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Optical Lattices and Artificial Gauge Potentials
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Optical Lattices and Artificial Gauge Potentials

Part 3: Artificial Gauge Potentials

Part 3 3.1 Magnetic phenomena in presence of a lattice

3.2 Generating artificial gauge potentials on a lattice

3.3 Engineering and probing topological band structures

Dalibard, Introduction to the physics of artificial gauge fields, Cours du College de France



3.1 Magnetic phenomena in presence of a lattice




3.1 Magnetic phenomena in presence of a lattice

* Competition between two length scales
» Lattice spacing: a

» Magnetic length: lnag = B

* New phenomena when [ln,e = a N
2 2 e | B
a e Ba o
> = = 27T — CDO = b/e ol K
lhag h D,
Fractal structure for the energy spectrum a0
“Hofstadter butterfly” 00 05 e

e Quantum Hall effect

Simulation with quantum gases in optical lattices?



Artificial magnetic field

* Coupling between electromagnetic fields and charged particles central for many
phenomena:

» Integer and fractional Quantum Hall effect
» Spin-orbit coupling B
» Topological insulators

» ..

* Quantum simulation with quantum gases
» Well controlled systems to study solid-state models @
» Neutral atoms (g =0)
Simulating magnetic effects with quantum gases is a challenge:

Requires the creation of “substitutes” to real electromagnetic fields: “Artificial gauge
potentials”



Quantum mechanics / Gauge transformation

* Classical physics B

» Equation of motion mr =qr X B
» Gauge transformation A(r) - A'(r) = A(r) + Vy(r)

* Quantum mechanics @

» Schrodinger equation

OY(r,t) (P —qA(r))’
e T o YWY

» Gauge transformation (imposed by the Schrodinger equation)
A — A'(r)=A(r) + Vx(r)
P(r,t) = ' (r,t) = explgx(r)/h(r, 1)

The wave-function is modified by a gauge transformation: it acquires a phase!



Quantum mechanics / The Aharonov-Bohm effect

* Gedanken experiment of Aharonov and Bohm (1
» Two path interferometer for single electrons

» Infinite solenoid: B,, =B and B, =0

Emitter
* Probing a magnetic field without seeing it \

» Zero Lorentz force outside the solenoid

E

* One of the “seven wonders of the quantum world” [New Scientist magazine]

» BUT: Shift of the interference pattern

» Several experimental demonstrations

» Questions the locality of electromagnetic fields
* Local electromagnetic fields (B, E) and delocalized particle in the solenoid,
* Gauge potentials (A, V) and particle localized around the solenoid.

» Global action versus local forces: Lagrangian formalism (based on energies) is not
just a computational aid to the Newtonian formalism (based on forces).

Aharonov and Bohm, Phys. Rev. 115, 485 (1959)



Quantum mechanics / The Aharonov-Bohm effect

* Gedanken experiment of Aharonov and Bohm (1959)
» Two path interferometer for single electrons

» Infinite solenoid: B,, =B and B, =0

Emitter
* Probing a magnetic field without seeing it \

» Zero Lorentz force outside the solenoid

» BUT: Shift of the interference pattern

* Aharonov-Bohm phase

» Switching the current corresponds to a gauge change:

A(I‘) — 0 — A(I‘) — VX[’[I(I') patch |

» The matter-wave interference at r is related to:

W7 (1), (r) = expleg(xr(r) — x1(x))]e " el

r r

XI(I') — X]I(I') — A(r')dr' L / A(r’)dr' patch II
0,CI 0,CII

Aharonov and Bohm, Phys. Rev. 115, 485 (1959) 9



Quantum mechanics / The Aharonov-Bohm effect

* Gedanken experiment of Aharonov and Bohm (1959)
» Two path interferometer for single electrons
» Infinite solenoid: B,, =B and B, =0

Emitter
* Probing a magnetic field without seeing it \

» Zero Lorentz force outside the solenoid
» BUT: Shift of the interference pattern

E

* Aharonov-Bohm phase

1 P
Agpz%%qA( // xydydm—ngo

h

Flux quantum &5 = —
» Gauge invariant q
» Geometric phase (no dependency on velocity)

» Even topological (constant under path deformation)

Aharonov and Bohm, Phys. Rev. 115, 485 (1959) 10



Magnetic field on a lattice / Peierls phase

* Peierls substitution Je'%
» Presence of a gauge potential
<> Complex tunneling matrix element Je'” Je'™
R; i0
e J 41
» Peierls phase 6;; = P A(r) - dr Je
R;
» Magnetic flux through a plaquette - Aharonov-Bohm phase
>0 efA()d eﬂB()dS o
2 = — T) T = — T) - — mT—
Yooh h D,
* Gauge potential in momentum space
A
o ‘J‘e_ie ‘J e'’
€< —>
| | -0 O O
' y b >q a a
-it/a 0 ' m/a
Y%

