the dilute gas limits, it is difficult to
obtain a nonapproximate analytic expression of the distribution
P (!), except for the case of one dimension [14]. There, the
atoms are distributed along a line, and the coupling matrix (11)
can be rewritten as U = 1

2H †H , where H is the 2 × N

matrix defined by H0j = eik0rj and H1j = e−ik0rj . As U is
a real symmetric matrix, its spectrum is given exactly by
the spectrum of the 2 × 2 matrix U † plus N − 2 vanishing
eigenvalues.

In higher dimensions, a useful approach consists in looking
for the N × N matrix U under the form of a product

U = H T H †, (22)

where T is a M × M matrix while H is a N × M rectangular
matrix. This approach, promoted for the three-dimensional
case [16], is of wide application in random matrix theory

methods applied to wireless communication [28]. The product
form for U results from a decomposition where the random-
ness is contained in the matrix H , while the square and
nonrandom matrix T counts the M transverse modes of the
d-dimensional cavity, which contains the atoms, assuming
periodic boundary conditions. Important results have been
obtained for the asymptotic distribution of random matrices
of the form (22) in the context of the free probability theory
[28–30].

We wish to obtain the distribution P (!) of the matrix U
in the limit (N,M) → ∞ so that the ratio N/M is constant.
Beforehand, we introduce some definitions and notations. We
define, for any square random matrix U , the quantity G−1

U (z)
as the functional inverse (with respect to the composition of
functions) of the resolvent GU (z), namely, G−1

U [GU (z)] = z.
We then define the R-transform, also called self-
energy, by

RU (z) = G−1
U (z) − 1

z
, (23)

and the S-transform, SU (z), by means of the implicit
relation

GU

(
z + 1
zSU (z)

)
= zSU (z). (24)

We now give two important results which will prove useful
[28–30]. The first states that for asymptotically free matrices
A and B, their S-transforms fulfill

SAB(z) = SA(z) SB(z). (25)

This shows the interesting feature of the S-transform, which
allows to disentangle the product of matrices. Moreover, for
any N × M matrix A and M × N matrix B with (N,M) → ∞
and constant β = N/M , one has [30]

SAB(z) = β(z + 1)
1 + βz

SBA(βz). (26)

The second important result states that a random N × M
matrix H whose entries are zero-mean independent and
identically distributed (i.i.d.) random variables with variance
1/N is such that in the limit (N,M) → ∞ and constant
β = N/M , the distribution of eigenvalues of the square
M × M product matrix H † H converges almost surely to the
Marchenko-Pastur law [15,30],

P MP (!) = (1 − β)+ δ(!) + β
√

(! − a)+(b − !)+

2π !
, (27)

with x + = max(0,x ) and (b,a) = (1 ± 1/
√

β)2. This result
is analogous to the central limit theorem. Finally, the R
and S transforms of the Marchenko-Pastur law are given,
respectively, by [30]

RMP (z) = β

β − z
(28)

and

SMP (z) = β

β + z
. (29)

We now apply these results to obtain an important relation
between RU (z) and GT (z), where the matrix U is given by the
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decomposition (22). Using (25) and (26) we have

SU (z) = β(z + 1)
1 + βz

SH †H (βz) ST (βz) , (30)

and with the help of (29)

SU (z) = β

1 + βz
ST (βz) . (31)

Next, we apply (24) to the matrix T and the variable βz,
namely,

GT

(
1 + βz

βzST (βz)

)
= βzST (βz). (32)

Defining a new variable,

1
Z

= 1 + βz

βzST (βz)
, (33)

we obtain from (31) that

1
Z

= 1
z SU (z)

, (34)

and from (32) and (33)

GT

(
1
Z

)
= (1 + βz) Z. (35)

We use (24) again, this time for the matrix U , and with the
help of (34) we obtain,

z = Z G−1
U (Z) − 1. (36)

Inserting the last expression into (35) and solving for
G−1

U (Z) − 1/Z yield (after a change of variables)

RU (z) = 1
βz

[
1
z

GT

(
1
z

)
− 1

]
. (37)

This relation between the resolvent of T and the self-energy
of U will be used in the next section in order to obtain
the eigenvalue distribution P (") of the matrix U in the
two-dimensional geometry.

V. TWO-DIMENSIONAL GEOMETRY

Now, we investigate the distribution of the eigenvalues
of (9) and the corresponding function C, both numerically
and analytically.

