Heavy Quark Masses from QCD Sum Rules (with calibrated uncertainty)

Pere Masjuan Autonomous University of Barcelona (masjuan@ifae.es)

Work ongoing in collaboration with Jens Erler and <u>Hubert Spiesberger</u> Eur. Phys. J. C (2017) 77:99

Workshop on determination of fundamental QCD parameters ICTP-SAIFR September 2019 UAB Universitat Autònoma de Barcelona

Outline

- Motivation and Introduction
- \bullet Using Sum Rules to extract m_Q
 - overview
 - our proposal for *charm* and *bottom*
- Conclusions and outlook

$$\begin{split} & \text{Higgs decay} \quad \sim \overline{m_b} (M_H)^2 \\ & \Gamma(B \to X_u l \nu) \sim G_F^2 m_b^5 |V_{ub}|^2 \\ & \Gamma(B \to X_c l \nu) \sim G_F^2 m_b^5 f(m_c^2/m_b^2) |V_{cb}|^2 \\ & B \to K(^*) \ell \ell \\ & B \to D(^*) \ell \nu \end{split}$$
 (pQCD contributions on FFs depend on mq)

Yukawa unification

[Baer et al '00]

 $\frac{\delta m_b}{m_b} \sim \frac{\delta m_t}{m_t}$

if
$$\delta m_t \sim 1 \text{GeV} \Rightarrow \delta m_b \sim 25 \text{MeV}$$

ICTP-SAIFR, 30th September 2019

Y-spectroscopy

$$m(\Upsilon(1S)) = 2M_b - \mathcal{C}\alpha^2 M_b + \cdots \qquad \text{[Ayala et al 'I4]}$$

lattice: HPQCD 'I4 $\overline{m_c}(3 \text{GeV}) = 986(6) \text{MeV}$ $\overline{m_b}(10 \text{GeV}) = 3617(25) \text{MeV}$

$$\int \frac{\mathrm{d}s}{s^{n+1}} R_q(s) \sim \left(\frac{1}{m_q}\right)^{2n}$$

$\overline{m_c}(\overline{m_c})$ MeV	method	reference
1223 ± 33	N ³ LO quarkonium	Peset et al, 1806.05197
1273 ± 10	lattice $(N_f = 4) + HQET$	Fermilab-MILC-TUMQCD 1802.04248
$1335 \pm 43^{+40}_{-11}$	HERA DIS	xFitter, 1605.01946
1246 ± 23^{11}	quarkonium 1S	Kiyo et al, 1510.07072
1288 ± 20	1st moment SR $J/\Psi, \Psi, R$	Dehnadi et al, 1504.07638
1271.5 ± 9.5	lattice ($N_f = 4$), PS current	HPQCD, 1408.4169
1348 ± 46	lattice $(2+1+1), M_D$	ETM, 1403.4504
1274 ± 36	lattice $(N_f = 2), f_D$	ALPHA, 1312.7693
1240 ± 50	$c\bar{c}$ X-section DIS	Alekhin et al, 1310.3059
1260 ± 65	cc X-section NLO fit	HI and ZEUS, 1211.1182
1262 ± 17	SR J/Ψ , $\Psi(2S - 6S)$	Narison, 1105.5070
1260 ± 36	lattice $(2+1), f_D$	PACS-CS, 1104.4600
1278 ± 9	SR $J/\Psi, \Psi, R$	Bodenstain et al, 1102.3835
1282 ± 24	1st moment SR $J/\Psi, \Psi, R$	Dehnadi et al, 1102.2264
1280 ± 70	lattice + pQCD in static potential	Laschka et al, 1102.0945
1279 ± 13	1st moment SR $J/\Psi, \Psi, R$	Chetyrkin et al, 1010.6157
$1.275^{0.025}_{-0.035}$ GeV	PDG average	PDG 2018