1W(qo)) = z el®|j) = qoa = 6

j 11



Harper Hamiltonian / Hofstadter butterfly

* Particle moving on a square lattice in presence of a magnetic field Je 2
» Same flux through each plaquette & = ad,
» Landau gauge A = —Bye,

» Peierls phase 6(|j,l) = |j,l+1)) =0
6,0y~ lj +1,1)) = —2nal

Je—Ziﬂa(lH)

* Harper Hamiltonian

Rarper = =1 ) (727Uj + 1,04, 11 + 1,1+ 1), 1) + he
7l

* Energy spectrum: Hofstadter butterfly *

» Invariantunder @« > a +1
- study of the spectrumfor 0 < a <1

» Magnetic field breaks the translational invariance

E/dg | &

along y

» Fractal structure

0.0 0.5 1.0



Harper Hamiltonian / Hofstadter butterfly

« Rational values of the flux @ =p'/p Jg~2ime
» Translational symmetry restored along y

0(lj,l+p)—>j+1,1+p)) =—2ma(l + p)
=0(|j,l) - |j+1,1)) modulo 2r

Je—Ziﬂa(lH)

» Increased spatial period pa: magnetic unit cell

* Case a=1/3 SRR SUURNS SO S R VP
» Magnetic unit cell: length of a along x and 3a alongy e
» Each unit cell contains 3 sites | %! anis
— Splitting of the energy spectrum in 3 sub-bands Il | 1B

1
|
|

* Origin of the fractal structure
» o=1/3 and a=10/31: very close values of a

» But very different results as 3 or 31 sub-bands!

13



Harper Hamiltonian - Hofstadter butterfly

* Recovering the Landau levels 4]

» For low magnetic fluxes: [;;),, > a

» Analog to a free particle in a static magnetic fieldE/v |

» Landau levels? &, /
e |8 /)] /
‘f‘// | / /
343 ) /
, / ///
v 00— 0.5 1.0
o | 0.1 | 02 o

* Measurement of the Hofstadter butterfly
J— ~ 2 rapnene
CD—CD()@B'\'CDO/CI Gph .
» Solid state systems a~ 14 = B =~ 4 10°T

» Realized using the Moiré pattern in monolayer graphene

» Quantum gases?

14



3.2 Generating artificial gauge potentials on a lattice

15



3.2 Generating artificial gauge potentials on a lattice

* Natural tunneling in an optical lattice l ,.‘.:,’ :
o... ‘, .:.t '..‘; .' .. .o :

» Well controlled with the lattice depth W OL e
:0...:'.'.“... 7 '::' .

» Tunneling = hopping probability ] >0 ' ", t.-';..':?.:.:::-':{:;:..:._.- .

RO

e'.'..'.:';'.}"':'. .

* Getting complex tunneling T T

» Shift the dispersion relation .’
A
E ‘J‘e—le ‘J ei@

: : : >
-it/a 0 : nt/a a a a
Yo
(g0 = ) ei®lj) = gpa =6
)]

» Strong field regime reachable as one simulates directly the Peierls phase

0<0<2rm

16



Floquet engineering

* Band engineering via periodic driving: “Floquet engineering”
» Periodic driving of the quantum system Ht+T) = ﬁ(t)

» Analog to the Bloch theorem in time 15 : a—— — — — -

N
Eigenstate: Floquet states |1, (t)) = |u,, (t))e~t€n! N~/ i

p, OhQ2>
(4T = [un(®) | N || & e

» Floquet theorem

|U(t1,t2)) = P(tz)eiHeff(tl_tZ)P+(_tl)

£ (hQ)
1st QE BZ
T T
S .
23

vV

-0.5 I—————-
N
. .. o |d,-3h0>
* High frequency limit N~/ & |p-2h0>
: . 2 -1hQ
» Faster than all other timescales in the system s I l_s 1_ _>_
e 0 1
» Effective Hamiltonian is time independent q (n/a)

Hes = (H(1)).,

» New properties can emerge in the effective Hamiltonian, especially gauge fields

17



Band engineering via lattice shaking

 Lattice shaking v+ Sv(t)

» Modification of the frequency of one lattice beam } WWV t

» Acceleration of the lattice in space - inertial force
F(t) = —mr(t)

