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Previous lectures 

Cavity QED with microwave photons and circular 
Rydberg atoms:

a powerful tool for:
•  Achieving strong coupling 
   between single atoms and 
   single photons
•  Performing QND measurement of the field state
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Repeated measurements: 
evolution of a continuously monitored field 
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Field evolution due to 
cavity damping 

Topic of lecture 2: 
 
1- Using QND information for performing quantum feedback 
 
2- Improving the fidelity of quantum trajectories  

 by "past-quantum state" analysis 
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I. Stabilization of number states  
by quantum feedback 



Classical versus quantum feedback 

•  Classical feedback is present in nearly all control systems
q  A SENSOR measures the system’s state
q  A CONTROLLER compares the measured quantity with a target value
q  An ACTUTATOR reacts on the system to bring it closer to the target

•  Quantum feedback has same aims for a quantum system 
q  Must face a fundamental difficulty: 

➙ Measurement back-action changes the system state



Stabilizing photon number states in a cavity 

Number states

 

 
Highly non-classical:  
•  Negative Wigner Function 
•  Fast decoherence 

Tdec=Tc/n 

 

S. Deléglise et al.  
  Nature 455, 510 (2008) 

high Q cavity 
Field storage time 

Tc 

M. Brune et al. PRL 101, 240402 (2008) 



Feedback loop 
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q  Sensor: atom performing QND photon counting
q  Controller: a classical computer (Adwin) 

➙  Estimates cavity state taking into account all information
➙  Determines optimal actuator action

q  Actuator
-  Classical field pulse
-  Quantum: single photon emission/absorption



Feedback loop: classical actuator 
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•  Actuator
q  Classical source performing displacement of cavity field
q  Real amplitude α 

q  K choses A and Φ after each atom detection
➙  Use second order approximation of displacement operator for 

fast calculations (computing time <82 µs)
➙  Action limited in the |α|<0.1 interval



 complete feedback algorithm 
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•  Controller tasks: at each atom sample detection:
➙ Projects the field on the measurement result
➙  Take onto account field damping
➙  Take into account various imperfections: detection 

efficiency, two atom samples, detection errors…
➙ Choses the best actions for next actuator atoms



Estimate distance with respect to target state? 

•  A simple measure of distance to target

q  Equal to zero for the target state
q  Equal to 1 (maximal) for all other Fock states

⇒ Does not discriminate properly 
the ‘distance’ to the target

•  A more sophisticated distance

q   provides sensitivity to photon numbers different from nt
q  Optimization of Λ ?

1 ( )td Tr ρρ= − Fidelity of state

ρt = nt nt

I. Dotsenko et al. Rev. A 80, 013805 (2009) 



Estimate: distance wrt target state 

•   Λ coefficients optimization
q  Distance has an absolute 

minimum (0) close to the 
target state

q  Distance has a local 
maximum on all other Fock 
states

q  Final optimization by 
numerical simulations of the 
convergence process



Open loop operation: QND and quantum jumps 



Quantum feedback trajectory: 3 photon target 

17 



Quantum feedback trajectory: 3 photon target 
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- Detection outcomes 

- Distance to the target 

- Control injection: α real 

-  Photon-number distribution: 
  P(n<nt), P(n=nt)  
  and P(n>nt)  

- Density matrices 



Fidelity of the state stabilization 

Initial coherent state 
P(3) ≤ 22% 

19 

P
ho

to
n 

nu
m

be
r d

is
tri

bu
tio

n,
 P

(n
) 

Photon number, n 

•  Average over 4000 trajectories  
 
•  Feedback sequence immediately followed by a “standard” QND measurement 



Checking the fidelity of the prepared state 

Time (ms) 

Feedback on Feedback off 

Field measurement 
by state 

“tomography”  

0 164 

Steady state 
of feed-back 

operation  



Fidelity of the state stabilization 

Steady-state distribution: 
 

•  clearly sub-Poissonian 
 

•  increased fidelity: P(3) = 43% 
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•  Average over 4000 trajectories stopped at t = 164 ms > Tcav 
 
•  Feedback sequence immediately followed by a “standard” QND measurement 



Fidelity of the state stabilization 

Fidelity of the prepared 
state is 73% 
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Steady-state distribution 
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•  Average over 4000 trajectories stopped when P(nt) reaches 80% 
•  Feedback sequence immediately followed by a QND measurement based on the 
maximum likelihood reconstruction of P(n) 



Fidelity of the state stabilization 
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C. Sayrin et al Nature 477, 73 (2011),  arxiv1107.4027 



