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Projects in Sengstock's group

Ultrafast & Ultracold
J. Simonet / M. Drescher / K. Sengstock

e-
Rb+

215 fs

e- detectors

Ion detector

Unconventional superfluids in higher bands
J. Simonet / K. Sengstock

 Instantaneous creation of ions and photoelectrons.

 Hybrid quantum systems.

 Cold electron wave-packets.

 Ultracold plasma.

 Coherence transfer in quantum matter.

 …

 Explore new orbital states.

 Find new paths to higher bands.

 Interaction-induced topological properties.

 …



Projects in Sengstock's group

Ytterbium quantum gases
C. Becker / K. Sengstock  

Validity of bulk / edge equivalence 
in interacting quantum gases

Lithium quantum gas microscope
C. Weitenberg / K. Sengstock

Topological band structures 
C. Weitenberg / K. Sengstock

Quantum hybrid systems
C. Becker / K. Sengstock / R. Wiesendanger

BEC in an optical lattice 
coupled to a nano-mechanical oscillator 

Validity of the Chern number 
in interacting quantum gases

Towards strong correlations in small systems



6

Optical Lattices and Artificial Gauge Potentials

Some model Hamiltonians in solid state physics are still unsolved
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Numerical simulation
Scales exponentially in size with N
State of the art: 40 electrons

Cold atoms simulator

Build up the Hamiltonian

„Look“ at the ground state
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Optical Lattices and Artificial Gauge Potentials

Cold atoms simulator

Part 1: Build up the Hamiltonian
Optical Lattices
Non-interacting properties (band structure, wave functions)
Hubbard models

Part 2: Read out the quantum state
Probing quantum gases in optical lattice
Mapping phase diagrams of Hubbard models

Part 3: Beyond Hubbard models in optical lattices
Topological properties and transport
Magnetic phenomena for neutral atoms
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Optical Lattices and Artificial Gauge Potentials
Part 1: Build up the Hamiltonian

Part 1 1.1 Periodic potentials from standing light waves

1.2  Bloch theorem and Bloch functions

(single-particle properties)

1.3 Wannier functions and Hubbard models

(interacting gases)
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1.1 Periodic Potentials from Standing Light Waves
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Laser light far detuned: perturbation theory 
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∆>0 : atoms trapped at the 
intensity minima

∆<0 : atoms trapped at the 
intensity maxima

See lecture Philippe Courteille: Lecture 4, page 98

Optical Dipole Traps / Semi-classical description
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Optical Dipole Traps / Trapping Potential

• Gaussian profile of a laser beam 

• Optical dipole potential of 1 beam

» Taylor expansion around the center

» Weak confinement in z direction (                 )

• Crossed dipole trap

» Confinement in all dimensions 

» Typical values:

» Gravitational sag non negligible

Grimm et al. Adv. Atomic Mol. Opt. Phys. 42, 95 (2000).

𝑉 𝑥, 𝑦, 𝑧 ≈ −𝑉dip
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2𝑦2+𝜔𝑧

2𝑧2)
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Optical Lattices

• 1D lattice

» Each lattice site is a quasi-2D system
(pancake-shaped, many particles per disc)

• 2D lattice

» Each lattice site is a quasi-1D system
(cigar shaped, many particle per tube)

• 3D lattice

» Each lattice site is a 0D system
(one or few particles per site)

• Perfect Lattices

» No defects (starting from perfect wave fronts)

» No phonons

» Typical values: 30 sites per dimensions, 105 atoms

• Weak external confinement (Gaussian lattice beams) 
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Optical Lattices / Beyond retro-reflection

• Super-lattices

» Superposition of several lattices 

(e.g. lattices with orthogonal
polarization or different frequency)

» 1D: Lattice of tunable double wells

» 2D: Kagomé lattice (2 triangular lattices)

• Optical lattices in d dimensions

» Interference pattern of d+1 beams is independent 

of the laser phases, only global translation 

» Interferences between more than d+1 beams:

tunable lattice geometry

• Aim

» Getting closer to the complexity of solid state crystals

» New physical properties: Dirac points, flat bands,…

» New probing protocols

Windpassinger and Sengstock, Rep. Prog. Phys. 76, 086401 (2013)

Grynberg et al., PRL 70, 2249 (1993)
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1.2 Bloch Theorem and Bloch Functions
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Bloch theorem

