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We develop an accurate finite-time scaling analysis of the angular width of the coherent backscattering
(CBS) peak for waves propagating in 3D random media. Applying this method to ultracold atoms in optical
speckle potentials, we show how to determine both the mobility edge and the critical exponent of the
Anderson transition from the temporal behavior of the CBS width. Our method could be used in
experiments to fully characterize the 3D Anderson transition.
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In disordered media, the absence of diffusion arising
from the spatial localization of single-particle states is
known as Anderson localization (AL) [1]. In three dimen-
sions, AL manifests itself as a phase transition, which
occurs at a critical energy, the mobility edge (ME),
separating a metallic phase where states are spatially
extended, from an insulating one where states are localized.
Theoretically, much effort has been devoted to the study of
the critical properties of the Anderson transition, such as
wave functions at the ME [2,3] or critical exponents [4]. In
practice, however, only a handful of experiments have
found evidence for the three-dimensional (3D) Anderson
transition [5–10]. For matter waves, its critical (universal)
features have been only investigated in the context of
quantum-chaotic dynamical localization [11], but no such
experiment in 3D disordered potentials has been reported
to date.
In addition to the intrinsic difficulty of achieving wave

localization in three dimensions, one reason for the rareness
of experimental characterizations of the Anderson transition
lies in the lack of easily measurable observables displaying
criticality. In the context of atom optics, a routinely used
approach consists in tracing the evolution in time of the
spatial width of a spreading wave packet [7–10]. While AL
implies a saturation of the width, the contrary is not true as
classical effects can as well entail a saturation or a slowing
down in time [12]. Furthermore, atomic wave packets have
rather large energy distributions even when cooled down to
very low temperatures, which forbids an accurate resolution
of the critical region around the ME. Thus, any exploration
of the Anderson transition with cold atoms should ideally be
complemented with a clear demonstration of phase coher-
ence, and should achieve a good energy resolution. For the
latter issue, a first step has been reached in recent mea-
surements of the ME based on a frequency modulation of
the disorder [9]—although the experimentally measured

ME seems significantly higher than the one predicted from
extensive numerical calculations [13,14]—and upcoming
experiments are moving toward a genuine filtering of the
energy distribution, required to access the critical properties
of the transition [15]. The coherent backscattering (CBS)
effect is a promising tool, as it exists only if the scattering
process is fully phase-coherent. CBS has already been
observed in several experiments with cold atoms [16], light
[17,18], acoustic [19] or seismic waves [20] in the (metallic)
regime of diffusive transport. Interestingly, however, CBS
shows up not only in the metallic phase, but all the way
across the Anderson transition. The question then naturally
arises whether the CBS peak itself could be used as an
observable for accessing the critical properties of this
transition, in which case one would simultaneously ensure
phase coherence.
In continuous-wave optical experiments, it is known that

the CBS line shape changes at the critical point [21].
Unfortunately, this feature is usually smoothed by absorp-
tion or finite-size effects and cannot be used in practice. In
this Letter, we explore the dynamics of the CBS effect in
momentum space—in contrast with usual setups that search
in configuration space—around the Anderson transition.
By scrutinizing the dynamics of the CBS angular width,
ΔθCBS, in combination with a numerical filter that provides
a high energy resolution, we demonstrate thatΔθCBS can be
used to characterize the critical properties of the Anderson
transition. By developing an accurate finite-time scaling
analysis of the CBS data, we verify the one-parameter
scaling theory of localization [22], locate precisely the ME,
and extract the critical exponent of the transition. We
determine these parameters for a speckle potential, and find
good agreement with the predictions of the transfer-matrix
method.
As shown in Ref. [23], CBS of cold atoms can be

observed by tracing the evolution of a quasiplane matter
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wave in momentum space, a proposal recently realized
experimentally [16]. Let us thus consider a matter wave
initially prepared in the plane-wave state jψðt¼ 0Þi¼ jk0i,
and subjected to a 3D random potential VðrÞ. Following
experiments, we choose VðrÞ to have the statistical proper-
ties of a blue-detuned speckle pattern. It is customary to
shift all energies by the average value V0 > 0 of the speckle
potential, leading to the on-site distribution PðVÞ ¼
exp½−ðV þ V0Þ=V0�ΘðV þ V0Þ=V0 (Θ is the Heaviside
function), and the two-point correlation function
VðrÞVðr0Þ ¼ V2

