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Influence of Induced Interactions on the Superfluid Transition in Dilute Fermi Gases
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We calculate the effects of induced interactions on the transition temperature to the BCS state in
dilute Fermi gases. For a pure Fermi system with two species having equal densities, the transition
temperature is suppressed by a factor �4e�1�3 � 2.2, and for n fermion species, the transition temperature
is increased by a factor �4e�n�321 � 2.2n23. For mixtures of fermions and bosons the exchange of boson
density fluctuations gives rise to an attractive interaction, and we estimate the increase of the transition
temperature due to this effect.
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The study of possible superfluidity in dilute Fermi gases
has a long history stretching back to the years immedi-
ately after the development of the BCS theory [1–3]. In
recent years the subject has received renewed attention for
a variety of reasons. The first is that superfluidity of nu-
cleons plays an important role in theories of neutron stars
and of finite nuclei. The magnitudes of superfluid gaps
are necessary input for calculations of transport properties
and neutrino emission rates, and for modeling the glitches
observed in the rotational periods of neutron stars. The
second is theoretical interest in how properties of a Fermi
system change as the strength of an attractive interaction
is varied [4–6]. If the system has a two-body bound state,
it will behave at low densities as a collection of diatomic
molecules, while for weaker attraction it will behave as a
BCS superfluid. A third reason is the possibility of ob-
serving the transition to the BCS paired state in fermion
alkali atom vapors in traps [7]. Work on this topic has
been spurred on by the recent success in cooling dilute
alkali atom vapors to temperatures below the degeneracy
temperature [8].

During the 1990’s there have been a number of papers
that calculate the transition temperature, or equivalently the
zero temperature gap, of dilute Fermi systems [6,7,9,10].
The basic physics of these papers amounts to summing
ladder diagrams with the bare fermion-fermion interaction,
and expressing the result in terms of the scattering length
for two-body scattering in vacuo. For two spin compo-
nents with equal densities, these papers predict a transition
temperature Tc given by

kTc0 �
g

p

8
e2 EFe1�N�0�U0 � 0.61EFep�2kFa, (1)

for weak coupling [N�0�jU0j ø 1]. Here EF � p2
F�2mF

is the Fermi energy, pF � h̄kF is the Fermi momentum,
and mF is the fermion mass. The quantity N�0� �
mFkF��2p2h̄2� is the density of states at the Fermi
surface and the matrix element of the effective interaction
is U0 � 4p h̄2a�mF , where a is the scattering length for
two-body scattering, which is negative for an attractive
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interaction. The number g is eC , where C � 0.577 is
Euler’s constant.

The above calculation does not take into account
the effects of the medium on the two-body interaction.
Physically these processes, which we refer to as induced
interactions, correspond to one fermion polarizing the
medium, and a second fermion is then influenced by this
polarization. This gives rise to an interaction between
fermions analogous to the phonon-induced attraction
responsible for pairing of electrons in metallic supercon-
ductors. The effects of such interactions on superfluid
transition temperatures have been studied in dense sys-
tems. In liquid 3He they are responsible for the ABM state
being energetically favored close to the superfluid transi-
tion temperature, whereas in their absence the BW state
would be the equilibrium one [11]. For neutron matter
calculations predict that they suppress the superfluid gap
significantly [12–14]. The corresponding effect in a dilute
spin-1�2 Fermi gas was considered by Gorkov and Melik-
Barkhudarov, who found that the transition temperature
was suppressed by a factor �4e�1�3 � 2.2 compared
with the result of Eq. (1) [3]. In this paper we elucidate
the physical origin of the suppression, and we derive ex-
pressions for the transition temperature for fermions with
a larger spin degeneracy, and for mixtures of fermions
and bosons.

