
Fluctuating Forces Induced by Non Equilibrium and Coherent Light Flow

Ariane Soret1,2, Karyn Le Hur2, Eric Akkermans1∗
1 Department of Physics, Technion – Israel Institute of Technology, Haifa 3200003, Israel and
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We show that mesoscopic coherent fluctuations of light propagating in random media induce fluc-
tuating radiation forces. A hydrodynamic Langevin approach is used to describe the coherent light
fluctuations, whose noise term accounts for mesoscopic coherent effects. This description – gener-
alizable to other quantum or classical wave problems – allows to understand coherent fluctuations
as a non equilibrium light flow, characterized by the diffusion coefficient D and the mobility σ,
otherwise related by a Einstein relation. The strength of these fluctuating forces is determined by
a single dimensionless and tunable parameter, the conductance gL. Orders of magnitude of these
fluctuation forces are offered which show experimental feasibility.

Casimir physics covers a wealth of phenomena where
forces between macroscopic objects are induced by long
range fluctuations [1] of either classical or quantum ori-
gin. Fluctuations of the quantum electrodynamic (QED)
vacuum epitomize this type of physics [2], but such fluc-
tuation induced forces (FIF) arise in a wide range of sys-
tems [3–7].

In weakly disordered media, light intensity has long
ranged spatial fluctuations (speckle) associated to meso-
scopic coherent effects resulting from elastic multiple
scattering. Here, we show that, unexpectedly, these in-
tensity fluctuations lead to measurable FIF, f = f − 〈f〉
(see Fig.1), on top of the disorder averaged radiation
forces 〈f〉.

The amplitude of the fluctuating radiation forces is

〈f2〉 =
1

gL

P2

v2
(Q2 +Qν) . (1)

This rather simple expression constitutes a central result
of this work. It states that the fluctuating forces induced
by coherent mesoscopic effects, besides their dependence
upon the power P of the incoming light beam and the
group velocity v, are driven by the dimensionless param-
eter gL which encapsulates both the geometry and the
scattering properties of the random medium. It is the
analog of conductance in electronic systems, henceforth
called conductance. The two dimensionless numbers Q2

andQν depend on the shape of the system and on bound-
ary conditions but not on its volume nor on scattering
properties. These different quantities are detailed in the
sequel.

Quite remarkably, spatially coherent light fluctuations
can be thoroughly described using a Langevin equation,
where a properly tailored noise accounts for mesoscopic
coherent effects. This non intuitive result proves effec-
tive to establish Eq.(1). Moreover, this approach is of
particular interest since it maps the problem of coher-
ent multiple light scattering onto an effective non equi-
librium light flow characterized by two parameters only,
the diffusion coefficient D and the strength of the noise
σ, otherwise related by a Einstein relation. The scarcity

of measurable and temperature independent non equilib-
rium phenomena makes the present proposal particularly
relevant to experimental inspections. Indeed, since light
induced fluctuating forces depend on the easily tunable
parameter gL, coherent multiple light scattering offers se-
tups where FIF are significantly enhanced compared to
other known situations [8–13].

Consider a random and d-dimensional dielectric
medium of volume V = Ld, illuminated by a monochro-
matic, scalar radiation [14], of wave-number k, incident

along the direction of unit vector k̂ (see Fig.1.a). In-
side the medium, the amplitude E(r) of the radiation is
solution of the scalar Helmholtz equation,

∆E(r) + k2 (1 + µ(r))E(r) = s0(r) , (2)

where µ(r) = δε(r)/〈ε〉 denotes the fluctuation of the di-
electric constant ε(r) = 〈ε〉 + δε(r), 〈· · ·〉 is the average
over disorder realizations and s0(r) is the source of the
radiation. Disorder averaging allows to characterise the
radiation propagation in the medium by the elastic mean
free path l.
Multiple scattering solutions of the Helmholtz equation
(2) are notoriously difficult to obtain. In the weak dis-
order limit kl� 1, an equivalent description of the local
radiation at a point r and propagating along a direction ŝ
is provided by the specific intensity I(r, ŝ), and the light
current j(r) = vI(r, ŝ) ŝ averaged over all directions ŝ
[15, 16] (see SM section 1.2). In this approach, the force
exerted by light on an absorbing surface S of normal vec-
tor n̂, immersed inside the scattering medium, Fig.1.a, is

f =
n̂

v2

∫
S

dr j(r) · n̂ . (3)

