i Qjﬁ R FAPESP PALE®

Paleoclimatic Aspects of the South American Monsoon
System

Pedro L. Silva Dias(*
University of SGo Paulo, Institute of Astronomy, Geophysics and Atmospheric
Sciences,

Sdo Paulo — BRAZIL

gust 19-23, 2019
ICTP-SAIFR, Sao Paulo, Brazil
Auditorium of IFT-UNESP

A FapEsp ) unesp WCRP.# %LW\R GEHEN (g IUGG



Amazon

Indications of evolved
agricultural practices In
the Amazon — pre- 11k BP

NE
Brasil

Indicadores de alteracdes na paisagem
decorrentes de variagdes climaticas durante o
Pleistoceno-Holoceno no Sudeste do Piaui,
Brasil:

Métodos para investigacio de mobilidade e uso de
recursos no terntorio

Luana Campos

Docente recém-doutora do Mestrado Profissional em Preservagio do Patdmonio
Cultural do Instituto do Patcmonio Histérico e Astistico Nacional —- IPHAN

ENSAIOS DA PAISAGEM I

METODOS E ANALISES DA PRE-HISTORIA

Evidences of ruptures in the civilization in the Serra do
Capivara (Piaui) between 9 ka and 6 ka BP (the driest
period) — indication of migrations to Minas Gerais.

a) Porcao leste do sitio Toca da Ema
do Sitio do Bras I.

b) Porcio ceste do sitio Toca da Ema
do Sitio do Bras L.
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Basic Principles
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Basic Principles

1. Energy Conservation:

Earth receives energy from the
Sun in short wave radiation and
looses energy to space in long
waves.

Radiative energy balance at the
surface is positive: solar energy
received > long wave loss =»
energy surplus at the surface is
transferred to the atmosphere
by conduction and evaporative
cooling.

Radiative energy balance in the
atmosphere is negative =
receives excess energy from the
surface through conduction,
turbulent transfer (dry processes
and clouds);
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Radiative fluxes are cailculated similarly as in MOTRAN
Corwvection cccurs if the stratification becomes unstabile. In this case lapse rate is setl 1o the moist adiabatic (6.5 K/kmj).

=mR*(1—a)Sy—4nR*coT*,

Primarily due to the
Effect of CO2, H20

R =6371 km

h = 8.3 km
p=12kgm™
c=1000J kg~! K!
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See figure of “Humidity Profiles -- Annual”

In book:

Global Physical Climatology
ISBN: 0123285305

Author: Dennis L. Hartmann
Publisher: Academic Press
Number of pages: 411
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Manabe and Strickler 1964 calculation:
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See figure of seasonal variation of solar radiation

In book:

Global Physical Climatology

ISBN: 0123285305

Author: Dennis L. Hartmann

Publisher: Academic Press
Number of pages: 411

Note that Southern Hemisphere
receives a little more solar radiation
than the Northern Hemisphere —
consequence of the fact that the Sun
is not at the center of the eliptic orbit
of the Earth.

This is important for understanding
paleoclimate variability as well as changes
in SW planetary albedo/absorptivity (e.g.
volcanism) — changes in O3 (solar
influence) — changes in LW emissivity
(CO2, H20...)
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See figure Temperature vs Latitude

In book:

Global Physical Climatology
ISBN: 0123285305

Author: Dennis L. Hartmann
Publisher: Academic Press
Number of pages: 411
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Earth’s energy balance
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Atmospheric meridional energy flux and energy flux equator
...www.nature.com946 x 494

Atmospheric meridional energy flux and energy flux equator.


http://www.nature.com/nature/journal/v513/n7516/fig_tab/nature13636_F5.html
https://www.google.com.br/search?tbs=simg:m00&tbnid=5g9Fm1dFUgGn0M:&docid=X45qiIBo8TtFVM&client=firefox-b&bih=794&biw=1440&tbm=isch
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Monthly Mean GPCP Rain Rate, Jan 1979 - Dec 2006
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Fig. 5.29. (a, upper) GPCP monthly mean precipitation rate (mm day'l) for
1979-2006 and (b, lower) the latitudinally-averaged mean for 1979-2005.




Monthly Mean GPCP Precipitation Rate, 1979 - 2006
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Oceanic Conveyor Belt
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WHAT IS THERMOHALINE CIRCULATION (THC)?