• Non-interacting particle in an optical lattice (1D Schrödinger equation)

» Periodic lattice potential: 

» Lattice vector:

» Reciprocal lattice vector with

• Bloch theorem for periodic potentials

» with cell-periodic functions                on                   

» Quasi momentum q

» Band index n
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Figure: courtesy Dirk-Sören Lühmann
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Eigenvalues / Band structure

• Expand the periodic function              as Fourier sum in (discrete) plane wave

with dimensionless quasi momentum                   ,

reciprocal lattice vector and Bloch coefficients 𝑐𝑘
(𝑛)

• Periodic potential as Fourier sum

• Insert the Fourier sum into the Schrödinger equation

by equating coefficients to we obtain

• Eigenvalue equation for the coefficients

𝐸𝑅 =
ℏ2𝐺2

8𝑚
=

ℎ2

8𝑚𝑎2

𝜓𝑞
𝑛

𝑥 = 𝑒𝑖 ෤𝑞𝐺𝑥෍
𝑘
𝑐𝑘𝑒

𝑖𝑘𝐺𝑥

− ℏ2

2𝑚
𝜕2

𝜕𝑥2
+𝑉(𝑥) 𝜓𝑞

𝑛
(𝑥) = 𝐸𝑞

(𝑛)
𝜓𝑞

𝑛
(𝑥)
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Eigenvalues / Band structure

• Fourier coefficients for optical lattice potential
(the others vanish)

with

• Matrix equation can be calculated numerically (                          ,              )
as eigenvalue equation for each in units of     

• Block diagonal matrix

» Optical lattice couples plane waves that differ by 𝐺 =
2𝜋

𝑎
= 2𝑘𝐿

» Bragg transition from the two beams forming the standing wave yields momentum 
transfer 𝑘1 − 𝑘2 = 2𝑘𝐿

𝑘1 𝑘2
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Eigenvalues / Band structure

• Fourier coefficients for optical lattice potential
(the others vanish)

with

• Matrix equation can be calculated numerically (                          ,              )
as eigenvalue equation for each in units of     

Figure: courtesy Dirk-Sören Lühmann
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Eigenvectors / Bloch coefficients 

• Eigenvectors

• Bloch coefficients versus lattice depth

» Weak lattice: only one momentum, 
free space solution

» Deep lattice: many momenta,
more localized in real space

• Bloch wave functions at q=π/a

» Wave function localized at q=π/a

(QM expectation value)

» Tunneling (x → x + a): 

Wave function acquires a phase of π

Lattice depth 𝑉0/𝐸𝑟

2 8 20

n=0
q=0

n=0
q=π/a

n=1
q=0

n=1
q=π/a

Figures from: Dalibard, cours CdF 2013. Greiner PhD Thesis , Munich (2003)

𝜓𝑞
𝑛

𝑥 = 𝑒𝑖 ෤𝑞𝐺𝑥෍
𝑘
𝑐𝑘𝑒

𝑖𝑘𝐺𝑥
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1.3 Wannier Functions and Hubbard Model
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1.3 Wannier Functions and Hubbard Model

Build up the Hamiltonian

Let us add ultracold gases
• What about quantum statistics? 

Ground state for bosons & fermions?

• What about interactions? 
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Wannier functions / Definition

• Bloch functions 

» Orthonormal basis of eigenvalues of the single-particle Hamiltonian

» Completely delocalized over the lattice

• Ultracold quantum gases

» Local interactions between particles (on a lattice site) 

» Best described in a basis localized in space!

• Wannier functions

» New orthonormal basis, maximally localized to individual lattice sites

» Wannier function at site 𝑥𝑗: 𝜔𝑛,𝑗 𝑥 =
𝑎

2𝜋

1/2

𝜋/𝑎−׬
+𝜋/𝑎

𝜓𝑛,𝑞 𝑥 𝑒−𝑖𝑗𝑎𝑞𝑑𝑞

• Inverse transformation: 𝜓𝑛,𝑞 𝑥 =
𝑎

2𝜋

1/2
σ𝑗∈𝑍𝜔𝑛,0(𝑥 − 𝑗𝑎)𝑒𝑖𝑗𝑎𝑞
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Wannier functions / Properties

