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Optical Lattices and Artificial Gauge Potentials

Cold atoms simulator

Part 1: Build up the Hamiltonian
Optical Lattices
Non-interacting properties (band structure, wave functions)
Hubbard models

Part 2: Read out the quantum state
Probing quantum gases in optical lattice
Mapping phase diagrams of Hubbard models

Part 3: Beyond Hubbard models in optical lattices
Topological properties and transport
Magnetic phenomena for neutral atoms



3

Optical Lattices and Artificial Gauge Potentials
Part 3: Artificial Gauge Potentials

Part 3 3.1 Magnetic phenomena in presence of a lattice

3.2 Generating artificial gauge potentials on a lattice

3.3 Engineering and probing topological band structures

 Dalibard, Introduction to the physics of artificial gauge fields, Cours du Collège de France
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3.1 Magnetic phenomena in presence of a lattice
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3.1 Magnetic phenomena in presence of a lattice

• Competition between two length scales
» Lattice spacing: a
» Magnetic length:

• New phenomena when

Fractal structure for the energy spectrum 
“Hofstadter butterfly”

• Quantum Hall effect

Simulation with quantum gases in optical lattices?

𝑎𝑎2

𝑙𝑙mag2 =
𝑒𝑒 𝐵𝐵𝑎𝑎2

ℏ
= 2𝜋𝜋

Φ
Φ0

𝑙𝑙mag =
ℏ
𝑒𝑒𝐵𝐵

𝑙𝑙mag ≈ 𝑎𝑎

Φ0= h/e
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Artificial magnetic field

• Coupling between electromagnetic fields and charged particles central for many 
phenomena:
» Integer and fractional Quantum Hall effect
» Spin-orbit coupling
» Topological insulators
» ….

• Quantum simulation with quantum gases
» Well controlled systems to study solid-state models
» Neutral atoms (q = 0)

Simulating magnetic effects with quantum gases is a challenge: 
Requires the creation of “substitutes” to real electromagnetic fields: “Artificial gauge 

potentials”
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Quantum mechanics / Gauge transformation

• Classical physics
» Equation of motion

» Gauge transformation

• Quantum mechanics
» Schrödinger equation 

» Gauge transformation (imposed by the Schrödinger equation)

The wave-function is modified by a gauge transformation: it acquires a phase!

𝑚𝑚�̈�𝒓 = 𝑞𝑞�̇�𝒓 × 𝑩𝑩

𝑨𝑨 𝒓𝒓 → 𝐀𝐀′ 𝐫𝐫 = 𝐀𝐀 𝐫𝐫 + 𝛁𝛁𝜒𝜒 𝒓𝒓
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• Gedanken experiment of Aharonov and Bohm (1959)
» Two path interferometer for single electrons
» Infinite solenoid: Bin = B and Bout = 0

• Probing a magnetic field without seeing it
» Zero Lorentz force outside the solenoid
» BUT: Shift of the interference pattern

• One of the “seven wonders of the quantum world” [New Scientist magazine]
» Several experimental demonstrations
» Questions the locality of electromagnetic fields

• Local electromagnetic fields (B, E) and delocalized particle in the solenoid,
• Gauge potentials (A, V) and particle localized around the solenoid.

» Global action versus local forces: Lagrangian formalism (based on energies) is not 
just a computational aid to the Newtonian formalism (based on forces). 

Quantum mechanics / The Aharonov-Bohm effect

 Aharonov and Bohm, Phys. Rev. 115, 485 (1959)
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• Gedanken experiment of Aharonov and Bohm (1959)
» Two path interferometer for single electrons
» Infinite solenoid: Bin = B and Bout = 0

• Probing a magnetic field without seeing it
» Zero Lorentz force outside the solenoid
» BUT: Shift of the interference pattern

• Aharonov-Bohm phase
» Switching the current corresponds to a gauge change:

» The matter-wave interference at r is related to:

Quantum mechanics / The Aharonov-Bohm effect

 Aharonov and Bohm, Phys. Rev. 115, 485 (1959)
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• Gedanken experiment of Aharonov and Bohm (1959)
» Two path interferometer for single electrons
» Infinite solenoid: Bin = B and Bout = 0

• Probing a magnetic field without seeing it
» Zero Lorentz force outside the solenoid
» BUT: Shift of the interference pattern