$\overline{m_b}(\overline{m_b})$	method	reference
4186 ± 37	N ³ LO quarkonium	Peset et al, 1806.05197
4195 ± 14	lattice $(N_f = 4) + HQET$	Fermilab-MILC-TUMQCD 1802.04248
4197 ± 22	N^2 LO pQCD, M_{Υ}	Kiyo et al, 1510.07072
4176 ± 23	SR $\Upsilon(1S - 4S)$, R	Dehnadi et al, 1504.07638
4183 ± 37	B decays	Alberti et al, 1411.6560
4203^{+16}_{-34}	N^3 LO pQCD, M_{Υ}	Beneke et al, 1411.3132
4174 ± 24	lattice ($N_f = 4$), PS current	HPQCD, 1408.4169
4201 ± 43	N^{3} LO pQCD, M_{Υ}	Ayala et al, 1407.2128
4070 ± 170	ZEUS Coll.	Abramowicz et al, 1405.6915
4169 ± 9	SR $\Upsilon(1S - 6S)$	Penin, Zerf, 1401.7035
4247 ± 34	SR, f_B	Lucha et al, 1305.7099
4166 ± 43	lattice + pQCD, M_{Υ} , M_{B_s}	HPQCD, 1302.3739
4235 ± 55	SR $\Upsilon(1S - 6S)$, R	Hoang et al, 1209.0450
4171 ± 9	SR $\Upsilon(1S - 6S)$, R	Bodenstain et al, 1111.5742
4177 ± 11	SR $\Upsilon(1S - 6S)$	Narison, 1105.5070
4180 ± 50	lattice + pQCD in static potentia	al Laschka et al, 1102.0945
4163 ± 16	2nd moment SR $\Upsilon(1S - 6S)$, R	Chetyrkin et al, 1010.6157
$4.18^{+0.04}_{-0.03}$	PDG average	PDG 2018

Using the optical theorem:

$$R(s) = 12\pi \text{Im}[\Pi(s+i\epsilon)]$$

 $\Pi_q(s)$ is the correlator of two heavy-quark vector currents which can be calculated in pQCD order by order and satisfies a Dispersion Relation:

For $t \rightarrow 0$

$$\mathcal{M}_{n} := \left. \frac{12\pi^{2}}{n!} \frac{d^{n}}{dt^{n}} \hat{\Pi}_{q}(t) \right|_{t=0} = \int_{4m_{q}^{2}}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_{q}(s)$$

[SVZ,'79]

$$\hat{\Pi}_q(s)$$
 can be Taylor expanded:

$$\Pi_q(t) = Q_q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n \left(\frac{t}{4\hat{m}_q^2}\right)^n$$

[Maier et al, '08] [Chetyrkin, Steinhauser'06] [Melnikov, Ritberger'03]

[Kiyo et al '09] [Hoang et al '09] [Greynat et al '09]

Pere Masjuan

ICTP-SAIFR, 30th September 2019

Sum Rules:

$$\mathcal{M}_n = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$
$$\mathcal{M}_n^{\mathrm{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n$$

L.h.s. from theory

$$\mathcal{M}_n^{\mathrm{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \mathbf{0}$$

R.h.s. from experiment

$$R_{q}(s) = R_{q}^{\text{Res}}(s) + R_{q}^{\text{th}}(s) + R_{q}^{\text{cont}}(s)$$

Pere Masjuan

$$\begin{split} R_{q}(s) &= R_{q}^{\mathrm{Res}}(s) + R_{q}^{\mathrm{th}}(s) + R_{q}^{\mathrm{cont}}(s) & & & \\ R_{q}^{\mathrm{Res}}(s) &= \frac{9\pi M_{R}\Gamma_{R}^{e}}{\alpha_{\mathrm{em}}^{2}(M_{R})}\delta(s - M_{R}^{2}) & & & \\ R_{q}^{\mathrm{th}}(s) &= R_{q}(s) - R_{\mathrm{background}} & (2M_{D} \leq \sqrt{s} \leq 4.8 \mathrm{GeV}) \\ R_{q}^{\mathrm{cont}}(s) & & \\ (\sqrt{s} \geq 4.8 \mathrm{GeV}) & & \\ \end{split}$$

Pere Masjuan

ICTP-SAIFR, 30th September 2019

1

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Using pQCD below threshold, calculate R, and extrapolate

ICTP-SAIFR, 30th September 2019

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Light flavor contribution in charm region + secondary production + singlet contribution + 2loop QED

Non-perturbative effects

Non-perturbative effects due to gluon condensates to the moments are:

[Chetyrkin et al '12]

$$\mathcal{M}_{n}^{\text{nonp}}(\mu^{2}) = \frac{12\pi^{2}Q_{q}^{2}}{(4\hat{m}_{q}^{2})^{n+2}} \text{Cond}\,a_{n}\left(1 + \frac{\alpha_{s}(\hat{m}_{q}^{2})}{\pi}b_{n}\right)$$

 a_n , b_n are numbers, and Cond = $\langle \frac{\alpha_s}{\pi} G^2 \rangle = (5 \pm 5) \cdot 10^{-3} \text{GeV}^4$ [Dominguez et al 'I4] from fits to tau data

$$\frac{\mathcal{M}_n^{\text{nonp}}(\hat{m}_c)}{\mathcal{M}_n^{\text{th}}} \sim 0.5\% - 2\% \longrightarrow \Delta \hat{m}_c(\hat{m}_c) \sim 2\text{MeV} - 8\text{MeV}$$

Our approach is different

- We try to avoid *local* duality: consider *global* duality
- Then, we do *not use experimental data* on threshold region, only resonances below threshold
 - Exp data in threshold only for error estimation
- How you do it then? Use two different moment equations to

determine the continuum requiring self-consistency:

• extract the quark mass

Charm

Our approach

For a global duality:

 $\hat{\Pi}_q(s)$ in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t \to \infty$ define the \mathcal{M}_0

[Erler, Luo '03]

Our approach

For a global duality:

 $\hat{\Pi}_q(s)$ in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t \to \infty$ define the \mathcal{M}_0 (but has a divergent part)

[Erler, Luo '03]

$$\lim_{t \to \infty} \hat{\Pi}_q(-t) \sim \log(t) \quad \longleftrightarrow \quad \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} R_q(s) \sim \log(\infty)$$

Fortunately, divergence given by the zero-mass limit of R(s), can be easily subtracted [Chetyrkin, Harlander, Kühn, '00]

Pere Masjuan

ICTP-SAIFR, 30th September 2019

Our approach

Zeroth Sum Rule:

Our approach

Zeroth Sum Rule:

Our approach

Zeroth Sum Rule:

 $\Delta \hat{\alpha}_{em} \to \Delta m_c \sim 12 \text{MeV}$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

Two parameters to determine: $m_q\,,\lambda_3^q$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

 $s' = s + 4(\hat{m}_{q}^{2}(2M) - M^{2})$

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

Two parameters to determine: $m_q\,,\lambda_3^q$

We need two equations: zeroth moment + nth moment

$$\frac{9}{4}Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n = \sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{M_R^{2n+1}\hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}}R_q(s)$$
$$n \ge 1$$

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

[Erler, Luo '03]

 $s' = s + 4(\hat{m}_a^2(2M) - M^2)$

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

Two parameters to determine: $m_q\,,\lambda_3^q$

We use Zeroth + 2nd moments (no experimental data on R(s) so far)

we require selfconsistency among the 2 moments

п	Resonances	Continuum	Total	Theory
0	1.231 (24)	-3.229(+28)(43)(1)	-1.999(56)	Input (11)
1	1.184 (24)	0.966(+11)(17)(4)	2.150(33)	2.169(16)
2	1.161 (25)	0.336(+5)(8)(9)	1.497(28)	Input (25)
3	1.157 (26)	0.165(+3)(4)(16)	1.322(31)	1.301(39)
4	1.167 (27)	0.103(+2)(2)(26)	1.270(38)	1.220(60)
5	1.188 (28)	0.080(+1)(1)(38)	1.268(47)	1.175(95)

Pere Masjuan

Our approach

Our approach: error budget

Resonances:

Pere Masjuan

Our approach: error budget

Truncation Error (theory error):

$\mathcal{M}_n^{\mathrm{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n$
$\bar{C}_n = \bar{C}_n^{(0)} + \left(\frac{\hat{\alpha}}{\pi}\right)\bar{C}_n^{(1)} + \left(\frac{\hat{\alpha}}{\pi}\right)^2\bar{C}_n^{(2)} + \left(\frac{\hat{\alpha}}{\pi}\right)^3\bar{C}_n^{(3)} + \mathcal{O}\left(\frac{\hat{\alpha}}{\pi}\right)^4$
use the largest group th. factor in the next uncalculated pert. order) [Erler, Luo '03]
$\Delta \mathcal{M}_n^{(4)} = \pm N_C C_F C_A^3 Q_q^2 \left[\frac{\hat{\alpha}_s(\hat{m}_q)}{\pi} \right]^4 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)} \right)^{2n}$