The transition temperature is determined by there being
a solution to the linearized equation for the gap Dp ,

Dp � 2
X
p0

U�p, p0�
1 2 2f0�jp0�

2jp0

Dp0 , (2)

where jp � p2�2mF 2 m is the energy of a fermion
relative to the chemical potential m, and f0�j� �
�exp�j�kT � 1 1�21 is the Fermi distribution function.
The total interaction is given by

U�p, p0� � Ubare�p, p0� 1 Uind�p, p0� , (3)

where Ubare�p, p0� is the bare two-body interaction, and
Uind�p, p0� is the induced interaction. Solving the lin-
earized gap equation is equivalent to finding the tempera-
ture at which the T matrix obtained by summing ladder
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diagrams for the repeated interaction of two particles with
equal and opposite momenta and with total energy 2m di-
verges. It is convenient to eliminate the bare interaction
in favor of T0�p, p0; 2m�, the T matrix for scattering in
free space of two fermions, each with energy m. This is
given by

T0�p, p0; 2m� � Ubare�p, p0�

2
X
p00

Ubare�p, p00�
1

2jp00

T0�p00, p0; 2m� .

(4)

Solving Eq. (4) for Ubare and inserting the result into (2)
one finds

Dp �
X
p0

T0�p, p0; 2m�
f0�jp0�

jp0

Dp0

2
X
p0

Uind�p, p0�
1 2 2f0�jp0�

2jp0

Dp0

1
X

p0,p00

T0�p, p00; 2m�
1

2jp00

Uind�p00, p0�

3
1 2 2f0�jp0�

2jp0

Dp0 . (5)

Let us first consider the transition temperature in the ab-
sence of induced interactions. The factor f0�jp0��jp0

falls off rapidly for momenta greater than the Fermi mo-
mentum. According to the standard effective range ex-
pansion, the on-shell T matrix for small p and p0 is its
value for p � p0 � 0 and zero energy, T0�0, 0; 0� � U0,
plus terms of order p2. The latter terms produce higher-
order contributions than those from the induced interac-
tion, and will be neglected here. Thus in Eq. (5) the gap
may be put equal to a constant for momenta less than
or of order the Fermi momentum, and the temperature
at which there is a nontrivial solution to the equation is
given by

U0

Z `

0

p2dp
2p2h̄3

1
jp

1

ejp�kTc0 1 1
� 1 . (6)

On performing the integration one arrives at Eq. (1).
We now include the effect of induced interactions, which

we shall assume to be small compared with the interaction
of two fermions in vacuo. In Eq. (5) the last term rep-
resents a final-state interaction. The range of the induced
interaction is of order the spacing between fermions or, for
the phonon-induced interaction in mixtures, the coherence
length. Both these lengths are large compared with the
magnitude of the fermion-fermion scattering length, and
therefore in the region where the induced interaction is
important the wave function of two fermions in the pres-
ence of the bare interaction, which is equal to 1 2 a�r , is
essentially equal to unity, and final-state effects are neg-
ligible. One then finds that the transition temperature is
given to leading order in Uind by

kTc �
g

p

8
e2 EFe1�N�0� �U01Ūind�, (7)

where

Ūind �
Z 1

21

d cosu
2

Uind�pFn̂, pFn̂0� , (8)

is the average of the induced interaction over the Fermi
surface. The angle between the two momenta is denoted
by u, i.e., n̂ ? n̂0 � cosu. Note that the frequency depen-
dence of the induced interaction does not enter, only its
value at the Fermi surface. When the induced interaction
becomes comparable to the bare interaction, the effects of
the frequency dependence of the interaction will become
important.

We now apply this result to Fermi systems, and we be-
gin by considering a Fermi gas with two internal degrees
of freedom, denoted in Fig. 1 by up and down arrows.
We shall take the densities of the two components to be
equal, since this gives the largest gap. The leading con-
tributions to the induced interaction are represented dia-
grammatically in Fig. 1. One may ask why they should
have any effect at all in this limit, since they are formally
of higher order in the density than the leading term. To
understand this, consider the process shown in Fig. 1(a),
which is the screening of the interaction between two fer-
mions by the other fermions. This is of order the density
of states times the square of the effective two-body inter-
action, and is therefore of order kFaU0. If one alters the
effective interaction in the expression (1) by an amount of
relative order kFa, it is easy to see that the gap is mul-
tiplied by a constant factor, as the calculation of Gorkov
and Melik-Barkhudarov demonstrated explicitly [3]. For