24 

Rate of convergence 
•  Fraction of experiments reaching 80% fidelity versus time 
•  Compare feedback with a fail and retry method 

q  Measure QND for 10 ms 
q  If n=3 success 
q  If not reset field and retry 

 
 

➙  Feedback operation is much more efficient 
C. Sayrin et al. Nature, 477, 73 (2011) 
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Classical and quantum actuators 

•  Many injections to compensate for a quantum jump 
q  Mismatch between the classical source and the nature of the 

single-photon quantum jumps 
q  Slow recovery from jumps (15 ms) 

➙ Method limited to 4 photons 
– Lifetime of |4>=15 ms 

•  Quantum feedback with a quantum actuator 
q  Single atom, interacts resonantly with the cavity mode 

➙ Prepared in e: ideally emits a single photon 
➙ Prepared in g: ideally absorbs a single photon 

q  Ideally compensates for jumps in a single operation 
➙  Fast recovery 
➙ Stabilization of higher-lying Fock states 



Single atom actuator action  

Rabi oscillation in n photons 

e,n g,n+1



Single atom actuator action  

Rabi oscillation in n photons 

e,n g,n+1

Pres em / n( )
Pres abs / n( )

Are obtained  
by fitting these data 

K models the interaction  
using these calibrations 



 Feedback with atom actuator 
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•  Controller action: (1) 4 possible choices
q  Absorber: no pulse in R1, atom  set on resonance
q  Emitter: π pulse in R1, atom set on resonance 
q  QND sensor: π/2 pulses in R1 and R2, atom detuned 
q  At last time: K can decide while the atom is flying not to set 

the atom on resonance if this became a better choice.



 Feedback with atom actuator 
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•  Controller action (2)
q  For atomic emitter/absorber there are no coherences in the 

field. Is is enough to estimate the photon number distribution 
P(n).

q  Used distance



Single closed loop trajectory 

14 ms 

➙ much faster than the 14 ms convergence time of coherent injection method   

d = Δn2 + n −nt( )2

QND probe atoms 



Single closed loop trajectory 

14 ms 

➙ much faster than the 14 ms convergence time of coherent injection method   

d = Δn2 + n −nt( )2

QND probe atoms 

One lost photon 

Correction by emitter atoms 



Single closed loop trajectory 

14 ms 

➙ much faster than the 14 ms convergence time of coherent injection method   

d = Δn2 + n −nt( )2

QND probe atoms 

One more photon 

Correction by absorber 



Feedback for high photon numbers 

Reference 
  coherent state with 

  nt photons on the average 

Steady state 
•  stops loop at 140 ms 
•  independent QND   
estimation of  average 

photon number 
distribution P(n) 

Optimal stop 
•  Stops loop when 

p(nt)>0.8 
•  Independent QMD 
estimation of P(n) 



Feedback for high photon numbers 

Reference 
  coherent state with 

  nt photons on the average 

Steady state 
•  stops loop at 140 ms 
•  independent QND   
estimation of  average 

photon number 
distribution P(n) 

Optimal stop 
•  Stops loop when 

p(nt)>0.8 
•  Independent QMD 
estimation of P(n) 



Feedback for high photon numbers 

Stabilization of photon numbers up to 7 
X. Xhou et al., Phys. Rev. Lett. 108, 243602 (2012) 

Reference 
  coherent state with 

  nt photons on the average 

Steady state 
•  stops loop at 140 ms 
•  independent QND   
estimation of  average 

photon number 
distribution P(n) 

Optimal stop 
•  Stops loop when 

p(nt)>0.8 
•  Independent QND 
estimation of P(n) 
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II. The past quantum state trajectory 
reconstruction method 

1. Principle of the method
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Next sections where not presented during lecture 



n = 0
n = 8

Interferometer 
counts n modulo 8: 
does not distinguish 

0 and 8

A particular field trajectory 
0 or 8 ?

c0 0 + c8 8



n = 0
n = 8

Interferometer 
counts n modulo 8: 
does not distinguish 

0 and 8

A particular field trajectory 
0 or 8 ? Finaly jumps to 7: if was not 0 but 8!

c0 0 + c8 8
Looking at the future from that time 

tells you that 0 was indeed 8 photons! 



The Past Quantum State approach 
•  A posteriori estimation of the photon number at t based on all available 

information, gathered from 0 to t AND from t to T 
q  From the journalist’s to the historian’s perspective 

•  A quantum formalism:    (S. Gammelmak et al. PRL 111, 160401)

q  The Past quantum state 

q  Best estimate for the results of a quantum measurement at t based on 
the density matrix ρ(t) computed forward in time  

AND on an "effect matrix" E(t) computed backwards in time. 