Example known orders

n	$\frac{\Delta \mathcal{M}_n^{(2)}}{\left \mathcal{M}_n^{(2)}\right }$	$\frac{\Delta \mathcal{M}_n^{(3)}}{\left \mathcal{M}_n^{(3)}\right }$
0	1.88	3.03
1	2.14	2.84
2	1.92	4.58
3	3.25	5.63
4	6.70	4.30
5	19.18	3.62

from 5 MeV to 10 MeV (0th+1st) (0th+5th)

More conservative than varying the renorm. scale within a factor of 4

Pere Masjuan

Our approach: error budget

ICTP-SAIFR, 30th September 2019

Our approach: error budget

Comparison with R^{Exp} threshold data:

Collab.	п	$[2M_{D^0}, 3.872]$	[3.872, 3.97]	[3.97, 4.26]	[4.26, 4.496]	[4.496, 4.8]
CB86	0	_	0.0339(22)(24)	0.2456(25)(172)	0.1543(27)(108)	_
	1	_	0.0220(14)(15)	0.1459(16)(102)	0.0801(14)(56)	_
	2	_	0.0143(9)(10)	0.0868 (9)(61)	0.0416(7)(29)	_
BES02	0	0.0334(24)(17)	0.0362(29)(18)	0.2362(41)(118)	0.1399(38)(70)	0.1705(63)(85)
	1	0.0232(17)(12)	0.0235(19)(12)	0.1401(24)(70)	0.0726(20)(36)	0.0788(30)(39)
	2	0.0161(12)(8)	0.0152(13)(8)	0.0832(15)(42)	0.0378(10)(19)	0.0365(14)(18)
BES06	0	0.0311(16)(15)	_	-	-	_
	1	0.0217(11)(11)	_	-	-	_
	2	0.0151(8)(7)	_	-	-	_
CLEO09	0	_	_	0.2591(22)(52)	-	_
	1	_	_	0.1539(13)(31)	-	_
	2	_	_	0.0915(8)(18)	_	_
Total	0	0.0319(14)(11)	0.0350(18)(15)	0.2545(18)(46)	0.1448(27)(59)	0.1705(63)(85)
	1	0.0222(9)(8)	0.0227(12)(10)	0.1511(11)(27)	0.0752(14)(31)	0.0788(30)(39)
	2	0.0155(6)(6)	0.0147(8)(6)	0.0899(6)(16)	0.0391(7)(16)	0.0365(14)(18)

Our approach: error budget

Comparison with R^{Exp} threshold data:

$$\int_{(2M_{D^0})^2}^{(4.8\,\text{GeV})^2} \frac{\mathrm{d}s}{s} R_c^{\text{cont}}(s) \Big|_{\hat{m}_c = 1.272\,\text{GeV}} = \mathcal{M}_0^{\text{Data}} = 0.6367(195) \longrightarrow \lambda_3^{\text{c,exp}} = 1.34(17)$$

$$(2M_D \le \sqrt{s} \le 4.8 \text{GeV})$$

Error induced to Quark mass:

I)
$$\lambda_3^c = 1.23 \rightarrow \lambda_3^{c,exp} = 1.34$$

from +6.4 MeV to +0.2 MeV

II) $\Delta \lambda_3^{\mathrm{c,exp}} = 0.17$

from 4.7 MeV to 0.1 MeV

n	Data	$\lambda_3^c = 1.34(17)$	$\lambda_{3}^{c} = 1.23$
0	0.6367(195)	0.6367(195)	0.6239
1	0.3500(102)	0.3509(111)	0.3436
2	0.1957(54)	0.1970(65)	0.1928
3	0.1111(29)	0.1127(38)	0.1102
4	0.0641(16)	0.0657(23)	0.0642
5	0.0375(9)	0.0389(14)	0.0380

Our approach: error budget

Comparison with R^{Exp} threshold data:

Pere Masjuan

ICTP-SAIFR, 30th September 2019

Our approach: error budget

Condensates:

Non-perturbative effects due to gluon condensates to the moments are: [Chetyrkin et al '12]

$$\mathcal{M}_{n}^{\text{nonp}}(\mu^{2}) = \frac{12\pi^{2}Q_{q}^{2}}{(4\hat{m}_{q}^{2})^{n+2}} \text{Cond} a_{n} \left(1 + \frac{\alpha_{s}(\hat{m}_{q}^{2})}{\pi}b_{n}\right)$$

 a_n, b_n are numbers, and Cond = $\langle \frac{\alpha_s}{\pi} G^2 \rangle = (5 \pm 5) \cdot 10^{-3} \text{GeV}^4$ [Dominguez et al '14]

$$\Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle = 5 \cdot 10^{-3} \text{GeV}^4 \quad \longrightarrow \quad$$

from 1 MeV to 4 MeV (0th+1st) (0th+5th)