A Fick’s law of diffusion coefficient D = vl/d,

jD(r) = −D∇ID(r) , (4)

relates the disorder averaged light current jD(r) to the
disorder and direction averaged intensity ID(r). The lat-
ter obeys a diffusion equation, whose solutions have the
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FIG. 1. (a) A monochromatic light beam of wave-number k
and power P experiences multiple elastic scattering in a ran-
dom dielectric medium. For weak disorder, kl � 1, the aver-
age diffusive light intensity ID(r) is represented by brownian-
like trajectories. (b) For each disorder realization, speckle
patterns of bright and dark spots evidence spatial fluctua-
tions of light intensity whose correlations are due to inter-
ference processes illustrated in (c) and (d). (c) Two phase-
independent diffusive trajectories are built out of paired mul-
tiple scattering amplitudes – solution of Eq.(2) – having op-
posite phases and pictured by two coupled (full and dotted)
wave-shaped lines. These independent diffusive paths con-
tribute to short range correlations. (d) Coherent long ranged
correlations result from quantum crossings and a new pairing
of phase-dependent amplitudes between two diffusive trajec-
tories. The occurrence of a quantum crossing is proportional
to 1/gL (see text). Coherent light fluctuations induce a fluc-
tuating force f on a (suspended) plate immersed inside the
scattering medium. When placed at equal distance L1 from
the lower and upper box edges, the average radiation force
on both sides of the plate cancels out, leaving only the finite
fluctuating part f .

generic form

ID(r) =
vP
DL

h(r) (5)

where h(r) is a dimensionless function determined by the
geometry and boundary conditions and L is a typical geo-
metric size of the medium (see SM section 1.2). Inserting
Eq.(4) into Eq.(3) allows to obtain the average radiation
force 〈f〉. Its value, for an incident light beam perpendic-
ular to a surface placed inside the medium at a distance

L from the incidence plane, is 〈f〉 = PT (L)/v, where T
is the transmission coefficient (see SM section 2).

All phase dependent effects, responsible for speckle
patterns (Fig.1.b), have been washed out in the disor-
der average diffusive limit underlying Eq.(4). A well de-
fined semi-classical description enables to include coher-
ent effects in a systematic way. It starts by noting (see
Fig.1.c) that each diffusive trajectory is built from the
pairing of two identical but time reversed multiple scat-
tering amplitudes obtained from scattering solutions of
Eq.(2). By construction, these two amplitudes have op-
posite phases so that the resulting diffusive trajectory is
phase independent. Unpairing these two sequences gives
access to the underlying phase carried by each multiple
scattering amplitude and thereby to phase coherent cor-
rections. The aforementioned description makes profit of
this remark to evaluate phase coherent corrections (see
Fig.1.d). At a local crossing, two diffusive trajectories
mutually exchange their phase so as to form two new
phase independent diffusive trajectories. This local cross-
ing – or quantum crossing – is a phase dependent correc-
tion propagated over long distances by means of diffusive
trajectories [17]. The occurrence of a quantum crossing
(Fig.1.d), in a disordered medium of volume Ld is solely
controlled by the conductance gL, a dimensionless pa-
rameter which depends on scattering properties and on
the geometry of the medium. From now on and without
loosing in generality, we consider the three dimensional
(d = 3) setup displayed in Fig.1. The conductance gL is
then of the form

gL ≡
k2l

3π
L (6)

where the length L depends on the geometry (see later
and SM section 5.2 for examples) [18]. In the weak
disorder limit kl � 1, the conductance gL � 1 and
small coherent corrections generated by quantum cross-
ings show up as powers of 1/gL. This scheme allows to
expand spatial correlations of the fluctuating light inten-
sity δI(r) ≡ I(r)− ID(r) as

〈δI(r)δI(r′)〉
ID(r)ID(r′)

= C1(r, r′) + C2(r, r′) + C3(r, r′) . (7)

The first contribution C1(r, r′) = 2πl
k2 δ(r− r′) (see

Eq.(S47)) is short ranged and independent of gL. The
two other contributions are long ranged, and respectively
proportional to 1/gL and 1/g2L. All three terms con-
tribute to specific features of interference speckle pat-
terns [19], and have been measured in weakly disordered
electronic and photonic media [15, 20–24].

This 1/gL expansion can be obtained in a different but
completely equivalent and elegant way by noting that
quantum crossings occur at lengths of order (lk−2)1/3,
smaller than the elastic mean free path l. This allows
to separate large scale (� l) incoherent diffusive physics
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from small scale, coherent and phase preserving quan-
tum crossings. This partition is described by a Langevin
equation,

j(r) = −D∇I(r) + ν(r) (8)

which extends the Fick’s law, Eq.(4), to the fluctuating,
i.e. non disorder averaged quantities I(r) ≡ ID(r) +
δI(r) and j(r) ≡ jD(r) + δj(r), by adding a zero average
noise defined by the vector ν(r). This picture, originally
presented in [25], allows to reproduce the 1/gL expansion
of Eq.(7) by systematically including quantum crossings
contributions into ν(r). To lowest order in 1/gL (SM
section 3),

〈να(r)νβ(r′)〉 = δαβ c0I
2
D(r) δ(r− r′) (9)

where c0 ≡ 2πlv2

3k2 . We can rewrite the noise term un-
der the form, ν(r) =

√
σ η(r), where 〈ηα(r)ηβ(r′)〉 =

δαβ δ(r− r′) [26], with a strength,

σ = c0 I
2
D(r) , (10)

which depends quadratically on the average diffusive ra-
diation intensity ID(r) [27].