• Aharonov-Bohm phase

Flux quantum
» Gauge invariant
» Geometric phase (no dependency on velocity)
» Even topological (constant under path deformation)

Quantum mechanics / The Aharonov-Bohm effect

 Aharonov and Bohm, Phys. Rev. 115, 485 (1959)
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Magnetic field on a lattice / Peierls phase

• Peierls substitution
» Presence of a gauge potential

↔ Complex tunneling matrix element

» Peierls phase

» Magnetic flux through a plaquette - Aharonov-Bohm phase

• Gauge potential in momentum space

𝜃𝜃𝑖𝑖,𝑗𝑗 =
𝑒𝑒
ℏ
�
𝑅𝑅𝑖𝑖

𝑅𝑅𝑗𝑗
𝑨𝑨 𝒓𝒓 ⋅ 𝑑𝑑𝒓𝒓

�𝜃𝜃𝑖𝑖𝑗𝑗 =
𝑒𝑒
ℏ
�𝑨𝑨 𝒓𝒓 ⋅ 𝑑𝑑𝒓𝒓 =

𝑒𝑒
ℏ
�𝑩𝑩 𝒓𝒓 ⋅ 𝑑𝑑𝑺𝑺 = 2𝜋𝜋

Φ
Φ0

12θiJe

23θiJe

34θiJe

41θiJe

q0

θieJ − θieJ

a a0-π/a π/a

E(
q)

q

| ⟩𝜓𝜓 𝑞𝑞0 = �
𝑗𝑗

𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗𝑞𝑞0| ⟩𝑗𝑗 ⇒ 𝑞𝑞0𝑎𝑎 = 𝜃𝜃
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Harper Hamiltonian / Hofstadter butterfly

• Particle moving on a square lattice in presence of a magnetic field
» Same flux through each plaquette
» Landau gauge
» Peierls phase

• Harper Hamiltonian

• Energy spectrum: Hofstadter butterfly
» Invariant under

→ study of the spectrum for
» Magnetic field breaks the translational invariance

along y
» Fractal structure

Φ = 𝛼𝛼Φ0

𝑨𝑨 = −𝐵𝐵𝐵𝐵 𝒆𝒆𝑥𝑥
𝜃𝜃(| ⟩𝑗𝑗, 𝑙𝑙 → ⟩𝑗𝑗, 𝑙𝑙 + 1 = 0
𝜃𝜃(| ⟩𝑗𝑗, 𝑙𝑙 → ⟩𝑗𝑗 + 1, 𝑙𝑙 = −2𝜋𝜋𝛼𝛼𝑙𝑙

𝛼𝛼 → 𝛼𝛼 + 1
0 ≤ 𝛼𝛼 < 1

J

liJe πα2−

J

)1(2 +− liJe πα

�𝐻𝐻Harper = −𝐽𝐽 �
𝑗𝑗,𝑙𝑙

𝑒𝑒−𝑖𝑖2𝑖𝑖𝑖𝑖𝑙𝑙 ⟩𝑗𝑗 + 1, 𝑙𝑙 ⟨𝑗𝑗, 𝑙𝑙 + | ⟩𝑗𝑗, 𝑙𝑙 + 1 ⟨𝑗𝑗, 𝑙𝑙| + ℎ𝑐𝑐
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Harper Hamiltonian / Hofstadter butterfly

• Rational values of the flux
» Translational symmetry restored along y 

» Increased spatial period pa: magnetic unit cell

• Case α=1/3
» Magnetic unit cell: length of a along x and 3a along y
» Each unit cell contains 3 sites 

→ Splitting of the energy spectrum in 3 sub-bands

• Origin of the fractal structure
» α=1/3 and α=10/31: very close values of α 
» But very different results as 3 or 31 sub-bands!

𝛼𝛼 = 𝑝𝑝′/𝑝𝑝

𝜃𝜃(| ⟩𝑗𝑗, 𝑙𝑙 + 𝑝𝑝 → ⟩𝑗𝑗 + 1, 𝑙𝑙 + 𝑝𝑝 = −2𝜋𝜋𝛼𝛼(𝑙𝑙 + 𝑝𝑝)
= 𝜃𝜃(| ⟩𝑗𝑗, 𝑙𝑙 → ⟩𝑗𝑗 + 1, 𝑙𝑙 modulo 2𝜋𝜋

J

liJe πα2−

J

)1(2 +− liJe πα



14

Harper Hamiltonian - Hofstadter butterfly

• Recovering the Landau levels
» For low magnetic fluxes:
» Analog to a free particle in a static magnetic field
» Landau levels?