» Semi-classical equation for the quasi-momentum

hq(t) = F(t)
» Time-periodic force with zero mean value (F(t));r =0

E(qa,)
g

 Renormalization of the band structure in 1D
» Sinusoidal shaking F(t) = F,sin(wt)

E(qa,)

Fo
= qr(t) =k + %cos(a)t) - - - - -

» Effective band-structure

1 T
Eefr(k) = ?j E(qx(7))dr
0

Eeff (kx]
Y



Band engineering via lattice shaking

 Effective tunneling
» Band structure and tunneling

E(CI) = —2JpareCos(qa)

» Effective tunneling
T

1
Eefr(k) = Tjo E(qy(1))dt = —2]ege cos(ka)

Jett = JoareJo (K)
_ Fpa
T hw

o)

k. (2m/a,

* Measurement with a condensate

» BEC: occupies the minimal energy b
quasi-momentum k

» Quasi-momentum

retrieved after time-of-flight expansion

Contrast, Bessel Function Jg,(K)

for different forcing amplitude K

1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Forcing parameter K

19



Band engineering via lattice shaking

* Realization of complex tunneling v+ dv(t) — v
» Inertial force asymmetric around g=0 ) WWV t
—_ F(t)
F(t)
Eeg(q) = E(g+0/a) t
A —|—FO T
0 -
t t E t > :4— 27{'/9 —> =t
—nm/a 0 |7/ a q
0/a q(Q)
‘J‘e—ie ‘J ei@
€< —>
-0 O O-
a a : :

Sengstock, Simonet, Phys. Rev. Lett. 108, 225304 (2012) 20



Band engineering via lattice shaking

v +0v,(t) v +0vs(t)

* Realization of artificial magnetic fluxes

» Shaking of a triangular lattice - complex tunneling

Jemlz Jei923

Je'%

» Alternating flux pattern

» Modification of the band structure

can be retrieved after time-of-flight K

Sengstock, Simonet, Nature Physics 9, 738 (2013)



Band engineering via amplitude modulation

* Cyclotron motion of mass currents

» Cyclotron orbit around a square plaguette

02%0 —7 _
n

01 -04 02 0 02

(X0 /o o
5 Y

0
0.1 =
(1]
o c |
-0.2—0 N

XD/

) /dy

» Finite mass current <= finite quasi-momentum

Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)



3.3 Engineering and probing topological band structures

23



3.3 Engineering and probing topological band structures

Topology and material properties

» Energy bands of a solid can be topologically non-trivial

» Topologically non trivial bands give rise to new properties

* Anomalous velocity

* Topological insulators

Berry curvature, Chern number

Quantized conductance

Edge states

0 holes

24



Topological properties of Bloch bands

* Berry curvature in Bloch bands
» Eigenstates Iun,k) (band index n, quasi-momentum k)
» Berry connection A, (k) = ik

<un,k | Vicln, k)
» Berry curvature

B, (k) = Vi x A, (k)

d N 'dhgeom
. exp(idP
Bn(k) — Vk X ih <un,k |ﬁ |un,k> NJ) p( ) NJ)
o ) ) ,The remarkable and rather
» Magnetic field in momentum space  F « —k X B, (k) mysterious result of this
paper...”

* Berry phase: Geometrical phase accumulated around a closed path
e e
o5 =24 4,00 ak =2 || BoGo - as

e Chern number
» Integral of the Berry curvature over the Brillouin zone

1
— B. (k) -

» Gauge invariant

25



Non-trivial topological bands and material properties

* Topological insulator
» Electronic band structure: band insulator with Fermi level

Energy

falling between valence and conduction band
» Insulating in the bulk
» Metallic at the surface: edge/surface-states (bulk energy gap)

* Chern number and transport properties
» Influences the transport properties
* Anomalous velocity
* (Quantized conductance (Quantum Hall effect)
» Determines the number of edge states (Bulk/Edge equivalence)

* Models leading to non-trivial topological bands
» Spin-orbit coupling
» Harper model
» Haldane model

Conduction band

Fermi level s

.....................................