0½sinðjr − r0j=ζÞ=ðjr − r0j=ζÞ�2, where ζ is
the correlation length. In order to accurately pinpoint the
ME Ec, it is useful to restrict the evolution to a narrow
energy range (�σ) centered at a given value E that we wish
to tune around the Ec, by applying a Gaussian filter [24]
exp½−ðĤ − EÞ2=ð2σ2Þ� [where Ĥ ¼ p̂2=ð2mÞ þ VðrÞ] on
the initial state jk0i. This filter makes it possible to
accurately extract Ec which otherwise would be smoothed
by the natural energy distribution of the initial plane wave
in the presence of the disordered potential [9,25].
Throughout this Letter, lengths, momenta, energies, and
times are given in units of ζ, ζ−1, ℏ2=ðmζ2Þ, and mζ2=ℏ,
respectively. We discretize the Hamiltonian Ĥ on a 3D grid
of total volume ð60 × πζÞ3 with periodic boundary con-
ditions. Each cell of size πζ is divided into 2 steps in all
three directions. In the following, we use V0 ¼ 1,
σ ¼ 0.02, k0 ¼ 0.6.
The temporal evolution and the filtering are performed

using a Chebyshev scheme. The evolution operator overΔt,
e−iĤΔt=ℏ [respectively, the filtering operator] can be
expanded in a series of Chebyshev polynomials of the
first kind of aĤ þ b [respectively, aðĤ − EÞ2 þ b] with
a; b conveniently chosen parameters—see Refs. [26,27] for
details—whose coefficients are Bessel [respectively, modi-
fied Bessel] functions of the argument proportional to Δt.
The temporal evolution can be computed by iterating small
time steps, each involving a limited number of terms in the
Chebyshev expansion. The momentum wave function is
obtained by Fourier transforming the final wave function
jψðtÞi. The procedure is repeated over 6 × 103 configura-
tions of VðrÞ, yielding the averaged momentum distribution

n̄ðk; tÞ ¼ jhkjψðtÞij2. We show in Fig. 1 the numerical
distribution n̄ðk; tÞ obtained at long times for an energy
E ¼ −0.4 which lies in the metallic regime E > Ec. n̄ðk; tÞ
clearly displays a narrow interference peak of angular width
ΔθCBS and centered at k ¼ −k0 (in red in Fig. 1). This CBS
peak sits on the top of a time-independent isotropic
background (in blue in Fig. 1), which in three dimensions
has the shape of a spherical shell as a result of elastic
multiple scattering off the random potential [23].
We now study the time dependence of the CBS angular

width, ΔθCBS. Qualitatively, CBS is an interference effect
between two waves that propagate along an identical
multiple scattering sequence r1…rN but in opposite

directions [28]. The interference term between these paths
is proportional to cos½ðk0 þ kÞ · ðrN − r1Þ�. Therefore,
denoting by Δθ the angle (assumed small) between k
and −k0, we infer that an interference is visible on average

provided k0ΔθΔrðtÞ≪ 1, where ΔrðtÞ¼ ðjrNðtÞ− r1j2Þ1=2.
We thus estimate the angular width of the CBS at a given
time t to be ΔθCBS ∼ 1=½k0ΔrðtÞ�. The average distance
between the first and last points of the scattering sequence
depends on the nature of transport in the system. In the
metallic regime E > Ec, ΔrðtÞ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DðEÞtp

with DðEÞ the
diffusion coefficient at energy E, while ΔrðtÞ ∝ t1=3 at
E ¼ Ec [29] and ΔrðtÞ ∝ ξðEÞ, the localization length, in
the insulating regime E < Ec. We thus have

k0ΔθCBS ∼

8
>><
>>:

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DðEÞtp

E > Ec

1=t1=3 E ¼ Ec

1=ξðEÞ E < Ec:

ð1Þ

The time dependence of ΔθCBS is thus qualitatively differ-
ent in the three regimes of transport. In particular, a
subdiffusive behavior of the CBS width marks the position
of the ME Ec. We have performed numerical simulations of
the momentum distribution for various energies E around
Ec ≃ −0.48. We show in the left panel of Fig. 2 the CBS
width as a function of time, for three different energies
around Ec. At long times, the results follow very well the
predictions of Eq. (1). For each energy, we have obtained
ΔθCBS by first removing the isotropic background [24]
from the 3D momentum distribution, then fitting the
resulting momentum profile with α=½1þ ðkþ k0Þ2=β�γ
(where α, β, and γ are time- and energy-dependent fit