• Measurement of the Hofstadter butterfly

» Solid state systems
» Realized using the Moiré pattern in monolayer graphene
» Quantum gases?

𝑙𝑙mag ≫ 𝑎𝑎

Φ = Φ0 ⇔ 𝐵𝐵 ≈ Φ0/𝑎𝑎2

𝑎𝑎 ≈ 1 𝐴𝐴 ⇒ 𝐵𝐵 ≈ 4 105𝑇𝑇
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3.2 Generating artificial gauge potentials on a lattice

0 ≤ 𝜃𝜃 < 2𝜋𝜋
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• Natural tunneling in an optical lattice
» Well controlled with the lattice depth
» Tunneling = hopping probability

• Getting complex tunneling
» Shift the dispersion relation

» Strong field regime reachable as one simulates directly the Peierls phase

3.2 Generating artificial gauge potentials on a lattice

𝐽𝐽 ≥ 0

q0

θieJ − θieJ

a a0-π/a π/a

E(
q)

q

| ⟩𝜓𝜓 𝑞𝑞0 = �
𝑗𝑗

𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗𝑞𝑞0| ⟩𝑗𝑗 ⇒ 𝑞𝑞0𝑎𝑎 = 𝜃𝜃

0 ≤ 𝜃𝜃 < 2𝜋𝜋
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Floquet engineering

• Band engineering via periodic driving: “Floquet engineering”
» Periodic driving of the quantum system
» Analog to the Bloch theorem in time

Eigenstate: Floquet states

» Floquet theorem

• High frequency limit
» Faster than all other timescales in the system
» Effective Hamiltonian is time independent

» New properties can emerge in the effective Hamiltonian, especially gauge fields

�𝐻𝐻eff = �𝐻𝐻 𝑡𝑡 𝑇𝑇

�𝐻𝐻 𝑡𝑡 + 𝑇𝑇 = �𝐻𝐻(𝑡𝑡)

⟩|𝜓𝜓𝑛𝑛(𝑡𝑡) = ⟩|𝑢𝑢𝑛𝑛(𝑡𝑡) 𝑒𝑒−𝑖𝑖𝜖𝜖𝑛𝑛𝑡𝑡/ℏ

⟩|𝑢𝑢𝑛𝑛(𝑡𝑡 + 𝑇𝑇) = ⟩|𝑢𝑢𝑛𝑛(𝑡𝑡)

⟩|𝑈𝑈(𝑡𝑡1, 𝑡𝑡2) = 𝑃𝑃 𝑡𝑡2 𝑒𝑒𝑖𝑖𝐻𝐻eff 𝑡𝑡1−𝑡𝑡2 𝑃𝑃+(−𝑡𝑡1)
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Band engineering via lattice shaking

• Lattice shaking
» Modification of the frequency of one lattice beam
» Acceleration of the lattice in space → inertial force

» Semi-classical equation for the quasi-momentum

» Time-periodic force with zero mean value

• Renormalization of the band structure in 1D
» Sinusoidal shaking

» Effective band-structure

𝑭𝑭(𝑡𝑡) = −𝑚𝑚�̈�𝒓(𝑡𝑡)

𝑭𝑭 𝑡𝑡 𝑇𝑇 = 0

𝐹𝐹(𝑡𝑡) = 𝐹𝐹0sin(𝜔𝜔𝑡𝑡)

⇒ 𝑞𝑞𝑘𝑘(𝑡𝑡) = 𝑘𝑘 +
𝐹𝐹0
ℏ𝜔𝜔

cos(𝜔𝜔𝑡𝑡)

Eeff(𝑘𝑘) =
1
𝑇𝑇
�
0

𝑇𝑇
𝐸𝐸 𝑞𝑞𝑘𝑘 𝜏𝜏 𝑑𝑑𝜏𝜏

ℏ�̇�𝒒𝑘𝑘(𝑡𝑡) = 𝑭𝑭(𝑡𝑡)
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Band engineering via lattice shaking