This effective Langevin description, based on the two
parameters D and σ, provides a complete hydrodynamic
description of the coherent light flow in the random
medium. Moreover, it is appealing since its specific de-
pendence upon a constant D and a quadratic σ, imme-
diately draws a similarity with the Kipnis-Marchioro-
Presutti (KMP) process – a heat transfer model for
boundary driven one dimensional chains of mechanically
uncoupled oscillators strongly out of equilibrium [28, 29],
well described by the macroscopic fluctuation theory [30].
A correspondence with this process is obtained by for-
mally identifying the radiation intensity I to the energy
density, and j to the heat flow [31]. Despite this formal
mapping, it is essential to note that the physical source of
non equilibrium is very different in the two cases. While
in the KMP model, energy density fluctuations result
from thermal effects due to the coupling to two reser-
voirs at distinct temperatures, intensity fluctuations of
the light flow result solely from the illumination of the
random scattering medium.

A general Einstein relation exists which relates the pa-
rameters D and σ characteristic of the hydrodynamic
regime of strongly non equilibrium systems. It is given
by σ = Dχ(r), where χ(r) is the static compressibility
[29, 32]. For the coherent light flow,

χ(r) =
c0
D
I2D(r) , (11)

which from Eq.(10), satisfies the Einstein relation (SM
section 4).

We are now in a position to calculate the radiation
force f , which includes, on top of its average 〈f〉, a fluc-
tuating (FIF) part f ≡ f − 〈f〉 induced by intensity fluc-
tuations. In the geometry of Fig.1, a dielectric plate,

or membrane, of surface S = L⊥ × L‖, perpendicular
to n̂ = ẑ, is inserted in the scattering medium so as to
cancel by symmetry the average force 〈f〉. The fluctuat-
ing part is readily obtained by substituting Eq.(8) into
Eq.(3) together with Eq.(4) and it is given by

〈f2〉 =
1

v4

∫∫
S×S

drdr′[D2∂z∂z′〈δI(r)δI(r′)〉+ 〈νz(r)νz′(r
′)〉]

≡
3∑
j=1

f2
j + f2

ν , (12)

where f2
j is the counterpart of the corresponding term

in Eq.(7) and f2
ν results from the noise term. The con-

tribution f2
1 is always negligible compared to f2

ν , as can
easily be seen by considering the corresponding fluctu-
ating forces on the faces of a cubic L3 geometry with
L � l and without inner plate. The expression of

C1 together with Eqs.(5,9), implies that f2
1 ∼

(
l
L

)2
f2
ν ,

hence f2
1 is negligible. The term f2

3 induced by C3 is
of order 1/g2L and therefore also negligible. Finally, the
behaviour of f2

ν is readily obtained from Eqs.(5,9,11),

namely f2
ν = D

v4

∫∫
S×S

drdr′χ(r)δ(r− r′) = 1
gL
P2

v2 Qν , where

Qν is a dimensionless number characteristic of the system
geometry. Then, as can be anticipated from Eq.(7), f2

2

behaves like 1/gL and it is proportional to f2
ν (SM section

5.1), so that finally the fluctuating force has the general
form Eq.(1) presented in the introductory paragraph.

We now evaluate more quantitatively the amplitude of
the FIF in Eq.(1). Their dependence on the geometry
and boundary conditions allows for a wide choice of pa-
rameters for control and amplification. Indeed, boundary
conditions play an essential role in the determination of
the dimensionless Q’s, and even enable to measure in-
dependently f2 or fν in Eq.(12) (SM section 5.2). We
highlight that a measurement of the sole contribution fν
of the noise induced by coherent effects, a by-product
of our approach, cannot be achieved with other physi-
cal quantities, e.g. the transmission coefficient. Here,
considering in the geometry of Fig.1, an absorbing plate
where ID(r) = 0 (Fig.2.a), selects only f2 which con-
tributes with a maximum for an optimal value of L1. Al-
ternatively, inserting a reflective plate with ∂zID(r) = 0
selects fν and leads to FIF with a power law dependence
with L1 (see Fig.2.b and SM section 5.2).