FIG. 1 (color online). Contour plot of the averaged momentum
distribution of a matter wave, obtained after propagation of a
plane wave jk0i (k0 ¼ 0.6êx) in a speckle potential of strength
V0 ¼ 1 for a duration t ¼ 800. The propagated state is here
filtered around energy E ¼ −0.4 (metallic regime). The CBS
peak, of angular width 2ΔθCBS, is visible at k ¼ −k0. Here
momenta, energies, and times are, respectively, in units of ζ−1,
ℏ2=ðmζ2Þ, and mζ2=ℏ, where ζ is the correlation length of the
potential.
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parameters), and finally taking the half width at half
maximum of the fitting function. Error bars on ΔθCBS
have been estimated from the standard deviations of β and
γ. We show examples of CBS profiles and the correspond-
ing fits in the right panel of Fig. 2.
According to Eq. (1), the CBS width is also proportional

to the square root of the diffusion coefficient DðEÞ in the
metallic regime, and to the inverse of the localization length
1=ξðEÞ in the insulating regime, which suggests an original
way of measuring these quantities experimentally. To
demonstrate the efficiency of such an approach, we have
extracted DðEÞ and 1=ξðEÞ from the numerical data for
ΔθCBS, by extrapolating the quantities 1=½ðk0ΔθCBSÞ2t� (for
E > Ec) and 1=ðk0ΔθCBSÞ (for E < Ec) to infinite times.
The results are shown as red dots in the left panel of Fig. 3,
for various energies around Ec. (No values too close to Ec
are shown due to the lack of accuracy of the extrapolation
procedure at these energies. The vicinity of Ec deserves a
special analysis that will be described below.) We have
computed these quantities using the transfer-matrix method
(blue squares) [30]. In the metallic region, we have also
computed DðEÞ by yet another method that consists in
analyzing the spatial width of a spreading, initially narrow
wave packet as a function of time (green diamonds). All the
results for DðEÞ are in very good agreement. The pre-
dictions below Ec tend to deviate far from the ME, which
we explain by the difference in the definition of ξðEÞ in the

two methods: the localization length that appears in ΔθCBS
controls the exponential decay of the average density,
whereas the localization length that appears in transfer
matrices controls the exponential decay of the average of
the logarithm of the transmission [30].
Let us now explore the behavior of ΔθCBS in the close

vicinity of Ec. In this region, DðEÞ ∝ jE − Ecjs and
ξðEÞ ∝ jE − Ecj−ν, where the two critical exponents ν
and s turn out to be equal for the Anderson transition in
dimension 3 [31]. Near Ec, the three scaling laws [Eq. (1)]
can be recast under the unified form

Λ≡ 1

Lk0ΔθCBS
¼ F½χrðEÞL1=ν�; ð2Þ

where χrðEÞ ∝ E − Ec, L ¼ ft=½2πℏρðEÞ�g1=3 with ρðEÞ
the density of states per unit volume at energy E, and F is a
function characteristic of the transition. Although the
system a priori depends on two parameters E and t,
Eq. (2) thus suggests that Λ is in fact a function of a
single parameter, and is therefore a good candidate for
developing a single-parameter scaling description of the
Anderson transition [22]. The introduction of the length
scale L [32] allows us to establish a straightforward
analogy with the usual scaling theory of Anderson locali-
zation for time-independent disordered systems [4,22]. A
direct consequence of Eq. (2) is that when lnΛ is plotted
against E, the curves at different times should cross at
E ¼ Ec. This behavior is well visible in the right panel of
Fig. 3. By pinpointing the location of the crossing, we
obtain a first estimation of the ME: Ec ≃ −0.48.
Guided by the one-parameter scaling theory of Anderson

localization [22], we now postulate that Eq. (2) holds not

FIG. 3 (color online). Left panel: Diffusion coefficient (in the
metallic regime E > Ec) and inverse of the localization length
1=ξðEÞ (in the insulating regime E < Ec) versus energy E. Red
dots are obtained from an analysis of the CBS width, blue squares
from the transfer-matrix method, and green diamonds from the
spatial spreading of a wave packet. Right panel: Scaling function
Λ versus energy around the ME, for various times ranging from
t ¼ 1280 to t ¼ 7680. The curves cross at a common point
Ec ≈ −0.48, which signals the location of the ME. Points are the
results of numerical simulations of CBS, while solid curves are
fits of these data using Eq. (3).

FIG. 2 (color online). Dynamics of the CBS peak across the
Anderson transition. Left panel: Angular width ΔθCBS versus
time, in the metallic regime E ¼ −0.4 > Ec (green points), at the
mobility edge E ¼ Ec ≃ −0.48 (red points), and in the insulating
regime E ¼ −0.56 < Ec (blue points). Right panels: Cut along kx
of the normalized CBS profile at three different energies. For each
energy, profiles at three different times, t ¼ 2000, 4000, and
8000, are displayed, shifted with respect to each other for clarity.
The CBS width rapidly saturates in the insulating regime, while it
shrinks in time in the metallic and critical regimes. We find an
excellent agreement with the temporal dependences predicted
by Eq. (1).
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only in the close vicinity of the ME [where χrðEÞ∝E−Ec]
but also away from it, and propose to verify this hypothesis
by a rigorous finite-size scaling analysis of the numerical
data for the CBS width. For this purpose, we introduce a
fitting function of the data by Taylor expanding Eq. (2) up
to a certain order nR [4],