• Effective tunneling
» Band structure and tunneling

» Effective tunneling 

• Measurement with a condensate
» BEC: occupies the minimal energy 

quasi-momentum k
» Quasi-momentum

retrieved after time-of-flight expansion
for different forcing amplitude K

Eeff 𝑘𝑘 =
1
𝑇𝑇
�
0

𝑇𝑇
𝐸𝐸 𝑞𝑞𝑘𝑘 𝜏𝜏 𝑑𝑑𝜏𝜏 = −2𝐽𝐽eff cos(𝑘𝑘𝑎𝑎)

𝐸𝐸 𝑞𝑞 = −2𝐽𝐽barecos(𝑞𝑞𝑎𝑎)

𝐽𝐽eff = 𝐽𝐽bare𝐽𝐽0(𝐾𝐾)

𝐾𝐾 =
𝐹𝐹0𝑎𝑎
ℏ𝜔𝜔
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Band engineering via lattice shaking

• Realization of complex tunneling
» Inertial force asymmetric around q=0

» Shift of the effective band structure

» Realization of complex tunneling elements

 Sengstock, Simonet, Phys. Rev. Lett. 108, 225304 (2012)

θieJ − θieJ

a a
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Band engineering via lattice shaking

• Realization of artificial magnetic fluxes
» Shaking of a triangular lattice → complex tunneling

» Alternating flux pattern

» Modification of the band structure
can be retrieved after time-of-flight

 Sengstock, Simonet, Nature Physics 9, 738 (2013) kx

ky

ky

kx

ky

ky

12θiJe 23θiJe

34θiJe
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• Cyclotron motion of mass currents
» Cyclotron orbit around a square plaquette

» Finite mass current ↔ finite quasi-momentum

Band engineering via amplitude modulation

 Bloch / Ketterle, Phys. Rev. Lett. 111 (2013) kx

ky

ky

kx

ky

ky
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3.3 Engineering and probing topological band structures
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nobelprize.org

Topology and material properties
» Energy bands of a solid can be topologically non-trivial

• Berry curvature, Chern number

» Topologically non trivial bands give rise to new properties
• Anomalous velocity
• Quantized conductance 
• Topological insulators
• Edge states

3.3 Engineering and probing topological band structures
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Topological properties of Bloch bands

• Berry curvature in Bloch bands
» Eigenstates (band index n, quasi-momentum k)
» Berry connection
» Berry curvature

» Magnetic field in momentum space

• Berry phase: Geometrical phase accumulated around a closed path

• Chern number
» Integral of the Berry curvature over the Brillouin zone

» Gauge invariant 

Φ𝑛𝑛
geom =

𝑒𝑒
ℏ
�𝑨𝑨𝑛𝑛 𝒌𝒌 ⋅ 𝑑𝑑𝒌𝒌 =

𝑒𝑒
ℏ
�𝑩𝑩𝑛𝑛 𝒌𝒌 ⋅ 𝑑𝑑𝑺𝑺

𝐀𝐀𝑛𝑛(𝒌𝒌) = 𝑖𝑖ℏ �𝑢𝑢𝑛𝑛,𝒌𝒌 | �𝛁𝛁𝒌𝒌𝑢𝑢𝑛𝑛,𝒌𝒌

𝐁𝐁𝑛𝑛(𝒌𝒌) = 𝛁𝛁𝐤𝐤 × 𝑨𝑨𝑛𝑛(𝒌𝒌)
⟩|ψ → ⟩exp(𝑖𝑖Φgeom) |ψ

„The remarkable and rather 
mysterious result of this 
paper…“ Berry 1984

𝑭𝑭 ∝ −�̇�𝒌 × 𝑩𝑩𝜆𝜆(𝒌𝒌)

�|𝑢𝑢𝑛𝑛,𝒌𝒌

𝐁𝐁𝑛𝑛 𝒌𝒌 = 𝛁𝛁𝐤𝐤 × 𝑖𝑖ℏ �𝑢𝑢𝑛𝑛,𝒌𝒌 |
𝜕𝜕
𝜕𝜕𝒌𝒌

| �𝑢𝑢𝑛𝑛,𝒌𝒌

C𝑛𝑛 =
1
2𝜋𝜋

�
𝐹𝐹𝐵𝐵𝑍𝑍

𝑩𝑩𝑛𝑛 𝒌𝒌 ⋅ 𝑑𝑑𝒌𝒌
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• Topological insulator
» Electronic band structure: band insulator with Fermi level

falling between valence and conduction band
» Insulating in the bulk
» Metallic at the surface: edge/surface-states (bulk energy gap)