Sizeable efforts have been devoted to the development
of high sensitivity cantilevers able to measure forces of
weak amplitude [33]. We propose to observe mesoscopic
FIF using an atomic force microscope, in a setup similar
to [10] where Casimir-Lifshitz forces of a few piconew-
tons have been measured between a gold plate and a gold
coated sphere immersed in a liquid. Replacing the liquid
by a weakly scattering medium kl ∼ 10 and using square
plates of size 40µm×40µm – the typical size of the sphere
used in [10] – and illuminating the medium with a light
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FIG. 2. Amplitude of
√
〈f2〉 on the plate in Fig.1 as a func-

tion of L1 and L⊥ with fixed L‖ = 40µm and l = 1µm.

(a) Absorbing plate with ID(r) = 0, so that 〈f2〉 = f2
2 . It

vanishes in both limits L1 → 0 and L1 → +∞, which re-
sults from the form of ID(r)ID(r′)C2(r, r′) (see SM section
5.1 and 5.2). (b) Reflecting plate where ∂zID(r) = 0, hence
f2 = 0 and 〈f2〉 = f2

ν . From Eq.(9) and Eq.(12), it appears
that f2

ν scales like 1/
√
L1 (see SM section 5.2). The red lines

correspond to L⊥ = 40µm as in Table I.

beam of intensity I ∼ 109 W· m−2, we expect light FIF
of amplitude up to a few hundreds of piconewtons, i.e.
strong enough to be detected. These results are summa-
rized in Table I.

Eq.(1), together with the hydrodynamic description of
coherent effects based on the Langevin equation (8), con-
stitute the main results of this paper. Let us now discuss
the scope of our findings in the context of ongoing re-
search in mesoscopic physics and statistical mechanics,
as well as applications. Aspects of diffusive light propa-

TABLE I. Typical strength of light FIF in the setup of
Fig.1 obtained for visible light, k ∼ 107 m−1 and an elastic
mean free path l ' 1µm i.e in a weakly disordered medium
(kl ∼ 10) and v = 2.108 m· s−1. We consider the optimal case
of reflecting cavity edges along x̂ and absorbing edges along ŷ
(see text) and compare the cases of an absorbing and reflect-

ing plate (Fig.2). We obtain gL = k2l
3π

L1L⊥L‖
max(L2

1,L
2
⊥,L

2
‖)

hence

identifying the length L (see SM section 5.2). The amplitude
of 〈f2〉 is calculated for different values of L1 ranging from
5µm to 100µm, with L⊥ = L‖ = 40µm, so that L1 > l and

gL � 1 in all cases. We choose I = 109 W· m−2, an intensity
strong enough to obtain measurable forces without altering
the medium.

L1(µm)
√
〈f2〉(pN) Q2 +Qν gL

Absorbing plate

Qν = 0

5

40

100

13

118

68

1.0 · 10−3

1.0 · 10−2

2.2 · 10−4

53

424

170

Reflecting plate

Q2 = 0

5

40

100

567

201

127

1.9

2.3 · 10−2

7.6 · 10−4

53

424

170

gation, either incoherent or coherent, have already been
thoroughly studied in the literature. For electronic quan-
tum waves, the focus is mainly on transport properties,
better accessible in mesoscopic devices and which stand
as a favorite candidate to observe the elusive Anderson
localization transition for large enough disorder. For ra-
diation and other classical waves, transmission proper-
ties and long range correlations either spatial or spectral,
have been also extensively studied. Despite these thor-
ough investigations, mechanical effects resulting from co-
herent mesoscopic effects of diffusive light as presented
here, have never been envisaged. They open a new and
alternative approach to the field. From a fundamental
viewpoint, the existence of fluctuation induced forces eas-
ily and solely monitored by the dimensionless conduc-
tance Eq.(6) has a threefold interest. First, the analogy
here unveiled, between long range induced forces in a co-
herent mesoscopic light flow and in non equilibrium sys-
tems, should arouse experimental attention to observe
such forces in the realm of radiation flow in Casimir
physics. Second, coherent mechanical forces are sensi-
tive to the disorder strength through the conductance gL.
Hence, albeit non transport quantities, these forces can
be used as a new effective probe to study the existence
and criticality of Anderson localization transition both
theoretically and experimentally. Third, potential appli-
cations of mechanical forces induced by a coherent dif-
fusive radiation flow are diverse and promising: in addi-
tion to transmission measurements extensively used, they
provide a new type of mechanical and sensitive sensors
at submicronic scale rather easy to implement and useful
in soft condensed matter, biophysics [34], nanoelectrome-
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chanical (NEMS) and quantum technologies [35, 36]. Fi-
nally, we wish to highlight that the mapping we have pre-
sented between coherent light flow and out of equilibrium
hydrodynamics is easily generalisable to other quantum
or classical mesoscopic effects, e.g in nanoelectronics and
superconductivity [37]. A clear asset of this type of ap-
proach is in its dependence upon two parameters only,
thus making it a candidate to efficient machine learning
algorithms.
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