A. Spectrum of Ui j = J0 (k 0 ri j )

We consider N ≫ 1 atoms enclosed in a square L2 ≡
(2πa/k0)2, thus defining the dimensionless length a. The
atoms are randomly distributed with a uniform density
n = N/L2 and the corresponding coupling matrix is given
by (9). The average density of photon escape rates, ob-
tained for many random configurations of the atoms, is
presented in Fig. 1 for different values of the dimensionless
density W = N/2πa2 and a ! 1. The Dicke limit (a ≪ 1)
is shown in Fig. 2 and the corresponding P (") is given
by (19).

In order to obtain the eigenvalue distribution of U away
from the Dicke limit, according to relation (37), we should
calculate GT (z), the resolvent of the matrix T introduced
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FIG. 1. (Color online) Behavior of P (") for different values of
W , a = M/2π ! 1 (see text for a definition of M) and for N = 216
in a two-dimensional geometry. The solid line is calculated using the
Marchenko-Pastur law (46).

in (22). To that purpose, we follow the approach of Ref. [16]
and choose

Him = 1√
N

eiqm·ri , (38)

where qm = {qmx ,qmy } with qmi = mi
2π
L

and mi =
± 1,± 2, . . .. Thus, T is an approximate representation of the
two-dimensional Fourier transform of U . It should be noted
that the elements of the random matrix H obey the conditions
necessary to obtain (27).

The two-dimensional Fourier transform of Uij = J0(k0rij )
in the square S = L2 is

T (qm,qn) = N

S2

∫
d2ri

∫
d2rj J0(k0rij ) e−iqm·ri+iqn·rj .

(39)
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FIG. 2. (Color online) Behavior of NP (") in the Dicke limit
(a = 0.015) for N = 216 in a two-dimensional geometry. The
distribution is described by (19).
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By changing to new integration variables R = (ri + rj )/2 and
r = rj − ri and confining the integration over r to |r| < L/2α,
where α a numerical constant to be determined later on, we
obtain the following approximation

T (qm,qn) ≃ N

S2

∫
d2R e−i(qm−qn)·R

×
∫

d2r J0(k0r) ei(qm+qn)·r/2. (40)

In order to calculate the second integral we use that the
two-dimensional Fourier transform of a circularly symmetric
function f (r) is equivalent, up to 2π , to the Hankel transform
of order zero, namely H0[f (r)] =

∫ ∞
0 dr rf (r)J0(qr). Since

H0[J0(k0r)] = δ(q − k0)/k0, the value of the second integral
in an infinite square is 2πδ(qm − k0)/k0. In our case, however,
the integration over r is limited to |r| < L/2α. Thus, we
approximate the δ function by a sinc function and have

T (qm,qn) ≃ N

S
δ(qm − qn)

πL

αk0
sinc

[
(qm − k0)

L

2α

]
. (41)

For comparison, the calculation of T in the three-dimensional
case [16], where U is given by (10), yields an additional sinc
function, peaked around qm = −k0. This additional term has
been discarded by the authors of Ref. [16] in their calculation.
Here, there is no such approximation, hence the results in
the two-dimensional case are expected to be more accurate
compared to those in three dimensions.

The sinc function in (41), peaked around qm = k0 for
L ≫ 1, limits the number of qm’s that contribute to T .
Therefore, we take into account only the contribution of qm’s
within a two-dimensional spherical shell of radius k0 and
thickness 2α/L, namely M = αk0L/π modes (if M is not
an integer, we refer to the integer part of M). Furthermore, for
all of these qm’s we approximate (41) as

T (qm,qn) ≃ N

M
δ(qm − qn). (42)

It should be noted that in the three-dimensional case [16],
M varies like (k0L)2. This difference is significant as it
causes localization to occur earlier in the two-dimensional
case compared to the three-dimensional case, as we will see in
Sec. VI.

Next, we consider in (42) only the modes qm = qn for which
m = n. In this case, T can be represented by the following
M × M matrix,

Tmn ≃ N

M
δmn. (43)

The resolvent (16) of T is thus given by

GT (z) =
(

z − N

M

)−1

. (44)

Substituting (44) in relation (37) yields the self-energy of U ,

RU (z) =
(

1 − N

M
z

)−1

. (45)

The last result is the self-energy of the Marchenko-Pastur
law (28) with β = M/N . Therefore, the spectrum of Uij =
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FIG. 3. (Color online) Behavior of the scaling function C as a
function of the system size a ! 1 and the dimensionless density W .