Parametric error:

$$\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = -0.5 \cdot 10^3 \frac{\text{MeV}}{\text{GeV}^4} \Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle$$

(but this is only the first condensate)

Pere Masjuan

ICTP-SAIFR, 30th September 2019

Our approach: error budget

$$\Delta lpha_s(M_z) \qquad \qquad lpha_s(M_z) = 0.1182(16) \qquad \qquad {
m from PDG16}$$

$\Delta \alpha_s(M_z) = 0.0016 \quad \longrightarrow \quad \text{from 6 MeV to 1 MeV}$

Parametric error:

(0th+1st)
$$\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = 3.6 \cdot 10^3 \Delta \alpha_s(M_z)$$

(0th+5th) $\Delta \overline{m_c}(\overline{m_c})[\text{MeV}] = -0.4 \cdot 10^3 \Delta \alpha_s(M_z)$

Our approach: final result

Our approach

Our approach

Pere Masjuan

ICTP-SAIFR, 30th September 2019

Our approach: more than two moments?

Define a χ^2 function:

$$\chi^{2} = \frac{1}{2} \sum_{n,m} \left(\mathcal{M}_{n} - \mathcal{M}_{n}^{pQCD} \right) \left(\mathcal{C}^{-1} \right)^{nm} \left(\mathcal{M}_{m} - \mathcal{M}_{m}^{pQCD} \right) + \chi_{c}^{2}$$
$$\mathcal{C} = \frac{1}{2} \sum_{n,m} \rho^{\operatorname{Abs}(n-m)} \Delta \mathcal{M}_{n}^{(4)} \Delta \mathcal{M}_{m}^{(4)} \qquad \rho \text{ a correlation parameter}$$

$$\chi_c^2 = \left(\frac{\Gamma_{J/\Psi(1S)}^e - \Gamma_{J/\Psi(1S)}^{e,\exp}}{\Delta\Gamma_{J/\Psi(1S)}^e}\right)^2 + \left(\frac{\Gamma_{\Psi(2S)}^e - \Gamma_{\Psi(2S)}^{e,\exp}}{\Delta\Gamma_{\Psi(2S)}^e}\right)^2 + \left(\frac{\hat{\alpha}_s(M_z) - \hat{\alpha}_s(M_z)^{\exp}}{\Delta\hat{\alpha}_s(M_z)}\right)^2 + \left(\frac{\langle \frac{\alpha_s}{\pi}G^2 \rangle - \langle \frac{\alpha_s}{\pi}G^2 \rangle^{\exp}}{\Delta\langle \frac{\alpha_s}{\pi}G^2 \rangle}\right)^2$$

Our approach: more than two moments?

Define a χ^2 function:

ρ	Constraints	$(\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2)_{\rho}$ -0.06	$\mathcal{M}_0, \ (\mathcal{M}_1, \mathcal{M}_2)_{ ho} -0.05$	$\mathcal{M}_0, \ (\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)_{\rho} \\ 0.32$
$\hat{m}_c(\hat{m}_c)$ [GeV]		1.275(8)	1.275(8)	1.271(7)
λ_3^c		1.19(8)	1.19(8)	1.19(7)
$\Gamma^{e}_{J/\Psi}$ [keV]	5.55(14)	5.57(14)	5.57(14)	5.59(14)
$\Gamma^{e}_{\Psi(2S)}$ [keV]	2.36(4)	2.36(4)	2.36(4)	2.36(4)
C_G [GeV ⁴]	0.005(5)	0.005(5)	0.005(5)	0.004(5)
$\hat{\alpha}_s(M_z)$	0.1182(16)	0.1178(15)	0.1178(15)	0.1173(15)

Our approach: more than two moments?