Forward-backward estimation 
•  Forward estimation: usual calculation of the density matrix ρ(t) taking into 

account projection at measurement and relaxation 

•  Backward estimation: calculation effect matrix E(t)
q  Flat distribution at final time T 
q  Same measurement operators as forward 
q  ‘inverse’ relaxation (annihilation and creation operators exchanged) 

➙  Exponential growth of the photon number 

 

P f n,t( )

Pb n,t( )



Forward-backward estimation 
•  Forward estimation: usual calculation of the density matrix ρ(t) taking into 

account projection at measurement and relaxation 

•  Backward estimation: calculation effect matrix E(t)
q  Flat distribution at final time T 
q  Same measurement operators as forward 
q  ‘inverse’ relaxation (annihilation and creation operators exchanged) 

➙  Exponential growth of the photon number 

•  Foreward/backward for diagonal measurement/relaxation operators 

 
 

q  PQS reduces to the "forward/backward smoothing algorithm", which can 
be safely used in this quantum context 

q  P(n) is the product of two photon number distributions computed 
forward and backward in time. 

 

P f n,t( )

Pb n,t( )



Extracting information from a measurement 

on 

on 

off 

0 -1 +1 

System Meter 

•  Generalized measurement scheme:

Coherent 
interaction

Irreversible 
projectionρ̂S ρ̂M

ρ̂S ⊗ ρ̂M ρ̂S+M Result m

ρ̂S/mρ̂S

ρ̂S/m

The measurement result provides (partial) information on S
General state reconstruction problem: 
- optimize the amount of information extracted on S 
- get the best estimate of the state after a measurement



Quantum state reconstruction and time evolution 

time
t

ρ̂S t( ) M MM
ρ̂S t( ) M MM
ρ̂S t( ) M MM

…

State preparation

State preparation

State preparation



Quantum state reconstruction and time evolution 

time
t

M MM
M MM
M MM

…
•  Reconstruct          given a large number of identical preparation

➙ quantum state tomography 
ρ̂S t( )

State preparation

State preparation

State preparation

ρ̂S t( )

ρ̂S t( )

ρ̂S t( )

➙ topic of lecture 4



Quantum state reconstruction and time evolution 

time
t

M MM
M MM
M MM

…
•  Reconstruct          given a large number of identical preparation 

➙ quantum state tomography

•  Estimate          in a given realization knowing measurement 
results before t0  ➙ quantum trajectory reconstruction

"standard approach"

ρ̂S t( )

M M M
M M M
M M M

ρ̂S 0( )

ρ̂S 0( )

ρ̂S 0( )

ρ̂S t( )

ρ̂S t( )

ρ̂S t( )

ρ̂S t( )



Optimal quantum state reconstruction and time 
evolution 

time
t

M MM
M MM
M MM

…
•  Reconstruct          given a large number of identical preparation 

➙ quantum state tomography

•  Estimate          in a given realization knowing measurement 
results before t0  ➙ quantum trajectory reconstruction

"standard approach"
•  Estimate          in a given realization knowing measurement 
results before and after t0  ➙ Past quantum state (Mölmer PRL 2013)

ρ̂S t( )

M M M
M M M
M M M

ρ̂S 0( )

ρ̂S 0( )

ρ̂S 0( )

ρ̂S t( )

ρ̂S t( )

ρ̂S t( )

ρ̂S t( )

ρ̂S t( )



Generalized quantum measurement 

on 

on 

off 

0 -1 +1 

System Meter 
Coherent 
interaction Irreversible 

projectionρ̂S

•  Operators          : set of operators of S such that                    .
•  Proba of result m: 

ρ̂S ρ̂S/m =
M̂mρ̂SM̂m

+

Norm

M̂ m{ } M̂m
+M̂m

m
∑ = 1̂

P m( ) = tr M̂mρ̂SM̂m
+



➙ describes any evolution:
- any measurement
- unitary: only one operator  
- relaxation can be seen as unread measurement in some 
environment ➙ also described by the action of         on 

Generalized quantum measurement 

on 

on 

off 

0 -1 +1 

System Meter 
Coherent 
interaction Irreversible 

projectionρ̂S

•  Operators          : set of operators of S such that                    .
•  Proba of result m: 

M̂ m{ } M̂m
+M̂m

m
∑ = 1̂

M̂ 0 = Û t0,t( )

P m( ) = tr M̂mρ̂SM̂m
+

ρ̂S ρ̂S/m =
M̂mρ̂SM̂m

+

Norm
(See T. Gorin lecture) 