• Chern number and transport properties
» Influences the transport properties 

• Anomalous velocity
• Quantized conductance (Quantum Hall effect)

» Determines the number of edge states (Bulk/Edge equivalence)

• Models leading to non-trivial topological bands
» Spin-orbit coupling
» Harper model
» Haldane model

Non-trivial topological bands and material properties
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Chern number and transport measurements

• Band velocity in a 1D lattice
» Atom cloud submitted to a constant force F along y
» Average velocity of the eigenstate

» Semi-classical equations of motion for a wave-packet

• Bloch oscillations

v𝑛𝑛(𝑘𝑘) = �𝑢𝑢𝑛𝑛,𝑘𝑘 | ��𝑣𝑣|𝑢𝑢𝑛𝑛,𝑘𝑘 =
1
ℏ
𝜕𝜕𝐸𝐸𝑛𝑛 𝑘𝑘
𝜕𝜕𝑘𝑘

�|𝑢𝑢𝑛𝑛,𝒌𝒌

ℏ�̇�𝑥𝑐𝑐 = ℏv𝑛𝑛(𝑘𝑘𝑐𝑐) =
1
ℏ
𝜕𝜕𝐸𝐸𝑛𝑛 𝑘𝑘
𝜕𝜕𝑘𝑘

ℏ�̇�𝑘𝑐𝑐 = 𝐹𝐹
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Chern number and transport measurements

• Anomalous velocity in 2D lattices
» Modification of the velocity along the transverse direction x

1st term: Usual band velocity responsible for Bloch oscillations
2nd term: Anomalous velocity due to the Berry curvature

» Net drift transverse to the applied force

• Transverse velocity for uniformly populated bands
» Number of states per band
» Average particle number uniform over the Brillouin zone
» Mean transverse velocity

v𝑛𝑛𝑥𝑥(𝒌𝒌) = �𝑢𝑢𝑛𝑛,𝒌𝒌 | ��𝑣𝑣𝑥𝑥|𝑢𝑢𝑛𝑛,𝒌𝒌 =
1
ℏ
𝜕𝜕𝐸𝐸𝑛𝑛 𝑘𝑘
𝜕𝜕𝑘𝑘𝑥𝑥

−
𝐹𝐹𝑦𝑦
ℏ
𝐵𝐵𝑛𝑛(𝒌𝒌)

𝐵𝐵𝑛𝑛(𝒌𝒌) = 𝑖𝑖 �𝜕𝜕𝑘𝑘𝑥𝑥𝑢𝑢𝑛𝑛,𝒌𝒌 | �𝜕𝜕𝑘𝑘𝑦𝑦𝑢𝑢𝑛𝑛,𝒌𝒌 − �𝜕𝜕𝑘𝑘𝑦𝑦𝑢𝑢𝑛𝑛,𝒌𝒌 | �𝜕𝜕𝑘𝑘𝑥𝑥𝑢𝑢𝑛𝑛,𝒌𝒌

𝜌𝜌𝑛𝑛 𝒌𝒌 = 𝜌𝜌𝑛𝑛 = 𝑁𝑁𝑛𝑛/𝑁𝑁states

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥 = �
𝑛𝑛

𝜌𝜌𝑛𝑛�
𝒌𝒌

𝑣𝑣𝑛𝑛𝑥𝑥(𝒌𝒌) → −
𝐹𝐹𝑦𝑦𝐴𝐴cell
ℏ

�
𝑛𝑛

𝐶𝐶𝑛𝑛 (�
𝐵𝐵𝑍𝑍

𝜕𝜕𝐸𝐸𝑛𝑛 𝑘𝑘
𝜕𝜕𝑘𝑘𝑥𝑥

𝑑𝑑2𝑘𝑘 = 0)

𝑁𝑁states = 𝐴𝐴sys/𝐴𝐴cell
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• Hall effect
» 2D electrons gas in presence of a magnetic field
» Electrons are deviated by the Lorentz force
» Separation of charges induces an electric field
» Hall voltage non zero

• Quantum Hall effect – macroscopic occupation of Landau levels
» Macroscopic degeneracy of each level (sample area A)

» Filling factor –
number of Landau levels involved

» Quantum Hall effect reached for 

» Effect of the chemical potential
Insulating material when chemical potential between a filled and an empty band