J0(k0rij ) is approximated for M ≫ 1 by

P (%) ≃
(

1 − M

N

)+
δ(%) +

√
(% − %−)+(%+ − %)+

2π N
M
%

, (46)

where %± = (1 ±
√

N/M)2, as shown in Fig. 1. Since the
variance of (46) is the ratio N/M , from the distribution of the
eigenvalues of U obtained numerically, it is easy to obtain that
α ≃ π , thus M ≃ k0L = 2πa.

Finally, we note that this result, namely the spectrum of
Uij = J0(k0rij ) is approximated by the Marchenko-Pastur law,
should not come as a surprise since the matrix T is being
proportional to the unit matrix (43). Therefore, we expect
from (22) that P (%) obeys the Marchenko-Pastur law.

B. Scaling function

After obtaining the distribution of photon escape rates, we
calculate the scaling function C, defined in (21). The function
C has already been obtained in Sec. IV in the two limiting
cases, namely the Dicke and the dilute gas limits, and now we
are interested in the case where a ! 1.

The behavior of C as a function of the system size a and
dimensionless density W is presented in Fig. 3. The results
collapse on a single curve (Fig. 4) when plotted as a function of
N/M = aW , indicating that the photon undergoes a crossover
from delocalization towards localization as the scaling variable
N/M is increased.

With the help of the first term of (46), we can approximate
C for N/M ! 2 by

C ≃ 1 − 2
M

N
, (47)

as presented in Fig. 4.

VI. DISCUSSION

The distribution of the eigenvalues % in the two-
dimensional case is similar to the one obtained in the three-
dimensional case [13,16], but qualitatively different from the
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and

GU (z) = 1
N

(
1

z − N
+ N − 1

z

)
, (18)

thus

P (!) = 1
N

[δ(! − N ) + (N − 1)δ(!)]. (19)

In this case the eigenvalue ! = 0 is the (N − 1)-degenerate
subradiant mode and ! = N is the nondegenerate superradiant
mode.

(2) Dilute gas (k0rij ≫ 1). For the two- and three-
dimensional cases, U = I and GU (z) = (z − 1)−1, thus

P (!) = δ(! − 1). (20)

In this limit the single-atom spontaneous emission rate is
recovered. For one dimension, however, U ̸= I and the single-
atom limit is never reached, as noted in Sec. III.

C. Measure of photon localization

In order to characterize P (!) and obtain a measure of
photon localization we use the following function

C = 1 − 2
∫ ∞

1
d!P (!), (21)

normalized to unity. C measures the relative number of states
having a vanishing escape rate. The function C exhibits a
scaling behavior over a broad range of system size and density
both in one [14] and three dimensions [13]. Later on, we will
show that in the two-dimensional case C exhibits a scaling
behavior as well.

In the Dicke limit (k0rij ≪ 1), it is straightforward
from (19) that C = 1 − 2/N in all dimensions. Thus, for
N ≫ 1, C = 1 and the photon is localized in the gas. In the
opposite limit, obtained only in the two- and three-dimensional
cases, (20) yields C = 0, indicating delocalization [27].

It should be noted that the mean value of ! hardly
characterizes P (!) since !mean = [Tr(U )]/N and Tr(U ) = N
in all dimensions, therefore !mean = 1 regardless of the system
parameters. In the next section we will show that C, in a certain
limit, is a function of the variance of P (!).

D. Decomposition of U and Marchenko-Pastur distribution

Beyond the Dicke and the dilute gas limits, it is difficult to
obtain a nonapproximate analytic expression of the distribution
P (!), except for the case of one dimension [14]. There, the
atoms are distributed along a line, and the coupling matrix (11)
can be rewritten as U = 1

2H †H , where H is the 2 × N

matrix defined by H0j = eik0rj and H1j = e−ik0rj . As U is
a real symmetric matrix, its spectrum is given exactly by
the spectrum of the 2 × 2 matrix U † plus N − 2 vanishing
eigenvalues.