Valence band

*, /Surface states

Momentum

26



Chern number and transport measurements

* Band velocity in a 1D lattice External
» Atom cloud submitted to a constant force F along y force £
» Average velocity of the eigenstate |un,k) ,
Atom
R 1 aEn (k) cloud
Vn(k) — <un,k |v|un,k> — E ok
<
» Semi-classical equations of motion for a wave-packet Anomalous
1 aE (k) velocity
n

hx, = hvy (k) = —

h 0k

hk.=F

* Bloch oscillations

T, (t) Bloch oscillations

0/\/\
:L.C

27



Chern number and transport measurements

* Anomalous velocity in 2D lattices N
» Modification of the velocity along the transverse direction x force F
10E, (k) F

Vi) = {1 i) = 3= = 3 BaC) Aﬁw
cloud

B (k) = ({01 tn e | iy tin ) - (akyun,k Ot}
4—
1t term: Usual band velocity responsible for Bloch oscillations Aﬂolma}'tous
velocity

2nd term: Anomalous velocity due to the Berry curvature

» Net drift transverse to the applied force

* Transverse velocity for uniformly populated bands
» Number of states per band Ngiates = Asys/Acell
» Average particle number uniform over the Brillouin zone p™ (k) = p™ = N™/Ngtates

» Mean transverse velocity

Vi = ) P ) vR(K) > - & Cenz ([ Lt gz g
~" £ ok,

28



Quantum Hall effect

* Hall effect
» 2D electrons gas in presence of a magnetic field

» Electrons are deviated by the Lorentz force
» Separation of charges induces an electric field

» Hall voltage non zero

* Quantum Hall effect — macroscopic occupation of Landau levels

» Macroscopic degeneracy of each level (sample area A)
A eAB @

— = =N
2rtlhy,  2mh @ ¢

p:

D,,(E)
D,(E)
Dyo(E)

» Filling factor —

, N
number of Landau levels involved y = —&
¢

V>

v o J0

» Quantum Hall effect reachedforv =1 o u E 0

» Effect of the chemical potential
Insulating material when chemical potential between a filled and an empty band

Gross and Marx, Festkorperphysik (chapter 10) 29



Quantum Hall effect

* Integer Quantum Hall effect
» Current along x fixed Jx = Na2pe Vx
» Gate voltage U, varied in order to vary u

» Measurementof U and U, Uy = pyyLy Jx
Uy — pxyLy Jx

* Observations
» U, vanishes periodically :
Insulating when p between 2 Landau levels
Pxx = Pyy=0
» U, has plateaus for the same values of U,

Completely unexpected...

e

h?
Effect of non-trivial topological bands!

Von Klitzing constant: R, =

Gross and Marx, Festkorperphysik (chapter 10)

R P he
27k

Gate-Elektrode

2D-Elektronengas

115

110

105

\ 7 :;‘.%.]’f? L A ]
\ ﬁ LT
]\' U,
AT
T
% ' =2 0
20 25

solator

. 3.0
{25

120

UK (mV)

~JIpo
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Quantum Hall effect

* 2D polarized Fermi gas at T=0K
» Fermi energy within a spectral gap
» Perfect filling of the bands below the gap

Ntot

p = =1forE, < Eg

Nstates

e Quantum Hall effect

» Total transverse velocity

E,A
ysys
vt?cot - = h z C‘I’l

» Electric Hall conductivity g, ,,

Jx = Ux,yEy o2
x = Oy y=— C
. EVip¢ XY R z n
Sys

{25

120

115

U, (mV)

110

105

~JIpo

» Transport measurements reveal the Chern numbers

Gross and Marx, Festkorperphysik (chapter 10)

31



Quantum Hall effect

* Integer Quantum Hall effect Qe _ e
» Quantized conductivity e J b “‘_f:
» Transport measurements reveal topological properties 9

* Fractional Quantum Hall effect
» Plateaus at fractional values of the Hall resistance

» Collective behavior: ¥ . 130

condensation of the electron gas ® \ 28

» Microscopic origin unknown 2 \ j20

Induced by e-e repulsion? ESE 1s

. . . >

Quantum simulation with model systems! 1 1o
5 105
ok -:0.0
0

U (mv)

32



Engineering topologically non-trivial models - Harper Model

* Uniform magnetic field on a lattice
» Energy spectrum - Hofstadter butterfly

» For rational values of the flux a = ®/d, = p'/p @
* Increased spatial periodicity pa (magnetic cell)

e

* The energy band for @ = 0 splits into p sub-bands

e Each sub-band has a non-zero Chern number

* Consequence of the non-trivial topology
» Quantized conductance: quantum Hall effect
» Edge states: macroscopic consequence of the cyclotron orbits

induced by a magnetic field truncated at the sample’s boundary

* Realized for quantum gases

Periodic amplitude modulation in a square lattice

Bloch / Ketterle, Phys. Rev. Lett. 111 (2013) 33



Engineering topologically non-trivial models - Haldane model

* Graphene-like honeycomb lattice
» Unit cell contains two equivalent sites A and B
» Nearest neighbor tunneling of amplitudeJ (4 < B)
» Band structure: two bands touching at the Dirac points
» Berry curvature non zero

* Berry phase around the Dirac point
* By(k)=-B,(-k)=>C, =0 e \

* Breaking time-reversal symmetry _< !