(b)(a)

(c) (d)

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.
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a contact interaction, the contributions of the diagrams in
Fig. 1 give

Uind�pFn̂, pFn̂0� � U2
0L�q� , (9)

where

L�q� � N�0�
µ

1
2

1
�1 2 h2�

4h
ln

Ç
1 1 h

1 2 h

Ç∂
(10)

is the static Lindhard function and h � q�2kF . Here, h̄q
is equal to the magnitude of p 1 p0 which, as both par-
ticles are at the Fermi surface, is related to the scattering
angle u by q2 � 2k2

F�1 1 cosu�. Carrying out the inte-
gration over angles in Eq. (8) gives

Ūind � U2
0N�0�

1 1 2 ln2
3

, (11)

and by insertion of this expression in Eq. (7) we find

Tc �
1

�4e�1�3 Tc0 , (12)

a result implicit in Ref. [3]. We therefore arrive at the
striking conclusion that induced interactions reduce the
transition temperature by a factor �4e�1�3 � 2.2 even in
the low density limit. It is interesting that calculations
of the superfluid gap in neutron matter at densities at which
the low-density limit is inapplicable indicate that induced
interactions reduce the maximum of the gap as a function
of density by a comparable factor [12–14], but this is a
coincidence.

The physics of the suppression is best examined by ex-
pressing the result in terms of the amplitudes for exchange
of density and spin fluctuations. In terms of these one finds
for the interaction in the spin-singlet channel for the pair
of fermions

Uind�q� � �Us�q� 2 3Ut�q���2 , (13)

where Us and Ut are the amplitudes for exchange of spin-
singlet particle-hole pairs (density fluctuations) and spin-
triplet ones (spin fluctuations), respectively. The leading
contributions to the amplitudes are Us � Ut � 2U2

0L�q�,
and therefore Uind�q� � U2

0L�q�. One way of expressing
this is to note that the contributions from the diagrams in
Figs. 1(a)–1(c), which are due to exchange of spin and
density fluctuations with spin projection zero, cancel, leav-
ing the contribution from exchange of spin fluctuations
with spin projection 61, Fig. 1(d). The important process
is therefore the suppression of superfluidity by exchange
of spin fluctuations, an effect familiar in metallic super-
conductors and liquid 3He [15].

The result above may easily be generalized to n fermion
species. For simplicity we assume that the two-body inter-
action is independent of the species, and is diagonal in the
species labels. This is true if the interaction is spin inde-
pendent and depends only on the distance between the two
fermions. The contribution from the diagram in Fig. 1(a)
is proportional to n, because all species contribute to the
closed loop, while the other diagrams in Fig. 1 are in-
dependent of the number of species, since there are no
2420
fermion loops. Thus the contribution from all diagrams is
the same as for two species, except that the first term is
multiplied by n, and their sum is proportional to n 2 3.
The transition temperature is given by

Tc � �4e�n�321Tc0 , (14)

and therefore for four or more components the transition
temperature is increased, rather than decreased.

The results above are not directly applicable to dilute
nuclear matter because the nuclear force is strongly de-
pendent on isospin: the neutron-neutron scattering length
is approximately 218.8 fm, while the neutron-proton one
is 5.4 fm. As a consequence, the induced interaction
between two neutrons, say, due to excitation of neutron
particle-hole pairs is of order �18.8�5.4�2 � 12 times
stronger than that due to excitation of proton pairs, and
therefore the latter contribution may be neglected to a
first approximation. The fact that induced interactions are
important for pairing even at very low densities in bulk
systems indicates the need to investigate how significant
these effects are in the outer parts of finite nuclei.