• Wannier functions for the lowest band for increasing lattice depth 

» Localization in space for large lattice depth

» Orthonormal basis lattice sites 

(dashed blue line: Wannier function 

on the neighboring site )

• Wannier functions for higher bands 

» Orthogonal to each other

» Similar to harmonic oscillator

(nodes, alternating parity)

𝑉0/𝐸𝑟 = (0, 0.5, 1, 2, 4, 8, 12, 16, 20)

Figures: Dalibard, cours CdF 2013. Fölling PhD Thesis, Mainz (2008)
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Wannier functions / Properties

• Wannier functions for the lowest band for increasing lattice depth 

» Localization in space for large lattice depth

» Orthonormal basis lattice sites 

(dashed blue line: Wannier function 

on the neighboring site )

• Wannier functions for higher bands 

» Orthogonal to each other

» Similar to harmonic oscillator

(nodes, alternating parity)

𝑉0/𝐸𝑟 = (0, 0.5, 1, 2, 4, 8, 12, 16, 20)

Figures: Dalibard, cours CdF 2013. Fölling PhD Thesis, Mainz (2008)
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Wannier functions / Tunneling

• Single-particle Hamiltonian in the Bloch basis

• Annihilation operators

» â𝑛,𝑞 : Annihilation operator for particle in Bloch wave 𝜓𝑛,𝑞

» ෠𝑏𝑛,𝑗 : Annihilation operator for particle in Wannier function 𝜔𝑛,𝑗 𝑥

• Single-particle Hamiltonian in Wannier basis

• Tunneling between lattice sites 

𝐽𝑛 𝑗 − 𝑗′ : matrix element of the Hamiltonian coupling two Wannier functions

â𝑛,𝑞 =
𝑎

2𝜋

1/2

෍

𝑗

𝑒𝑖𝑗𝑎𝑞 ෠𝑏𝑛,𝑗

෡𝐻 =෍

𝑛

෍

𝑗,𝑗′

𝐽𝑛 𝑗 − 𝑗′ ෠𝑏𝑛,𝑗
† ෠𝑏𝑛,𝑗′

𝐽𝑛 𝑗 = න𝜔𝑛,𝑗
∗ 𝑥

Ƹ𝑝2

2𝑚
+ 𝑉 𝑥 𝜔𝑛,0 𝑥 𝑑𝑥 =

𝑎

2𝜋
න
−𝜋/𝑎

+𝜋/𝑎

𝑑𝑞𝐸𝑛 𝑞 𝑒𝑖𝑗𝑎𝑞

𝐻 =෍

𝑛

න
−𝜋/𝑎

+𝜋/𝑎

𝑑𝑞𝐸𝑛 𝑞 |𝜓𝑛,𝑞⟩⟨𝜓𝑛,𝑞| = ෍

𝑛

න𝑑𝑞𝐸𝑛 𝑞 â𝑛,𝑞
† â𝑛,𝑞
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Wannier functions / Tunneling

• The hopping amplitude is given by the overlap of the Wannier functions 

• For increasing lattice depth, the Wannier functions become more localized and the 
hopping amplitude drops exponentially

• Hopping over longer distances is much weaker and can be neglected (smaller than 
1% of the next-neighbor hopping for 𝑉0 ≳ 10𝐸𝑟)

𝐽𝑛 𝑗 = න𝜔𝑛,𝑗
∗ 𝑥

Ƹ𝑝2

2𝑚
+ 𝑉 𝑥 𝜔𝑛,0 𝑥 𝑑𝑥

Figures: Dalibard, cours CdF (2013)
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Hubbard Model / Definition

• Hubbard Model (deep lattices)

» Restriction to the lowest band 

(band index dropped from now on)

» Only next neighbor hopping J

• Hubbard Hamiltonian

• Dispersion relation:

» Width: 1D lattice → 4𝐽, 2D square lattice → 8𝐽, 3D cubic lattice → 12𝐽

• Approximate analytic formula for the tunneling

» Using the dispersion relation

» Exponential decrease with 𝑉0/𝐸𝑟

෡𝐻 = −𝐽෍

𝑗

෠𝑏𝑗+1
† ෠𝑏𝑗 + ℎ. 𝑐.