In higher dimensions, a useful approach consists in looking
for the N × N matrix U under the form of a product

U = H T H †, (22)

where T is a M × M matrix while H is a N × M rectangular
matrix. This approach, promoted for the three-dimensional
case [16], is of wide application in random matrix theory

methods applied to wireless communication [28]. The product
form for U results from a decomposition where the random-
ness is contained in the matrix H , while the square and
nonrandom matrix T counts the M transverse modes of the
d-dimensional cavity, which contains the atoms, assuming
periodic boundary conditions. Important results have been
obtained for the asymptotic distribution of random matrices
of the form (22) in the context of the free probability theory
[28–30].

We wish to obtain the distribution P (!) of the matrix U
in the limit (N,M) → ∞ so that the ratio N/M is constant.
Beforehand, we introduce some definitions and notations. We
define, for any square random matrix U , the quantity G−1

U (z)
as the functional inverse (with respect to the composition of
functions) of the resolvent GU (z), namely, G−1

U [GU (z)] = z.
We then define the R-transform, also called self-
energy, by

RU (z) = G−1
U (z) − 1

z
, (23)

and the S-transform, SU (z), by means of the implicit
relation

GU

(
z + 1
zSU (z)

)
= zSU (z). (24)

We now give two important results which will prove useful
[28–30]. The first states that for asymptotically free matrices
A and B, their S-transforms fulfill

SAB(z) = SA(z) SB(z). (25)

This shows the interesting feature of the S-transform, which
allows to disentangle the product of matrices. Moreover, for
any N × M matrix A and M × N matrix B with (N,M) → ∞
and constant β = N/M , one has [30]

SAB(z) = β(z + 1)
1 + βz

SBA(βz). (26)

The second important result states that a random N × M
matrix H whose entries are zero-mean independent and
identically distributed (i.i.d.) random variables with variance
1/N is such that in the limit (N,M) → ∞ and constant
β = N/M , the distribution of eigenvalues of the square
M × M product matrix H † H converges almost surely to the
Marchenko-Pastur law [15,30],

P MP (!) = (1 − β)+ δ(!) + β
√

(! − a)+(b − !)+

2π !
, (27)

with x + = max(0,x ) and (b,a) = (1 ± 1/
√

β)2. This result
is analogous to the central limit theorem. Finally, the R
and S transforms of the Marchenko-Pastur law are given,
respectively, by [30]

RMP (z) = β

β − z
(28)

and

SMP (z) = β

β + z
. (29)

We now apply these results to obtain an important relation
between RU (z) and GT (z), where the matrix U is given by the
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By changing to new integration variables R = (ri + rj )/2 and
r = rj − ri and confining the integration over r to |r| < L/2α,
where α a numerical constant to be determined later on, we
obtain the following approximation

T (qm,qn) ≃ N

S2

∫
d2R e−i(qm−qn)·R

×
∫

d2r J0(k0r) ei(qm+qn)·r/2. (40)

In order to calculate the second integral we use that the
two-dimensional Fourier transform of a circularly symmetric
function f (r) is equivalent, up to 2π , to the Hankel transform
of order zero, namely H0[f (r)] =

∫ ∞
0 dr rf (r)J0(qr). Since

H0[J0(k0r)] = δ(q − k0)/k0, the value of the second integral
in an infinite square is 2πδ(qm − k0)/k0. In our case, however,
the integration over r is limited to |r| < L/2α. Thus, we
approximate the δ function by a sinc function and have

T (qm,qn) ≃ N

S
δ(qm − qn)

πL

αk0
sinc

[
(qm − k0)

L

2α

]
. (41)

For comparison, the calculation of T in the three-dimensional
case [16], where U is given by (10), yields an additional sinc
function, peaked around qm = −k0. This additional term has
been discarded by the authors of Ref. [16] in their calculation.
Here, there is no such approximation, hence the results in
the two-dimensional case are expected to be more accurate
compared to those in three dimensions.

The sinc function in (41), peaked around qm = k0 for
L ≫ 1, limits the number of qm’s that contribute to T .
Therefore, we take into account only the contribution of qm’s
within a two-dimensional spherical shell of radius k0 and
thickness 2α/L, namely M = αk0L/π modes (if M is not
an integer, we refer to the integer part of M). Furthermore, for
all of these qm’s we approximate (41) as

T (qm,qn) ≃ N

M
δ(qm − qn). (42)

It should be noted that in the three-dimensional case [16],
M varies like (k0L)2. This difference is significant as it
causes localization to occur earlier in the two-dimensional
case compared to the three-dimensional case, as we will see in
Sec. VI.