We now consider adding bosons of mass mB to a Fermi
gas with two species. The induced interaction between
fermions then contains a contribution due to the exchange
of boson density fluctuations, analogous to the phonon-
induced interaction between electrons in metals and to the
induced interaction between 3He atoms in dilute solutions
of 3He in 4He. It is represented diagrammatically in Fig. 2
and is given by [16,17]

Uind � U2
BFx�q, v� , (15)

where UBF � 4p h̄2aBF�mBF [with mBF � 2mFmB�
�mF 1 mB�] is the effective interaction between a boson
and a fermion, and x�q, v� is the density-density response
function for the bosons as a function of the energy transfer
h̄v. For a dilute Bose gas the response function at zero
temperature is given by the result of using the Bogoliubov
approximation, and is

x�q, v� �
nBh̄2q2�mB

�h̄v�2 2 e0
q�e0

q 1 2nBUBB�
, (16)

where UBB � 4p h̄2aBB�mB is the boson-boson effective
interaction and e0

q � h̄2q2�2mB. For particles at the
Fermi surface the energy transfer is zero, and therefore the

FIG. 2. Diagram for the phonon-induced interaction between
two fermions. The dashed line is the fermion-boson interaction,
and the wavy line is a phonon in the boson gas.
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FIG. 3. Transition temperature as a function of the parame-
ter �U2

BF�UBBjUFF j�H�pF�mBs�, for kF jaj � 0.2 (lower curve)
and kF jaj � 0.5 (upper curve).

induced interaction relevant for calculating the transition
temperature is

Uind�q, 0� � 2
U2

BF

UBB

1
1 1 �h̄q�2mBs�2 , (17)

where s � �nBUBB�mB�1�2 is the sound velocity in the bo-
son gas. The average over the Fermi surface of the boson-
induced interaction between fermions that enters the
equation for the gap is

Ūind � 2
U2

BF

UBB
H�pF�mBs� , (18)

where H�x� � ln�1 1 x2��x2. Observe that this result is
independent of the density of fermions in the limit of low
fermion densities. This is in contrast to the induced inter-
action due to fermion-fermion interactions alone, which is
proportional to pF . If we again assume that Ūind is small
compared with the fermion-fermion interaction, the tran-
sition temperature is given by Eq. (7), where the induced
interaction includes terms due to fermion-fermion inter-
actions as well as fermion-boson interactions. In Fig. 3
this is plotted as a function of the dimensionless quan-
tity �U2

BF�UBBjUFF j�H�pF�mBs�. (To make the notation
uniform we here denote the fermion-fermion interaction,
which we assume to be attractive, by UFF rather than U0
as we did in the earlier part of the Letter.) The parameter
U2

BF�UBBjUFF j is a measure of the importance of the in-
duced interactions compared with the direct one. Since
the function H decreases monotonically from its maxi-
mum value of 1 for x � 0, the largest relative effects are
achieved for small fermion densities. As Fig. 3 shows, the
increase in Tc due to the presence of the bosons can be
considerable.

Let us now examine a specific example, a mixture of
the fermionic atoms 6Li with the bosonic atoms 87Rb. For
the boson-boson scattering length we use aBB � 109a0,
a0 being the Bohr radius, and for the fermion-fermion
one a � 22160a0. The boson-fermion scattering length
is not known. If we choose the order-of-magnitude es-
timate jaBF j � 100a0 [7], U2

BF�UBBjUFF j is only 0.18.
For nB � 1014 cm23 the increase in Tc then amounts to
factors of 2.7 and 1.3 for kF jaj � 0.2 and kF jaj � 0.5,
respectively. If, however, jaBF j were twice as large, these
factors would change to 17.6 and 2.2. This indicates the
importance of obtaining information about boson-fermion
scattering lengths.

Finally we remark that more detailed calculations are re-
quired to take into account induced interactions when they
become comparable in magnitude to the bare interaction.
The details of the frequency dependence of the induced
interactions will then become important. We note that cor-
rections to the effective mass of a fermion and to the renor-
malization constant give corrections to Tc of higher order
than those considered here.
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