𝐸 𝑞 = −2𝐽cos(𝑎𝑞)

𝐽

𝐸𝑟
≈

4

𝜋

𝑉0
𝐸𝑟

3/4

exp −2
𝑉0
𝐸𝑟

1/2

Figure: courtesy Dirk-Sören Lühmann
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Hubbard Model / Interactions

• Bosons (without dipolar interactions)

» Short-range interactions of strength g described by pseudo-potential

» Simplify to on-site interactions in the Hubbard model (lowest band only)

with number operator ො𝑛𝑗 = ෠𝑏𝑗
+ ෠𝑏𝑗

» Interaction energy of two particles on one lattice site

» Analytical expression (Wannier function approximated by a Gaussian function)

• Spin-1/2 fermions (similar description)

෡𝐻𝑖𝑛𝑡 =
𝑔

2
න ෡Ψ† 𝑥 ෡Ψ† 𝑥 ෡Ψ 𝑥 ෡Ψ 𝑥 𝑑𝑥 ෡Ψ x =෍

𝑛,𝑗

𝜔𝑛,𝑗 𝑥 ෠𝑏𝑛,𝑗

෡𝐻𝑖𝑛𝑡 ≈
𝑈

2
෍

𝑗

ො𝑛𝑗 ො𝑛𝑗 − 1

𝑈 = 𝑔න𝜔0,𝑗
4 𝑥 𝑑𝑥

෡𝐻𝑖𝑛𝑡 ≈ 𝑈෍

𝑗

ො𝑛𝑗,↑ ො𝑛𝑗,↓

𝑈3𝐷 =
𝑔3𝐷

2𝜋𝑎ℎ𝑜
3 =

8

𝜋
𝑘𝑎𝑑

𝑉0
𝐸𝑟

3/4

𝐸𝑟 𝑔3𝐷 =
4𝜋ℏ2𝑎𝑑

𝑚
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Hubbard Model / Summary

• Ultracold atoms in optical lattices are well descriped by Hubbard models

» Bosons

» Fermions

• The Hubbard parameters 𝐽 and 𝑈 can be tuned

via the lattice depth

• Phase diagram in the Hubbard model? 

Figures: Schneider, PhD Thesis, Mainz  (2010). Greiner PhD Thesis Munich (2003).

෡𝐻 = −𝐽෍

𝑗

෠𝑏𝑗+1
† ෠𝑏𝑗 + ℎ. 𝑐. +

𝑈

2
෍

𝑗

ො𝑛𝑗 ො𝑛𝑗 − 1

෡𝐻 = −𝐽෍

𝑗

෠𝑏𝑗+1
† ෠𝑏𝑗 + ℎ. 𝑐. +𝑈෍

𝑗

ො𝑛𝑗,↑ ො𝑛𝑗,↓
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• Superfluid phase

» Tunneling dominates

Minimization of the kinetic energy

» Delocalized in space, localized in momentum space

“BEC in the lattice”

» Coherent state on each lattice site (number fluctuations)

• Mott insulating phase

» Interactions dominate

Minimization of

» Localized in real space, delocalized in momentum space 

Number state on each lattice site

» Gapped excitation spectrum

» Incompressible

Bose-Hubbard Model

Figure: Lühmann, PhD thesis, Hamburg (2009)
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Bose-Hubbard Model / Non-interacting Superfluid

Figure: de.wikipedia.org

• For U=0: superfluid phase

» BEC in the lowest Bloch state q=0

» Rewriting in the Wannier basis yields

(sum over j: ‚coherence between all lattice sites‘)

• Coherent approximation

» Basis change

yields

» At each site a coherent state

with

i.e. the square of the coefficients
follows a Poisson distribution!

» Eigen state to the annihilation
operator
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Bose-Hubbard Model / Mott Insulator

Figure: Nobelprize.org

• Named after N. F. Mott, Nobel prize 1977 „for their fundamental 
theoretical investigations of the electronic structure of magnetic
and disordered systems”

• For J=0 („atomic limit“) and repulsive U

» Double and multiple occupation energetically unfavorable!

» At each lattice site exactly n particles , state

» Fluctuations

» Manybody wave function

• Quantum phase also exists for finite J

» Correlated state with finite fluctuations between next neigbours

, but            decays exponentially with the distance i ‒ j 

» Ground state has an energy gap of size U

Ground state fundamental excitation
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Bose-Hubbard Model / Phase diagram

Figure: Fischer et al. PRB (1989)