Next, we consider in (42) only the modes qm = qn for which
m = n. In this case, T can be represented by the following
M × M matrix,

Tmn ≃ N

M
δmn. (43)

The resolvent (16) of T is thus given by

GT (z) =
(

z − N

M

)−1

. (44)

Substituting (44) in relation (37) yields the self-energy of U ,

RU (z) =
(

1 − N

M
z

)−1

. (45)

The last result is the self-energy of the Marchenko-Pastur
law (28) with β = M/N . Therefore, the spectrum of Uij =
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FIG. 3. (Color online) Behavior of the scaling function C as a
function of the system size a ! 1 and the dimensionless density W .

J0(k0rij ) is approximated for M ≫ 1 by

P (%) ≃
(

1 − M

N

)+
δ(%) +

√
(% − %−)+(%+ − %)+

2π N
M
%

, (46)

where %± = (1 ±
√

N/M)2, as shown in Fig. 1. Since the
variance of (46) is the ratio N/M , from the distribution of the
eigenvalues of U obtained numerically, it is easy to obtain that
α ≃ π , thus M ≃ k0L = 2πa.

Finally, we note that this result, namely the spectrum of
Uij = J0(k0rij ) is approximated by the Marchenko-Pastur law,
should not come as a surprise since the matrix T is being
proportional to the unit matrix (43). Therefore, we expect
from (22) that P (%) obeys the Marchenko-Pastur law.

B. Scaling function

After obtaining the distribution of photon escape rates, we
calculate the scaling function C, defined in (21). The function
C has already been obtained in Sec. IV in the two limiting
cases, namely the Dicke and the dilute gas limits, and now we
are interested in the case where a ! 1.

The behavior of C as a function of the system size a and
dimensionless density W is presented in Fig. 3. The results
collapse on a single curve (Fig. 4) when plotted as a function of
N/M = aW , indicating that the photon undergoes a crossover
from delocalization towards localization as the scaling variable
N/M is increased.

With the help of the first term of (46), we can approximate
C for N/M ! 2 by

C ≃ 1 − 2
M

N
, (47)

as presented in Fig. 4.

VI. DISCUSSION

The distribution of the eigenvalues % in the two-
dimensional case is similar to the one obtained in the three-
dimensional case [13,16], but qualitatively different from the
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decomposition (22). Using (25) and (26) we have

SU (z) = β(z + 1)
1 + βz

SH †H (βz) ST (βz) , (30)

and with the help of (29)

SU (z) = β

1 + βz
ST (βz) . (31)

Next, we apply (24) to the matrix T and the variable βz,
namely,

GT

(
1 + βz

βzST (βz)

)
= βzST (βz). (32)

Defining a new variable,

1
Z

= 1 + βz

βzST (βz)
, (33)

we obtain from (31) that

1
Z

= 1
z SU (z)

, (34)

and from (32) and (33)

GT

(
1
Z

)
= (1 + βz) Z. (35)

We use (24) again, this time for the matrix U , and with the
help of (34) we obtain,

z = Z G−1
U (Z) − 1. (36)

Inserting the last expression into (35) and solving for
G−1

U (Z) − 1/Z yield (after a change of variables)

RU (z) = 1
βz

[
1
z

GT

(
1
z

)
− 1

]
. (37)

This relation between the resolvent of T and the self-energy
of U will be used in the next section in order to obtain
the eigenvalue distribution P (") of the matrix U in the
two-dimensional geometry.

V. TWO-DIMENSIONAL GEOMETRY

Now, we investigate the distribution of the eigenvalues
of (9) and the corresponding function C, both numerically
and analytically.

A. Spectrum of Ui j = J0 (k 0 ri j )

We consider N ≫ 1 atoms enclosed in a square L2 ≡
(2πa/k0)2, thus defining the dimensionless length a. The
atoms are randomly distributed with a uniform density
n = N/L2 and the corresponding coupling matrix is given
by (9). The average density of photon escape rates, ob-
tained for many random configurations of the atoms, is
presented in Fig. 1 for different values of the dimensionless
density W = N/2πa2 and a ! 1. The Dicke limit (a ≪ 1)
is shown in Fig. 2 and the corresponding P (") is given
by (19).