Quantum Hall effect

𝑝𝑝 =
𝐴𝐴

2𝜋𝜋𝑙𝑙𝑚𝑚𝑖𝑖𝑚𝑚
2 =

𝑒𝑒𝐴𝐴𝐵𝐵
2𝜋𝜋ℏ

=
Φ
Φ0

= 𝑁𝑁𝜙𝜙

 Gross and Marx, Festkörperphysik (chapter 10)

B
𝜈𝜈 = 1

𝜈𝜈 =
𝑁𝑁𝑒𝑒
𝑁𝑁𝜙𝜙
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• Integer Quantum Hall effect
» Current along x fixed
» Gate voltage Ug varied in order to vary µ 
» Measurement of Ux and Uy

• Observations
» Ux vanishes periodically :
Insulating when µ between 2 Landau levels

» Uy has plateaus for the same values of Ug

Completely unexpected…
Von Klitzing constant:
Effect of non-trivial topological bands!

Quantum Hall effect

𝐽𝐽𝑥𝑥 = 𝑛𝑛2𝐷𝐷𝑒𝑒 𝑣𝑣𝑋𝑋

𝑈𝑈𝑥𝑥 = 𝜌𝜌𝑥𝑥𝑥𝑥𝐿𝐿𝑥𝑥 𝐽𝐽𝑥𝑥
𝑈𝑈𝑦𝑦 = 𝜌𝜌𝑥𝑥𝑦𝑦𝐿𝐿𝑦𝑦 𝐽𝐽𝑥𝑥

 Gross and Marx, Festkörperphysik (chapter 10)

𝜌𝜌𝑥𝑥𝑥𝑥 = 𝜌𝜌𝑦𝑦𝑦𝑦= 0

𝑅𝑅𝐾𝐾 =
𝑒𝑒
ℎ2
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Quantum Hall effect

• 2D polarized Fermi gas at T=0K
» Fermi energy within a spectral gap
» Perfect filling of the bands below the gap

• Quantum Hall effect
» Total transverse velocity

» Electric Hall conductivity

» Transport measurements reveal the Chern numbers

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥 = −
𝐹𝐹𝑦𝑦𝐴𝐴sys
ℏ

�
𝐸𝐸𝑛𝑛<𝐸𝐸𝐹𝐹

𝐶𝐶𝑛𝑛

𝑗𝑗𝑥𝑥 = 𝜎𝜎𝑥𝑥,𝑦𝑦𝐸𝐸𝑦𝑦
⇒ 𝜎𝜎𝑥𝑥,𝑦𝑦=

𝑒𝑒2

ℏ
�

𝐸𝐸𝑛𝑛<𝐸𝐸𝐹𝐹

𝐶𝐶𝑛𝑛
𝑗𝑗𝑥𝑥 =

𝑒𝑒𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥

𝐴𝐴sys

𝜎𝜎𝑥𝑥,𝑦𝑦

𝜌𝜌 =
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠

= 1 for 𝐸𝐸𝑛𝑛 < 𝐸𝐸𝐹𝐹

 Gross and Marx, Festkörperphysik (chapter 10)
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• Integer Quantum Hall effect
» Quantized conductivity
» Transport measurements reveal topological properties

• Fractional Quantum Hall effect
» Plateaus at fractional values of the Hall resistance
» Collective behavior: 
condensation of the electron gas
» Microscopic origin unknown 
Induced by e-e repulsion?
Quantum simulation with model systems!

Quantum Hall effect

nobelprize.org
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Engineering topologically non-trivial models - Harper Model

• Uniform magnetic field on a lattice
» Energy spectrum - Hofstadter butterfly
» For rational values of the flux

• Increased spatial periodicity       (magnetic cell)
• The energy band for              splits into p sub-bands 
• Each sub-band has a non-zero Chern number

• Consequence of the non-trivial topology
» Quantized conductance: quantum Hall effect
» Edge states: macroscopic consequence of the cyclotron orbits

induced by a magnetic field truncated at the sample’s boundary

• Realized for quantum gases
Periodic amplitude modulation in a square lattice

𝛼𝛼 = Φ/Φ0 = 𝑝𝑝′/𝑝𝑝
𝑝𝑝𝑎𝑎

Φ = 0

 Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)
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Engineering topologically non-trivial models - Haldane model

• Graphene-like honeycomb lattice
» Unit cell contains two equivalent sites A and B
» Nearest neighbor tunneling of amplitude J
» Band structure: two bands touching at the Dirac points
» Berry curvature non zero