It is that part of the ocean circulation which is driven by density
differences (as opposed to wind and tides).

Because the ocean density is a function of temperature (thermo)
and salinity (haline), this circulation is referred to as the
themohaline circulation and indicates a driving mechanism.

These density differences are primarily caused by surface fluxes of
heat and freshwater and subsequent interior mixing.

The oceanic density distribution is itself affected by the currents
and associated mixing. Thermohaline and wind driven currents
interact with each other, and therefore cannot be truly separated.

THC IS NOT AN OBSERVATIONALLY MEASURABLE QUANTITY!



OCEANIC NORTHWARD HEAT TRANSPORT
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WHAT DRIVES THC / MOC?

MECHANISM I: Cooling at high latitudes. For steady state, downward
penetration of heat by mixing is necessary.

surface cooling
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Turbulent mixing supplies energy.



WHAT DRIVES THC / MOC?

MECHANISM II: Westerly winds over the Southern Ocean. No
meridional flow can be supported at intermediate depths at the
latitude band of the Drake Passage due to lack of topographic barriers
that can support east-west pressure gradients.
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Atmospheric
Impact of
Atlantic
Thermohaline
Circulation

I

CHANGE IN SOME FIELDS BETWEEN HIGH AND LOW AMOC

PERIODS IN THE GFDL CM2.1 CONTROL SIMULATION
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Back to the heat transport in the oceans
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Atmospheric meridional energy flux and energy flux equator
...www.nature.com946 x 494

Atmospheric meridional energy flux and energy flux equator.


http://www.nature.com/nature/journal/v513/n7516/fig_tab/nature13636_F5.html
https://www.google.com.br/search?tbs=simg:m00&tbnid=5g9Fm1dFUgGn0M:&docid=X45qiIBo8TtFVM&client=firefox-b&bih=794&biw=1440&tbm=isch
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d0i:10.1038/naturel3636

Migrations and dynamics of the
intertropical convergence zone

Tapio Schneider"?, Tobias Bischoff'-? & Gerald H. Hkaug2

Rainfall on Earth is most intense in the intertropical convergence zone (ITCZ), anarrow belt of clouds centred on average
around six degrees north of the Equator. The mean position of the ITCZ north of the Equator arises primarily because the
Atlantic Ocean transports energy northward across the Equator, rendering the Northern Hemisphere warmer than the
Southern Hemisphere. On seasonal and longer timescales, the ITCZ migrates, typically towards a warming hemisphere
but with exceptions, such as during El Nino events. An emerging framework links the ITCZ to the atmospheric energy
balance and may account for ITCZ variations on timescales from years to geological epochs.



Clim Dyn
DOI 10.1007/s00382-013-1767-z

The ocean’s role in setting the mean position of the Inter-Tropical
Convergence Zone

J. Marshall - A. Donohoe * D. Ferreira -
D. McGee
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Fig. 1 The annual mean precipitation from the National Oceano-  each longitude. The zonal mean is shown on the left and is co-plotted
graphic and Atmospheric Administration’s Climate Prediction Cen-  with the zonal mean of the local maximum (blue lines) and the

ter’'s (NOAACPC) merged analysis (Xie and Arkin 1996). Blue lines precipitation centroid (dashed black lines)
indicate the meridional location of the maximum in the Tropics at



* Previous work:

Implicit in the work of Zhang and Delworth (2005) who noted the shift of the ITCZ on to the equator following the
collapse of the ocean’s MOC (Meridional Overturning Circulation) in a coupled climate model.

Broccoli et al. (2006) carry out perturbation (slab) experiments with cooling of the Northern Hemisphere/warming of
Southern Hemisphere (implicitly imposing a southward OHT- Ocean | Also Barrero lecture yesterday | d
atmospheric heat transport across the equator (|n compensation), adliu a suutiiwdiu UISPIdLETTIETIL Ul LHIE 11 L.

Fuckar et al. ( 2013), using an idealized sector coupled general circulation model (GCM), observe that symmetry
breaking of the ocean’s MOC, with deep convection in one hemisphere and upwelling in the other, leads to a cross
equatorial OHT (toward the convective hemisphere), a partial compensating atmospheric energy transport and a small
displacement of the ITCZ from the equator.

