Lectures on quantum gases

Lecture 5

Feshbach resonances

Jook Walraven University of Amsterdam

Feshbach resonance **Closed** channel \mathcal{E}_{qb} - $\varepsilon_v = -\kappa^2 - \kappa^2$ k^2 k^2 Open channel threshold energy Closed channel: below threshold Closed channel: above threshold ${\mathcal E}$ ε a > 0a < 0 \mathcal{E}_{qb} ()0 $\varepsilon_v = -\kappa^2$ k^2 k^2

ICTP-SAIFR Sao Paulo 2019

Feshbach resonance

With cold alkali atoms we can tune to a Fesbach resonance at arbitrary, <u>fixed</u> (low) collisional energy by varying the magnetic field: Zeeman tuning

Interactions between two alkali atoms

Hamiltonian including spin Zeeman term:

$$\mathcal{H} = \frac{1}{2\mu} \left(p_r^2 + \frac{\mathbf{L}^2}{r^2} \right) + \mathcal{V}(r) + \gamma_e B S_z - (\gamma_1 i_{z1} + \gamma_2 i_{z2}) B + \mathcal{H}_{hf}^+ + \mathcal{H}_{hf}^-$$

$$(-\gamma_n B I_z)$$

all terms conserve M_F

only term

not singlet/triplet conserving

Good basis states: $|\psi\rangle = |R_l^S\rangle |l, m_l\rangle |S, M_S\rangle |i_1, m_1\rangle |i_2, m_2\rangle$ $|\psi\rangle = |R_l^{S,I}\rangle |l, m_l\rangle |S, M_S\rangle |I, M_I\rangle$

Effective potential:

$$U_{S,l}(r) = U_S(r) + \frac{l(l+1)}{r^2} + \frac{2\mu}{\hbar^2} \left[\gamma_e B M_S - (\gamma_1 m_1 + \gamma_2 m_2) B \right]$$
(- $\gamma_n B M_I$)

Example: two ⁶Li atoms

Example: two ⁶Li atoms

Diagonalization of Hamiltonian

$$\mathcal{H} = \frac{1}{2\mu} \left(p_r^2 + \frac{\mathbf{L}^2}{r^2} \right) + \mathcal{V}(r) + \gamma_e B S_z - \gamma_n B I_z + \mathcal{H}_{hf}^+ + \mathcal{H}_{hf}^-$$
$$|\sigma\rangle$$
$$|\alpha\rangle = |R_{v,l}^S\rangle |l, m_l\rangle |S, M_S; I, M_I\rangle$$

 $\langle \beta | \mathcal{H} | \alpha \rangle = \left(\varepsilon_v^{S,l} + \gamma_e B M_S - \gamma_n B M_I \right) \delta_{\alpha\beta} + \langle \beta | \mathcal{H}_{\rm hf}^+ + \mathcal{H}_{\rm hf}^- | \alpha \rangle$ $= [\varepsilon_{v}^{S,l} + E_{\sigma}(B)]\delta_{\sigma,\sigma'} + \langle \sigma'|\mathcal{H}_{hf}^{+}|\sigma\rangle\delta_{v,v'} + \langle \sigma'|\mathcal{H}_{hf}^{-}|\sigma\rangle\langle R_{v'}^{S',l}|R_{v}^{S,l}\rangle$ = 0 = 0 $for S \neq S' \qquad \text{for } S = S'$ vFranck-Condon factor $\mathcal{H}_{\mathrm{hf}}^{-}$ (only part that depends on radial wavefunction) S = 1 $\mathcal{H}_{\rm hf}^+$ S = 0v'3 fit parameters: ε^0 , ε^1 , $\langle R_{v'}^{S',l} | R_v^{S,l} \rangle$

ICTP-SAIFR Sao Paulo 2019

Franck-Condon factor

b. Asymptotic bound states ($r_{cl} > r_x$)

can be calculated numerically starting from Van der Waals tail

singlet/triplet overlap

So we only need 2 fit parameters: $arepsilon^0,\,arepsilon^1$

So we can fit the resonances without knowing the radial wavefunctions!

ICTP-SAIFR Sao Paulo 2019

⁶Li-⁴⁰K pairs

 $\mathcal{H}_{hf+Z} = \frac{a_1}{\hbar^2} \mathbf{i}_1 \cdot \mathbf{s}_1 + \frac{a_2}{\hbar^2} \mathbf{i}_2 \cdot \mathbf{s}_2 + \gamma_s \left(\mathbf{s}_1 + \mathbf{s}_2\right) \cdot \mathbf{B} - \left(\gamma_1 \mathbf{i}_1 + \gamma_2 \mathbf{i}_2\right) \cdot \mathbf{B}$

Include l = 1 molecular levels

Conclusion: l = 0 and l = 1 levels can be related through C₆ coefficient

Review paper C. Chin et al., R.M.P., 82 1225 (2010)

strength parameter:

$$s \equiv \frac{r_0}{R^*} = \frac{a_{bg}}{r_0} \frac{\mu_{\text{eff}}}{E_0} \Delta$$

Li-6

Rb-85

S.L. Cornish et al., PRL 85 (2000) 1995

20-9-2019

Fano lineshape

width from: elastic cross section

~

width from: elastic cross section

on resonance ($a \to \infty$): unitarity limited scattering ($\sigma = \frac{4\pi}{k^2}$)

for $a_{bq} \neq 0$ asymmetric line shape: Fano profile

ICTP-SAIFR Sao Paulo 2019

Narrow versus broad resonances

Importantly:

The meaning of broad and narrow depends on the context

- Broad as measured in magnetic field
- Broad as compared to the collisional band of energies
- Broad due to strong Feshbach coupling (large R*)

experimental

adiabatic expansion of Gaussian trap induces evaporation:

characterization of a Feshbach resonance

End of ICTP-SAIFR Lectures

Thank you