In order to obtain the eigenvalue distribution of U away
from the Dicke limit, according to relation (37), we should
calculate GT (z), the resolvent of the matrix T introduced
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FIG. 1. (Color online) Behavior of P (") for different values of
W , a = M/2π ! 1 (see text for a definition of M) and for N = 216
in a two-dimensional geometry. The solid line is calculated using the
Marchenko-Pastur law (46).

in (22). To that purpose, we follow the approach of Ref. [16]
and choose

Him = 1√
N

eiqm·ri , (38)

where qm = {qmx ,qmy } with qmi = mi
2π
L

and mi =
± 1,± 2, . . .. Thus, T is an approximate representation of the
two-dimensional Fourier transform of U . It should be noted
that the elements of the random matrix H obey the conditions
necessary to obtain (27).

The two-dimensional Fourier transform of Uij = J0(k0rij )
in the square S = L2 is

T (qm,qn) = N

S2

∫
d2ri

∫
d2rj J0(k0rij ) e−iqm·ri+iqn·rj .

(39)
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distribution is described by (19).
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N=2 atoms case :  The spectrum of       can be obtained 
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Thouless parameter :  
localisation phase transition
Edwards & Thouless (’72), Thouless (’77)

Using Random matrix theory : 
G. Montambaux, E.A., (1992), I. Guarneri et al. (1994)

Coupling between open quantum systems 
Transport (conductance)
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10.1 Introduction 371

reach the strong disorder regime by increasing W and thus to explore the spectral properties
near the metal–insulator transition, i.e., in a limit where the analytical methods developed
in this book do not apply anymore. For a thorough study of the metal–insulator transition,
we refer the reader to the references [257, 258].

10.1.1 Level repulsion and integrability

Figure 10.1(a) presents two energy spectra. One is the spectrum of a good conductor, in
the limit kF le ≫ 1. The other is a sequence of uncorrelated random numbers, distributed
according to a Poisson law. These two spectra are quite different. For the good conductor,
we observe a more regular behavior. A first way to account for the difference between these
two spectra consists in studying the probability P(s) of two neighboring levels being distant
by the energy s.1 We observe in the figure that for the good conductor, the probability for
two levels to be very close to each other vanishes. This is not the case for a spectrum
without correlation. This property is called level repulsion. In particular, for a disordered
metal, degeneracies are lifted.

It turns out that this behavior is quite general. Level repulsion is also observed in the
energy (or frequency) spectra of a wide range of physical systems [259–[261]]. For example,
Figure 10.2 shows a histogram of the spacings between highly excited levels of several
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Figure 10.1 (a) Comparison of the energy spectrum of a good metallic conductor in the weak disorder
limit (left) with a Poisson spectrum corresponding to a random distribution of uncorrelated levels
(right). (b) Wigner–Dyson distribution P(s) for the spectrum of a good metallic conductor (filled
circles) and for a Poisson spectrum (open circles).

1 Here s is a dimensionless energy, normalized to the average spacing ! between neighboring levels.
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reach the strong disorder regime by increasing W and thus to explore the spectral properties
near the metal–insulator transition, i.e., in a limit where the analytical methods developed
in this book do not apply anymore. For a thorough study of the metal–insulator transition,
we refer the reader to the references [257, 258].

10.1.1 Level repulsion and integrability

Figure 10.1(a) presents two energy spectra. One is the spectrum of a good conductor, in
the limit kF le ≫ 1. The other is a sequence of uncorrelated random numbers, distributed
according to a Poisson law. These two spectra are quite different. For the good conductor,
we observe a more regular behavior. A first way to account for the difference between these
two spectra consists in studying the probability P(s) of two neighboring levels being distant
by the energy s.1 We observe in the figure that for the good conductor, the probability for
two levels to be very close to each other vanishes. This is not the case for a spectrum
without correlation. This property is called level repulsion. In particular, for a disordered
metal, degeneracies are lifted.