Frierson et al. (2013) make the connection between the hemispheric energy flow and ITCZ more explicit; they argue
that the ITCZ’s location north of the equator requires that the atmosphere be heated more strongly in the northern
hemisphere (NH) than in the southern hemisphere (SH). They find that, as argued here, the hemispheric asymmetry of
atmospheric heating in the observed climate system is primarily due to OHT across the equator as opposed to
radiation at the TOA.

Marshall et al. paper extend the observational calculations of the hemispheric asymmetry of energy input into the
atmosphere to include additional data sets, explore the uncertainties in these calculations and the processes
controlling the hemispheric differences in energy budgets and cross-equatorial heat exchange.

They also demonstrate the role of OHT in setting the ITCZ location in an idealized, coupled system that resolves the
key dynamical processes at work, rather than an atmosphere coupled to a slab ocean with prescribed OHT.
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* There is a slight deficit of net radiation in the
NH relative to the SH because the NH emits
more longwave radiation than the SH by

virtue of it being slightly warmer (Kang and
Seager 2013 ).

Fig. 4 TOA radiation averaged over each hemisphere and its
relationship to the cross-equatorial total heat transport (THT o = AH-
Tygp + OHTgp). Values represent the average of the ERBE and
CERES analysis presented in this manuscript. The error bars in all
fluxes are order 40.1 PW. Note that the small difference (~0.2 W
m~7) in absorbed SW at TOA is the result of very slightly different
hemispheric planetary albedos—the annual-mean incoming SW
radiation being exactly symmetric around the Equator. The albedos
are 0.298 and 0.299 for the SH and NH, respectively and quoted as
0.30 in the figure
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* There is a slight deficit of net radiation in the
NH relative to the SH because the NH emits
more longwave radiation than the SH by

virtue of it being slightly warmer (Kang and
Seager 2013 ).

Fig. 4 TOA radiation averaged over each hemisphere and its
relationship to the cross-equatorial total heat transport (THT Tz = AH-
Tygp + OHTgp). Values represent the average of the ERBE and
CERES analysis presented in this manuscript. The error bars in all
fluxes are order 4+0.1 PW. Note that the small difference (~0.2 W
m~7) in absorbed SW at TOA is the result of very slightly different
hemispheric planetary albedos—the annual-mean incoming SW
radiation being exactly symmetric around the Equator. The albedos
are 0.298 and 0.299 for the SH and NH, respectively and quoted as
0.30 in the figure
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* There is a slight deficit of net radiation in the
NH relative to the SH because the NH emits
more longwave radiation than the SH by

virtue of it being slightly warmer (Kang and
Seager 2013 ).

Fig. 4 TOA radiation averaged over each hemisphere and its
relationship to the cross-equatorial total heat transport (THT Tz = AH-
Tygp + OHTgp). Values represent the average of the ERBE and
CERES analysis presented in this manuscript. The error bars in all
fluxes are order 4+0.1 PW. Note that the small difference (~0.2 W
m~7) in absorbed SW at TOA is the result of very slightly different
hemispheric planetary albedos—the annual-mean incoming SW
radiation being exactly symmetric around the Equator. The albedos
are 0.298 and 0.299 for the SH and NH, respectively and quoted as
0.30 in the figure
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Atmospheric/ocean heat transport
across the equator
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v Net radiation at TOA
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Fig. 2 Energy input at the TOA and its relationship to energy flux
across the equator. AHT,, and OHT., are the atmospheric and
oceanic heat transport across the equator respectively. The numbers
are estimates obtained in this study using observational reanalysis and
satellite data. The error bars in all fluxes are order +0.1 PW. OHT
transport is estimated as a residual



Annual mean precipitation, Hadley Cell,
and Atmospheric Heat Transport
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* Hemispheric net TOA radiative forcing of the climate is almost perfectly symmetric about the
equator, the total (atmosphere plus ocean) heat transport across the equator is small (order

0.2 PW).

* However, due to the ocean’s (and in fact the Atlantic’s) MOC, the ocean carries a significant
amount of heat across the equator (order 0.4 PW).

* First AHT-Atmospheric Heat Transport is southwards across the equator to compensate
(0.2 PW southwards), resulting in the ITCZ being displaced north of the equator.