Λ ¼
XnR

n¼0

χrðEÞnLn=νFn; ð3Þ

and further expand the variable χrðEÞ according to
χrðEÞ ¼

PmR
m¼1 bmðEc − EÞm. In this model, Fn, bm, ν,

and Ec are free parameters. We determine them using a
least-squares fit of the data for Λ with Eq. (3) retaining data
only for sufficiently long times (such that L > 20). We
show in the right panel of Fig. 3 the results of this fit for
curves lnΛ versus E (solid lines). We used nR ¼ 2,mR ¼ 3

(that is 7 fitting parameters) for 1141 data points. The χ2 per
degree of freedom is found to be 0.55. This small value
(from the statistical significance point of view) comes from
the fact that the data collected at the same energy, but
different sizes (i.e., different times), are obtained using the
same realizations of the disordered potential and thus have
residual correlations. We have also tried to include irrel-
evant scaling variables to better account for deviations to
scaling expected at short times [4,33], but we did not
observe significant improvements of the quality of the fits.
We then plot the data lnΛ as a function of ~ξðEÞ=L, where

~ξðEÞ ¼ jχrðEÞj−ν (colored points), together with the fit to
model Eq. (3) (solid curve). The results are shown in the left
panel of Fig. 4. We see that all data collapse almost
perfectly on the same master curve. This result demon-
strates that the function Λ, as computed from the width of
the CBS peak, does follow the one-parameter scaling
theory, in full agreement with Eq. (2). The quantity ~ξðEÞ
is proportional to the localization length ξðEÞ on the
insulating side of the transition, and proportional to the
inverse of the diffusion coefficient, 1=DðEÞ, on the metallic
side. In the right panel of Fig. 4 we show 1=~ξðEÞ as a
function of energy, as obtained from the fitting procedure.
As expected, 1=~ξðEÞ vanishes at E ¼ Ec, which signals the
divergence of the localization length and the vanishing of
the diffusion coefficient. The fitting analysis also allows us
to provide estimations of Ec and of the critical exponent ν.
We find Ec ¼ −0.4786� 13 × 10−4 and ν ¼ 1.61� 0.03.
Because the above-mentioned chi squares are too small,
they cannot be used to extract the uncertainty. We have thus
divided the whole configuration sample into several inde-
pendent subsets, and estimated Ec and ν for each subset.
The reported uncertainties reflect the deviations between
the different subsets. They are found to weakly depend on
σ, most probably because the finite size scaling approach
relies on data belonging to an energy interval much larger
than σ. In the right panel of Fig. 4, we also display as a

dashed curve the quantity ~ξðEÞ computed from an
independent finite-size scaling analysis based on the trans-
fer-matrix method [4,33]. The latter provides Ec ¼
−0.4771� 7 × 10−4 and ν ¼ 1.62� 0.03, in somewhat
surprisingly good agreement with the estimations extracted
from the CBS width. The slight discrepancy from the
recently reported value Ec ¼ −0.43 [13] comes from the
crude discretization we used to save computer resources.
Indeed the numerical characterization of the Anderson
transition for the CBS peak is more demanding than
transfer-matrix computations, because it requires time
propagation over a relatively long time and a narrow
energy filter. Because of this discretization the free-space
dispersion relation deviates from the massive one E ¼ k2=2
and ρðEÞ is overestimated near the ME, lowering Ec. This
shift has, however, no effect on the physics of the CBS
effect or on the Anderson transition.
In conclusion, we have shown that the dynamics of the

CBS peak can be used to characterize the Anderson
transition, enabling to (i) accurately pinpoint the location
of the ME, (ii) access the critical exponent, and (iii) test the
validity of the single-parameter scaling hypothesis. Our
method has the dual advantage of being based on a physical
observable—the CBS peak—which is usually well con-
trolled in experiments, and of demonstrating phase coher-
ence, which is a crucial requirement prior any claim for
Anderson localization. The approach has straightforward
applications to the field of atom optics in disordered
potentials, but it can also be applied to the context of
localization of classical waves [5].
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FIG. 4 (color online). Left panel: Scaling function Λ con-
structed by fitting the data for Λwith model Eq. (3). Points are the
data, and the solid black curve is the fit. All data lie on the same
master curve, in agreement with the one-parameter scaling
hypothesis, Eq. (2). Right panel: 1=~ξðEÞ ¼ jχrðEÞjν versus
energy E (solid curve), together with the confidence interval
(shadowed region, green online). 1=~ξðEÞ vanishes at the ME, and
is proportional to jE − Ecjν in its vicinity. The dashed curve is the
prediction obtained from an independent finite-size scaling
analysis based on the transfer-matrix approach.
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