

From cavity QED to quantum simulations with Rydberg atoms Lecture 3 QND photon counting (2) Quantum feedback and past quantum state analysis

Michel Brune

École Normale Supérieure, CNRS, Université Pierre et Marie Curie, Collège de France, Paris

Cavity QED with microwave photons and circular Rydberg atoms:

- a powerful tool for:
- Achieving strong coupling between single atoms and single photons

Performing QND measurement of the field state

500 atoms "seeing" the same photon

Field evolution due to cavity damping

Topic of lecture 2:

- 1- Using QND information for performing quantum feedback
- 2- Improving the fidelity of quantum trajectories by "past-quantum state" analysis

I. Stabilization of number states by quantum feedback

Classical versus quantum feedback

- Classical feedback is present in nearly all control systems
 - □ A **SENSOR** measures the system's state
 - □ A **CONTROLLER** compares the measured quantity with a target value
 - □ An **ACTUTATOR** reacts on the system to bring it closer to the target
- Quantum feedback has same aims for a quantum system
 Must face a fundamental difficulty:

→ Measurement back-action changes the system state

Stabilizing photon number states in a cavity

Number states

S. Deléglise *et al*. Nature **455**, 510 (2008)

Highly non-classical:

- Negative Wigner Function
- Fast decoherence

T_{dec}=Tc/n

Feedback loop

Sensor: atom performing QND photon counting

Controller: a classical computer (Adwin)

- → Estimates cavity state taking into account all information
- → Determines optimal actuator action

Actuator

- Classical field pulse
- Quantum: single photon emission/absorption

Feedback loop: classical actuator

- Actuator
 - Classical source performing displacement of cavity field
 - \square Real amplitude α
 - $\hfill\square$ K choses A and Φ after each atom detection
 - → Use second order approximation of displacement operator for fast calculations (computing time <82 µs)</p>
 - → Action limited in the $|\alpha| < 0.1$ interval

complete feedback algorithm

- Controller tasks: at each atom sample detection:
 - → Projects the field on the measurement result
 - → Take onto account **field damping**
 - → Take into account various imperfections: detection efficiency, two atom samples, detection errors...
 - → Choses the best actions for next actuator atoms

• A simple measure of distance to target $\rho_t = |n_t\rangle\langle n_t|$

 $d = 1 - Tr(\rho \rho_t)$ Fidelity of state

Equal to zero for the target state
 Equal to 1 (maximal) for all other Fock states
 Does not discriminate properly the 'distance' to the target

A more sophisticated distance

$$d(n_{\rm t},\rho) = 1 - \sum_{n=0}^{n_{\rm max}} \Lambda_{nn}^{(n_{\rm t})} \langle n|\rho|n\rangle = 1 - \operatorname{Tr}\left(\Lambda^{(n_{\rm t})}\rho\right) \qquad \Lambda_{n_{\rm t}}^{(n_{\rm t})} = 1$$

□ provides sensitivity to photon numbers different from n_t □ Optimization of Λ ?

I. Dotsenko et al. Rev. A 80, 013805 (2009)

$$d(n_{\rm t},\rho) = 1 - \sum_{n=0}^{n_{\rm max}} \Lambda_{nn}^{(n_{\rm t})} \langle n|\rho|n\rangle = 1 - \operatorname{Tr}\left(\Lambda^{(n_{\rm t})}\rho\right)$$

• Λ coefficients optimization

- Distance has an absolute minimum (0) close to the target state
- Distance has a local maximum on all other Fock states
- Final optimization by numerical simulations of the convergence process

Open loop operation: QND and quantum jumps

Elapsed time = 0.0 ms (0 iterations)

Quantum feedback trajectory: 3 photon target

Elapsed time = 0.0 ms (0 iterations)

Quantum feedback trajectory: 3 photon target

- Detection outcomes
- Distance to the target

- Control injection: $\boldsymbol{\alpha}$ real
- Photon-number distribution: $\frac{P(n < n_t), P(n = n_t)}{and P(n > n_t)}$