* Secondly, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2C) in

the NH than in the SH.
* This leads to the NH emitting slightly more OLR radiation than the SH by virtue of

its relative warmth (Kang and Seager 2013 ) supporting the small northward heat
transport by the coupled system across the equator.







 Climate changes due to natural causes:
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Croll-Milankovitch cycles and glacial periods
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Trends, Rhythms, and Aberrations in
Global Climate 65 Ma to Present

James Zachos,™ Mark Pagani,” Lisa Sloan," Ellen Thomas,?? Katharina Billups*
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400 Years of Sunspot Observations
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Volcanic impact on the
Atlantic ocean over the
last millennium

Juliette Mignot
Myriam Khodri, Jérome Servonnat,
Claude Frankignoul
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Oceanic temperature response to volcanic eruptions

IPSL CM4 climate model
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External forcings over the last millennium
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Solar cycles (boxed quote is excerpted from http://en.wikipedia.org/wiki/Solar variation)
Solar cycles are cyclic changes in behavior of the Sun. Many possible patterns have been noticed.

11 years: Most obvious is a gradual increase and decrease of the number of sunspots over a period of about 11
years, called the Schwabe cycle. The Babcock Model explains this as being due to a shedding of entangled
magnetic fields. The Sun's surface is also the most active when there are more sunspots, although the
luminosity does not change much due to an increase in bright spots.

22 years: Hale cycle. The magnetic field of the Sun reverses during each Schwabe cycle, so the magnetic poles
return to the same state after two reversals.

88 years: Gleissberg cycle (70-100 years) is thought to be an amplitude modulation of the 11-year Schwabe
Cycle (Sonnett and Finney, 1990).

200 years: Suess cycle.
2,300 years: Hallstatt cycle.

Other patterns have been detected:
In carbon-14: 105, 131, 232, 385, 504, 805, 2,241 years (Damon and Sonnett, 1991).

During the Upper Permian 240 million years ago, mineral layers created in the Castile Formation (West
Texas/Southern New Mexico) show cycles of 2,500 years.


http://en.wikipedia.org/wiki/Solar_variation

Temperature Anomaly (°C)

Paleoclimate Reconstruction of S. American Monsoon
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Fresh water
inflow

Heinrich
episodes -
melting

Huge armadas of ice bergs were launched from
Canada into the North Atlantic

== _ Rock debris layer

T

As they melted , they released rock debris that was
dropped into the fine grained sediments on the
ocean floor.
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Differences between the southern and northern hemisphere climatology and
ITCZ position: Cariaco Basin - Venezulela
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A high-resolution history of the South
American Monsoon from Last Glacial
Maximum to the Holocene

Valdir F. Novello -, Francisco W. Cruz, Mathias Vuille, Nicolas M. Strikis, R. Lawrence Edwards, Hai

Cheng, Suellyn Emerick, Marcos S. de Paula, Xianglei Li, Eline de S. Barreto, Ivo Karmann & Roberto
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Figure 1: Map of South America with the locations of the records
discussed in text.
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Figure 1: Map of South America with the locations of the records

discussed in text.
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Large Scale Index for South America Monsoon
(LISAM index) (Silva and Carvalho 2007)
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http://www.cgd.ucar.edu/ccr/TraCE/

Trace21k Experiments

TraCE-21ka: Simulation of Transient Climate Evolution over the last 21,000 years
Draft

Project Description

The transient climate evolution of the last 21,000 years (Last Glacial
Maximum [LGM] to present) provides key observations for constraining
climate sensitivity and understanding abrupt climate change. A
synchronously coupled atmosphere-ocean general circulation model
simulation of the last 21,000 years has been completed using the
CCSM3. The transient simulation reproduces many major features of the

Surfuce tenpersiire change relutve 1o 22 kyr 8P COSMS TraCE-21000

deglacial climate evolution in Greenland, Antarctica, the tropical Pacific, T e SR
and the Southern and Deep Oceans, thereby suggesting that CCSM3 PR e T T s U
exhibits reasonable climate sensistivity in those regions and is capable »§W J §§
of simulating abrupt climate changes. The TraCE-21000 project provides e

the four-dimensional model datasets to allow investigation of the
coupled atmosphere-ocean-sea ice-land surface mechanisms and feedbacks that explain the evolution of the climate
system over the last 21,000 years, It is also a resource for the paleodata research community providing a global
framework for the synthesis of their data. Further, together the data and model resuits allow an assessment of the
model capabilities. (Click on illustration to start a movie of the transient evolution of surface temperature change
simulated by CCSM3. illustration by the National Center for Atmospheric Research). More information on the setup of
this simulation can be found below as well as in the Ph.D dissertation of Dr. Feng He. Monthly time series of the
atmospheric model variables are available for download on the Earth System Grid.
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Huge armadas of ice bergs were launched from
Canada into the North Atlantic