• Berry phase around the Dirac point
•

• Breaking time-reversal symmetry
» Addition of complex next-neighbor tunneling
» Lift the degeneracy at the Dirac points
» 2 sub-bands separated by a gap with Chern numbers +1 and -1

• Realized for quantum gases
Circular acceleration of an honeycomb lattice

(𝐴𝐴 ↔ 𝐵𝐵)

(𝐴𝐴 ↔ 𝐴𝐴 or 𝐵𝐵 ↔ 𝐵𝐵)

𝐁𝐁1 𝒌𝒌 ≠ −𝐁𝐁1 −𝒌𝒌 ⇒ 𝐶𝐶1 ≠ 0

Berry curvature 
Haldane model

 Esslinger, Nature 515, 238 (2014)

𝐁𝐁1 𝒌𝒌 = −𝐁𝐁1 −𝒌𝒌 ⇒ 𝐶𝐶1 = 0

Berry curvature 
Honeycomb lattice
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• Chern number
» Transport measurements

• Anomalous velocity
• Quantized conductance

» Counting the edge states

• Measuring the Berry phase with a momentum space interferometer

• Mapping the Berry curvature

Evidencing topological properties with quantum gases
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Mapping the Berry curvature

 Sengstock, Weitenberg, Science 352, 1091 (2016)
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Measuring the Berry phase

• Honeycomb lattice
» Berry curvature non zero
» Berry phase of π accumulated around the Dirac points
» Opposite signs for the 2 Dirac points

• Measurement of the Berry phase
» Berry flux analog to a magnetic flux
» Aharonov-Bohm interferometer: observation of the phase accumulated 

proportional to the magnetic flux
» Berry flux interferometer: closed path in reciprocal space

 Bloch, Science 347, 288 (2015)

Berry curvature 
Honeycomb lattice
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Direct observation of edge states

• Edge states
» Metallic states located at the edge of the sample
» Reveal non-trivial bulk properties (topological insulators)
» For non-interacting fermionic system: 

Number of edge states = Chern number of the filled bands

• Edge states for quantum gases
» Requires a non-zero Chern number for the lowest band
» Harper model: macroscopic consequence of the cyclotron orbits induced by a 

magnetic field truncated at the physical boundary of the sample
» Direct observation challenging

• Corresponding to mass current (Time-of-Flight imaging)
• Large imbalance between population bulk and edge states
• Difficult to observe in harmonic traps (no sharp edges): box potentials required



39

Direct observation of edge states

• Synthetic magnetic fields in synthetic dimensions
» Magnetic fields are two-dimensional objects
» Synthetic magnetic field

• One dimensional lattice with tunneling J
• Extra dimension: internal degree of freedom (nuclear spin)
• Two-photon Raman transition couples the spins  and induces a complex 

tunneling amplitude along the extra dimension
» Realization of the Harper model

• Direct observation of edge states
» Two-legs ladder with fermions
» Opposite mass currents along the two legs
» Chiral dynamics revealed 

by spin resolved time-of-flight measurement
ℎ 𝑘𝑘 = 𝑛𝑛 𝑘𝑘 − 𝑛𝑛(−𝑘𝑘)

 Lewenstein, Phys. Rev. Lett. 112, 043001 (2014)
 Spielman & Inguscio, Science 349 (2015) 
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Artificial gauge fields / Summary

• Artificial gauge fields
» Electromagnetic fields in free space (Raman coupling)
» Magnetic fields on a lattice (Floquet engineering)
» Spin-orbit coupling

• Topological non-trivial bands
» Harper model
» Haldane model
» ..many more as of today

• Evidencing topological properties with quantum gases
» Measurement of the Chern number via transport properties
» Direct observation of edge states
» Measuring the Berry phase
» Mapping the Berry curvature

nobelprize.org
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Artificial Gauge Fields / Challenges and Outlook

• Static electromagnetic fields
» No feedback of the matter onto the artificial fields (neutral)

→ Maxwell equation not valid for artificial gauge fields

• Topological materials and edge states
» For non-interacting system: number of edge states = Chern number

Effect of interactions?
» Edge states observed only for small systems so far (two/three legs ladder)

Difficult to realize in a trap (no sharp edges): box potentials required

• Interactions
» So far no effect of interaction – single particle physics
» Realization of strongly correlated phases still not achieved
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