It turns out that this behavior is quite general. Level repulsion is also observed in the
energy (or frequency) spectra of a wide range of physical systems [259–[261]]. For example,
Figure 10.2 shows a histogram of the spacings between highly excited levels of several
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1 Here s is a dimensionless energy, normalized to the average spacing ! between neighboring levels.
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Scaling and its meaning :

If we know          , we know it at any scale :  

(P.W. Anderson et al.,1979)

g(L)

g L(1+ ε)( )= f g(L),ε( )

Scaling behavior :                   

ξ(W ) is the localization length

g(L,W ) = f L
ξ(W )( )
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Thouless scaling parameter (conductance)

Scaling behaviour - phase transition

g L( ) = Γ i

ΔE i

En − i!
Γn
2 ≡ !ω 0 +!Γ0Λn

S. Skipetrov and Sokolov (2014), Bellando, Gero, Kaiser, E.A. , PRA, 2014
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Scaling behaviour - phase transition

Γ i = −2Tr Λ( ) N = 1
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ΔE i

En − i!
Γn
2 ≡ !ω 0 +!Γ0Λn
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Thouless scaling parameter (conductance)

Scaling behaviour - phase transition

g ≡ 1
1
Γ i

ΔE i

Γ i = −2Tr Λ( ) N = 1

g L( ) = Γ i

ΔE i

En − i!
Γn
2 ≡ !ω 0 +!Γ0Λn

because of the constraint : 

Instead we define : 

S. Skipetrov and Sokolov (2014), Bellando, Gero, Kaiser, E.A. , PRA, 2014
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Scaling behaviour - phase transition
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Critical point for a phase transition :  

becomes    - independent i.e. g L( ) L β g( ) = d lng
d lnL

= 0

0 0.5 1 1.5 2 2.5 3 3.5 4
10−5

10−4

10−3

10−2

10−1

100

101

102

k0l
(s)

g
 

 

L/λ = 1.97
L/λ = 2.48
L/λ = 2.84
L/λ = 3.36

−8 −6 −4 −2 0 2 4
−6

−5

−4

−3

−2

−1

0

1

ln g

β(
g)

ln gc

S. Skipetrov and Sokolov (2014), Bellando, Gero, Kaiser, E.A. , PRA, 2014



!85

Critical point for a phase transition :  

becomes    - independent i.e. g L( ) L β g( ) = d lng
d lnL

= 0

0 0.5 1 1.5 2 2.5 3 3.5 4
10−5

10−4

10−3

10−2

10−1

100

101

102

k0l
(s)

g
 

 

L/λ = 1.97
L/λ = 2.48
L/λ = 2.84
L/λ = 3.36

−8 −6 −4 −2 0 2 4
−6

−5

−4

−3

−2

−1

0

1

ln g

β(
g)

ln gc

Which phase transitio
n ? 

Universality class ? 

Anderson localisation ?



!86

Vector case - polarised waves

Scaling behaviour - phase transition 
to make things more complicated ….
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Vector case - polarised waves

Scaling behaviour - phase transition 
to make things more complicated ….
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Vector case - polarised waves

Scaling behaviour - phase transition 
to make things more complicated ….
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Vector case - polarised waves

Scaling behaviour - phase transition 
to make things more complicated ….
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Vector case - polarised waves

Scaling behaviour - phase transition 
to make things more complicated ….
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Conclusion - Summary
• Study of  the scaling properties of  the Non Hermitian 

Euclidean random Hamiltonian  

•       accounts for cooperative properties of  the atomic gas 
(Super- and Sub-radiance). It also depends on the disorder. 

• The radiation pattern is well accounted by the part       of  
the interaction. 

•  The distribution of  eigenvalues of        exhibits scaling 
properties but there is no indication of the existence of 
a phase transition driven either by disorder or 
interactions. !91
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properties but there is no indication of the existence of 
a phase transition driven either by disorder or 
interactions. !94

  

� 

He = !ω0 − i
!Γ0
2

⎛ 
⎝ 

⎞ 
⎠ ei ei
i=1

N

∑ +
!Γ0
2

VijΔ i
+Δ j

−

i≠ j
∑

� 

Vij = βij − iγ ijwith 

He

γ ij

γ ij



• The interplay between disorder and cooperative effects 
depend upon the space dimensionality.  

• For            , there is a crossover between a delocalised 
(Wigner-Weisskopf) regime and a behaviour driven by 
cooperative effects (eventually Dicke regime) 

• For            , there is no  single atom limit. 
• The eigenvalue distribution  of  the whole Hamiltonian        

exhibits also scaling properties. A critical behaviour is 
obtained for scalar waves using a conveniently defined 
Thouless conductance for that problem. 

• The critical behaviour disappears for vector waves. 
• The nature and universality of  this transition is still 

unclear. 
• Set of  new experimental efforts to probe the interplay of  

disorder and cooperative effects ( R. Kaiser, A. Browaeys, 
M. Havey,…) !95
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