== _ Rock debris layer
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As they melted , they released rock debris that was
dropped into the fine grained sediments on the
ocean floor.
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Preliminary Conclusions based on Proxies

* The South America Speleothem Principal Components are
representative of the SACZ displacement and intensity.

* In the last millennium the SACZ systematically migrates southward
from the MCA to the 2" half of the transition periods, migrating
northward afterwards.

* However the most intense or enhanced SACZ occurred during the LIA,
and the weaker SACZ occurred during the MCA2 period, in relation to
the CWP.






Validation of PMIP3 models for the present climate DJF
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Models have a southward bias
. The 2™ International Sym| ium.on J..APAN-[PB Satellite for Food Security and Environmental
of the ITCZ in the current ¥ Rl
. ) Performance of decadal prediction in Coupled Model
climate or more intense

Intercomparisson Project Phase 5 (CMIPS5) on projecting climate in
tropical area

Anis Purwaningsih®, Rahmat Hidayat
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Fig. 12. Bias (1) and RMSE (2) of precipitation in Tropical Area on JJA 1981-2010 from (a) BCC_CSML.1, (b) MPI-ESM-LR and (c) IPSL-
CM5SA-LR
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The Atlantic ITCZ bias in CMIP5 models

Angela Cheska Siongco + Cathy Hohenegger -
Bjorn Stevens
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Fig. 4 Mean state of precipitation over the tropical Atlantic for mod-
els with a West Atlantic bias and b East Atlantic bias



Fig. 6 Precipitation anomaly West Atl bias East Atl bias
(model minus GPCP observa-
tion) in MAM (a, b) and JJA
(¢, d) for models with the West
Atlantic bias (a, ¢) and with the
East Atlantic bias (b, d). Red
boxes are used for the concep-
tual diagram in Fig. 9
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CMIP models have a a southward bias of the ITCZ
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The South American monsoon variability over the last
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The Present and Future of the West African Monsoon: A Process-Oriented
Assessment of CMIPS Simulations along the AMMA Transect
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A decrease of AMOC intensity might, at first sight, to be be interpreted as a tendency
for a southward shift of the ITCZ - but this is not observed (on the contrary)

Global warming tends to heat more the northern hemisphere => NH has to get rid of
the excessive heating transferring more energy to the SH!!! One way is to intensify the
ITCZ and keep it in a northernmost position!!!
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However, the
Pacific Ocean ITCZ
and SPCZ also
influence the
SAMS.
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Conclusion

Classical view of the ITCZ position: based on the continental distribution and associated
temperature gradientes.

Current view on the ITCZ positioning: energy balance -> SH> NH ->oceans (primarily
Atlantic) exagerates on northward transport across equator.
* Atmosphere sends back energy to the H -> ITCZ to the north of the equator!

ITCZ variability — Paleoclimate scale: observations and TRACE21K - analysis of
atmosphere/ocean transport -> role of AMOC and fresh water inflow at higher latitudes.

CMIP - ITCZ bias => connected to ocean transport — Atlantic...

Future climate: conflict between the fresh water inflow (melting polar caps) and atmospheric
heating more intense in the HN => smaller change in the ITCZ position than expected due to
AMOC slow down.

Paleoclimate SAMS: significant changes since the last Glacial Period -> Holocene (8K) and last
millenium significant changes : models tend to underestimate — AMOC problem...
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OUTLINE

1. Climate System: Basic principles
a. Intertropical Convergence Zone (ITCZ) as a complex network (ocean/atmosphere)
b. Variability induced by external forcing
c. Internal Variability

2. Current Views of Controlling Processes on the Mean Position of the ITCZ;

4. Long Term Variability
a. Last 20 k - Trace21k and Observations
b. Last Milenia
c. Future

5. Conclusions