Preferred scenario:

	$0\mathrm{th} + ig(1\mathrm{st}+2\mathrm{nd}ig)_ ho \ \Delta \hat{m}_c(\hat{m}_c) \ [\mathrm{MeV}]$	(0th + 2nd) $\Delta \hat{m}_c(\hat{m}_c) \text{ [MeV]}$
Central value	1274.5	1272.4
$\Delta\Gamma^{e}_{J/\Psi}$	5.9	4.5
$\Delta\Gamma^{e}_{\Psi(2S)}$	1.4	0.4
Truncation		5.9
$\Delta\lambda_3^c$	3.0	2.3
Condensates	1.1	1.9
$\Delta \hat{\alpha}_s(M_Z)$	5.4	4.2
Total	8.7	9.0
Condensates $\Delta \hat{\alpha}_s(M_Z)$ Total	1.1 5.4 8.7	1.9 4.2 9.0

results for the charm quark mass

ICTP-SAIFR, 30th September 2019

Bottom

zero-mass limit of R(s)

(preliminary)

$$\lambda_1^q(s) = 1 + \frac{\alpha_s(s)}{\pi} + \left[\frac{\alpha_s(s)}{\pi}\right]^2 (\dots) + \left[\frac{\alpha_s(s)}{\pi}\right]^3 (\dots) + \dots$$
$$+ \frac{m_q^2}{s} \left(12 \left[\frac{\alpha_s(s)}{\pi}\right] + \left[\frac{\alpha_s(s)}{\pi}\right]^2 (\dots) + \left[\frac{\alpha_s(s)}{\pi}\right]^3 (\dots)\right)$$
$$+ \frac{m_q^4}{s^2} \left(-6 + \left[\frac{\alpha_s(s)}{\pi}\right] (\dots) + \left[\frac{\alpha_s(s)}{\pi}\right]^2 (\dots)\right) + \frac{m_q^6}{s^3} \left(-8 + \left[\frac{\alpha_s(s)}{\pi}\right] (\dots)\right)$$

zero-mass limit of R(s)

(preliminary)

$$\lambda_1^q(s) = 1 + \frac{\alpha_s(s)}{\pi} + \left[\frac{\alpha_s(s)}{\pi}\right]^2 (\dots) + \left[\frac{\alpha_s(s)}{\pi}\right]^3 (\dots) + \dots$$
$$+ \frac{m_q^2}{s} \left(12 \left[\frac{\alpha_s(s)}{\pi}\right] + \left[\frac{\alpha_s(s)}{\pi}\right]^2 (\dots) + \left[\frac{\alpha_s(s)}{\pi}\right]^3 (\dots)\right)$$
$$+ \frac{m_q^4}{s^2} \left(-6 + \left[\frac{\alpha_s(s)}{\pi}\right] (\dots) + \left[\frac{\alpha_s(s)}{\pi}\right]^2 (\dots)\right) + \frac{m_q^6}{s^3} \left(-8 + \left[\frac{\alpha_s(s)}{\pi}\right] (\dots)\right)$$

For charm:

For bottom:

$$12\frac{m_c^2}{s}\left(\frac{\alpha_s(s)}{\pi}\right) - 6\left(\frac{m_c^2}{s}\right)^2 \sim 0$$

$$12\frac{m_b^2}{s}\left(\frac{\alpha_s(s)}{\pi}\right) < 6\left(\frac{m_b^2}{s}\right)^2$$

Pere Masjuan

ICTP-SAIFR, 30th September 2019

(preliminary)

(preliminary)

(preliminary)

Comparison with R^{Exp} threshold data: s y m m e t r i s e d asymmetric error

(preliminary)

(preliminary)

n	Hoang et al	This work
0	-	0.321(2)(11)(5)
1	0.270(2)(9)	0.269(2)(9)(4)
2	0.226(1)(8)	0.226(1)(8)(3)
3	0.190(1)(7)	0.189(1)(7)(3)
4	0.159(1)(6)	0.159(1)(6)(3)

Errors:

- Stat. error
- Sys. error
- BW inputs

(preliminary)

Conclusions and Outlook

• Using SR technique + zeroth moment (very sensitive to the continuum) + data on charm resonances below threshold + continuum exploiting self-consistency among different moments:

$$\hat{m}_c(\hat{m}_c) = 1.272(9) \text{GeV}$$

$$\hat{m}_b(\hat{m}_b) = 4.188(8) \text{GeV}$$

- We confirm the result using SR + global fit using different moments (χ^2) Good agreement with other determinations based on SRs and lattice!
- Error sources are understood: seems a clear roadmap for improvements
- Next step: improve the bottom case (more subtle than expected)

Thanks!

Consistency among moments

Validity of pQCD around threshold

Role of Belle data

ICTP-SAIFR, 30th September 2019