ρ̂SM̂ m



Quantum trajectory reconstruction: 
"standard approach" 

ρ̂S t( ) M MMM M Mρ̂S 0( )

time
tjt1       … tj+1      …

mjm1       … mj+1      …

ρ̂S t( ) = ρ̂S/ mj{ } =
M̂mj

... M̂m0
ρ̂S 0( )M̂m0

+ ... M̂mj

+

Norm

t



Quantum trajectory reconstruction: 
"standard approach" 

With           one can describe the results of any 
measurement           performed at time t. 
➙ one gets the probability of the measurement result oi 
conditional to previous measurements

ρ̂S t( ) M MMM M Mρ̂S 0( )

time
tjt1       … tj+1      …

mjm1       … mj+1      …

ρ̂S/ mj{ }

Ôi{ }

O
ρ̂S t( ) = ρ̂S/ mj{ } =

M̂mj
... M̂m0

ρ̂S 0( )M̂m0
+ ... M̂mj

+

Norm

t

P oi, t / m1... j{ }( ) =
tr Ôi ρ̂S t j( )

Norm



The "past quantum state approach" 

ρ̂S t( ) M MMM M Mρ̂S 0( )

time
tjt1       … tj+1       …        tk

mjm1       … mj+1      …

We are now interested in another conditional probability: 
description of the measurement of          knowing 
the past and future measurement results.

Ôi{ }

O

t



The "effect" matrix         is similar to        , it involves the same 
measurement operators but in opposite order.

The "past quantum state approach" 

ρ̂S t( ) M MMM M Mρ̂S 0( )

time
tjt1       … tj+1       …        tk

mjm1       … mj+1      …

We are now interested in another conditional probability: 
probability of the measurement results          knowing 
the past and future measurement results.

oi{ }

ÊS t( ) =
M̂mj+1

+ ... M̂mk

+ 1̂ M̂mk
... M̂mj+1

Norm
ρ̂S t( ) = ρ̂S/ mk{ } =

M̂ mj
...M̂ m0

ρ̂S 0( ) M̂ m0

+ ...M̂ mj

+

Norm

P oi, t / m1...k{ }( ) =
tr Ôi ρ̂S t( ) Ôi

+ ÊS t( )
Norm

Mölmer 
PRL 2013

t

ÊS t( ) ρ̂S t( )

Ô
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II. The past quantum state trajectory 
reconstruction method 

2. Experimental implementation



Experimental setup: an atomic clock 

•  An atomic clock (Ramsey setup) made of Rydberg for probing 
light-shifts induced  by “trapped” photons 

•  State selective detection of atoms by field ionization: 
   Atoms detected on “e” or “g” one by one 

“e” or “g” 
detection 



Following a quantum trajectory 
S. Gammelmak et al. PRL 111, 160401(2013) 

 Apply to photon number operator           : Ô = N̂ Ôn = n n

P oi, t / mk{ }( ) =
tr Ôi ρ̂S t( ) Ôi

+ ÊS t( )
Norm



Following a quantum trajectory 
S. Gammelmak et al. PRL 111, 160401(2013) 

 Apply to photon number operator           : Ô = N̂ Ôn = n n

 ➙ implies only diagonal matrix elements 

P oi, t / mk{ }( ) =
tr Ôi ρ̂S t( ) Ôi

+ ÊS t( )
Norm

P n,t / mk{ }( ) =
tr n n ρ̂S t( ) n n ÊS t( )

Norm

P n,t / mk{ }( ) =
ρ̂n,n

S t( ) Ên,n
S t( )

Norm



Following a quantum trajectory 

P n,t / mk{ }( ) =
tr ρ̂n,n

S t( ) Ên,n
S t( )

Norm

➙Photon number distributions: 



Following a quantum trajectory 

P n,t / mk{ }( ) =
tr ρ̂n,n

S t( ) Ên,n
S t( )

Norm

➙Photon number distributions: 

•  Forward estimation:  
standard calculation of the density matrix ρ(t) taking into account  

 - projection at measurement 
 - relaxation between measurements 

 

P f n, t( ) = ρ̂n,n
S t( )



Following a quantum trajectory 

P n,t / mk{ }( ) =
tr ρ̂n,n

S t( ) Ên,n
S t( )

Norm

➙Photon number distributions: 

•  Forward estimation:  
standard calculation of the density matrix ρ(t) taking into account  

 - projection at measurement 
 - relaxation between measurements 

 
•  Backward estimation:  
calculation effect matrix E(t):

q  Flat distribution at final time T: describes an unknown final state 
q  Same measurement operators as forward 
q  ‘inverse’ relaxation (annihilation and creation operators exchanged) 