» Addition of complex next-neighbor tunneling (4 <> Aor B & B) Bt it

» Lift the degeneracy at the Dirac points Honeycomb lattice
» 2 sub-bands separated by a gap with Chern numbers +1 and -1
B,(k) # -B{(-k) = C; # 0 o _'
: // " \-
* Realized for quantum gases . L >
Circular acceleration of an honeycomb lattice Berry curw
Haldane

Esslinger, Nature 515, 238 (2014) 34



Evidencing topological properties with quantum gases

e Chern number

External

» Transport measurements force f

* Anomalous velocity
Atom
* Quantized conductance cloud

e
» Counting the edge states Anomalous

velocity

* Measuring the Berry phase with a momentum space interferometer

A © Magnetic Flux B n Berry Flux

Real space Reciprocal space

* Mapping the Berry curvature

35



Mapping the Berry curvature

10 (1/]bp)

Sengstock, Weitenberg, Science 352, 1091 (2016)

10
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Measuring the Berry phase

o — = — — ==

* Honeycomb lattice 4 :
» Berry curvature non zero / .

» Berry phase of m accumulated around the Dirac points A o
Berry curvature

» Opposite signs for the 2 Dirac points Honeycomb lattice

* Measurement of the Berry phase
» Berry flux analog to a magnetic flux

» Aharonov-Bohm interferometer: observation of the phase accumulated
proportional to the magnetic flux

» Berry flux interferometer: closed path in reciprocal space

A n© Magnetic Flux B n Berry Flux

Real space Reciprocal space

Bloch, Science 347, 288 (2015) 37



Direct observation of edge states

* Edge states
» Metallic states located at the edge of the sample

» Reveal non-trivial bulk properties (topological insulat

» For non-interacting fermionic system: N / /

Number of edge states = Chern number of the filled bands ! msr2

* Edge states for quantum gases
» Requires a non-zero Chern number for the lowest band

» Harper model: macroscopic consequence of the cyclotron orbits induced by a
magnetic field truncated at the physical boundary of the sample

» Direct observation challenging
e Corresponding to mass current (Time-of-Flight imaging)
* Large imbalance between population bulk and edge states

 Difficult to observe in harmonic traps (no sharp edges): box potentials required

38



Direct observation of edge states

* Synthetic magnetic fields in synthetic dimensions
» Magnetic fields are two-dimensional objects
» Synthetic magnetic field

* One dimensional lattice with tunneling J

e Extra dimension: internal degree of freedom (nuclear spinrf

 Two-photon Raman transition couples the spins and induces a complex
tunneling amplitude along the extra dimension

» Realization of the Harper model m=se ©F  m=1e
* Direct observation of edge states
» Two-legs ladder with fermions RN
» Opposite mass currents along the two legs ool /\ I f,f‘\
» Chiral dynamics revealed R W.A by
by spin resolved time-of-flight measurement 0056(3}"’ - o F‘_;_O;;
h(k) = n(k) — n(=k) ';\:w, e
Lewenstein, Phys. Rev. Lett. 112, 043001 (2014) ST e

Spielman & Inguscio, Science 349 (2015) 39



Artificial gauge fields / Summary

* Artificial gauge fields _
» Electromagnetic fields in free space (Raman coupling) &, | f\
» Magnetic fields on a lattice (Floquet engineering) N N\

» Spin-orbit coupling

* Topological non-trivial bands o | 05 | 10
» Harper model
» Haldane model

» ..many more as of today

* Evidencing topological properties with quantum gases
» Measurement of the Chern number via transport properties
» Direct observation of edge states
» Measuring the Berry phase

» Mapping the Berry curvature

40



Artificial Gauge Fields / Challenges and Outlook

* Static electromagnetic fields
» No feedback of the matter onto the artificial fields (neutral)

—> Maxwell equation not valid for artificial gauge fields

* Topological materials and edge states
» For non-interacting system: number of edge states = Chern number
Effect of interactions?
» Edge states observed only for small systems so far (two/three legs ladder)

Difficult to realize in a trap (no sharp edges): box potentials required

* Interactions
» So far no effect of interaction — single particle physics

» Realization of strongly correlated phases still not achieved

41
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