➙  Exponential growth of the photon number in "backward time" 

 

P f n, t( ) = ρ̂n,n
S t( )

Pb n,t( ) = Ên,n
S t( )



Following a quantum trajectory 

P n,t / mk{ }( ) =
tr ρ̂n,n

S t( ) Ên,n
S t( )

Norm

➙Photon number distributions: 

•  Forward estimation:  
 
•  Backward estimation:  
 
•  Past quantum state / forward-backward estimation 

 

P f n, t( ) = ρ̂n,n
S t( )

Pb n,t( ) = Ên,n
S t( )

➙ P(n) is the product of two photon number distributions computed 
forward and backward in time. 
In our case PQS reduces to the "forward/backward smoothing algorithm", 
which can be safely used in this quantum context 

P fb n, t( ) =
P f n, t( ). P b n, t( )

Norm



P f n,t( )
T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 

Quantum trajectory for a larger initial field 

•  Forward estimation of the field at time t 

 
 



P f n,t( )
T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 

Quantum trajectory for a larger initial field 

•  Forward estimation of the field at time t 

 
 
Obvious limitations 

➙  Noise due to statistical fluctuations of atomic detections 
➙  Initial ambiguity in the photon number due to the periodicity of 

the measurement operators 
–  Absurd photon number jumps (from 0 to 7) 



Forward and backward estimations 

P f n,t( )

Pb n,t( )

P fb n,t( )

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 



Forward and backward estimations 

P f n,t( )

Pb n,t( )

P fb n,t( )

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 

➙  Noise due to statistical fluctuations of atomic detections 
➙  Final ambiguity in the photon number due flat distribution at T  
and to the periodicity of the measurement operators 
➙  "Reverse" relaxation makes a good job! 



Forward and backward estimations 

P f n,t( )

Pb n,t( )

- Measurement ambiguities lifted 
- Considerable noise reduction: 

All estimations take into 
account ALL available 
information 

P fb n,t( )

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 



PQS estimation of a single-photon  
quantum jump 

•  A single photon is emitted by a resonant atom at t=0
•  The estimator only knows QND measurement results 

q  Less noise
q  Faithful estimate of the photon number jump time

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 
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Pb n,t( )
P fb n,t( )

Average over 3000 
trajectories 



Conclusion of lecture 2 

•  Quantum feedback stabilization of number states 

•  PQS analysis is a fruitful tool for quantum state 
estimation:  
➙ reconstruction of quantum trajectories with much better fidelity 

 
 
 

Also performed for spin 1/2-like systems  
➙  Gammelmark et al., PRA 89, 043839 
➙  Armen et al., PRL 103, 173601 
➙  Kerkhoff et al. Opt. Expr. 19, 6478 
➙  Tan et al., PRL 114, 040903 

 



Reference (4) 
•  Quantum feedback: 

q  C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. 
Mirrahimi, H. Amini, M. Brune, JM. Raimond and S. Haroche, Nature 477, 73 (2011): "Real-time 
quantum feedback prepares and stabilizes photon number states". 

q  X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J.M. Raimond, M. 
Brune, and S. Haroche, Phys. Rev. Lett. 108, 243602 (2012): “Field locked to Fock state by 
quantum feedback with single photon corrections” 

q  C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, J.M. Raimond ans S. Haroche, New J. Phys. 14 
115007 (2012) doi:10.1088/1367-2630/14/11/115007: “Optimal time-resolved photon number 
distribution reconstruction of a cavity field by maximum likelihood” 

q  B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J.M. Raimond, M. Brune 
and S. Haroche1, PRA 87, 042320 (2013): “Quantum feedback experiments stabilizing Fock states 
of light in a cavity”. 

q  B. Peaudecerf, T. Rybarczyk, S. Gerlich, S. Gleyzes, J. M. Raimond, S. Haroche, I. Dotsenko, and 
M. Brune, Phys. Rev. Lett. 112, 080401 (2014): "Adaptive Quantum Nondemolition Measurement 
of a Photon Number". 

•  Past quantum state: 
q  S.Gammelmark, B. Julsgaard, K. Molmer, PRL 111 160401(2013); "Past Quantum States of a 

Monitored System". 
q  T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B. Julsgaard, K. Molmer, S. Gleyzes, M. 

Brune, J.M. Raimond, S. Haroche, and I. Dotsenko, Phy Rev A 91, 062116  (2015):" Forward-
backward analysis of the photon-number evolution in a cavity". 

 



83 