- Density matrices

- Average over 4000 trajectories
- Feedback sequence immediately followed by a "standard" QND measurement

- Average over 4000 trajectories stopped at t = 164 ms > T_{cav}
- Feedback sequence immediately followed by a "standard" QND measurement

Fidelity of the state stabilization

- Average over 4000 trajectories stopped when P(n_t) reaches 80%
- Feedback sequence immediately followed by a QND measurement based on the maximum likelihood reconstruction of P(n)

Fidelity of the state stabilization

C. Sayrin et al Nature 477, 73 (2011), arxiv1107.4027

- Fraction of experiments reaching 80% fidelity versus time
- Compare feedback with a fail and retry method
 - □ Measure QND for 10 ms
 - □ If n=3 success
 - □ If not reset field and retry

→ Feedback operation is much more efficient

- Many injections to compensate for a quantum jump
 Mismatch between the classical source and the nature of the single-photon quantum jumps
 - □ Slow recovery from jumps (15 ms)
 - → Method limited to 4 photons

-Lifetime of |4>=15 ms

- Quantum feedback with a quantum actuator
 - □ Single atom, interacts resonantly with the cavity mode
 - → Prepared in e: ideally emits a single photon
 - → Prepared in g: ideally absorbs a single photon
 - Ideally compensates for jumps in a single operation
 - → Fast recovery
 - → Stabilization of higher-lying Fock states

Single atom actuator action

Rabi oscillation in n photons

$$|e,n\rangle$$
 $|g,n+1\rangle$

Rabi oscillation in n photons

$$|e,n\rangle$$
 $|g,n+1\rangle$

$$P_{res}(em / n)$$
$$P_{res}(abs / n)$$

Are obtained by fitting these data K models the interaction using these calibrations

Feedback with atom actuator

- Controller action: (1) 4 possible choices
 - \square Absorber: no pulse in R₁, atom set on resonance
 - \square Emitter: π pulse in R1, atom set on resonance
 - \Box QND sensor: $\pi/2$ pulses in R1 and R2, atom detuned
 - At last time: K can decide while the atom is flying not to set the atom on resonance if this became a better choice.

Feedback with atom actuator

• Controller action (2)

 For atomic emitter/absorber there are no coherences in the field. Is is enough to estimate the photon number distribution P(n).

Used distance

$$d = \sum_{n} (n - n_t)^2 p(n) = \Delta n^2 + (\overline{n} - n_t)^2$$

Single closed loop trajectory

QND probe atoms

$$d = \Delta n^2 + \left(\overline{n} - n_t\right)^2$$

→ much faster than the 14 ms convergence time of coherent injection method

Single closed loop trajectory

→ much faster than the 14 ms convergence time of coherent injection method

Single closed loop trajectory

→ much faster than the 14 ms convergence time of coherent injection method

Feedback for high photon numbers

Reference coherent state with n_t photons on the average

Feedback for high photon numbers

Reference coherent state with n_t photons on the average

Steady state

- stops loop at 140 ms
- independent QND estimation of average photon number distribution P(n)

Feedback for high photon numbers

Reference coherent state with n_t photons on the average

Steady state

- stops loop at 140 ms
- independent QND estimation of average photon number distribution P(n)

Optimal stop

- Stops loop when $p(n_t) > 0.8$
- Independent QND estimation of *P(n)*

Stabilization of photon numbers up to 7

X. Xhou et al., Phys. Rev. Lett. 108, 243602 (2012)

Next sections where not presented during lecture

II. The past quantum state trajectory reconstruction method

1. Principle of the method

A particular field trajectory

A particular field trajectory

The Past Quantum State approach

• A posteriori estimation of the photon number at *t* based on all available information, gathered from 0 to *t* AND from *t* to *T*

□ From the journalist's to the historian's perspective

• A quantum formalism:

(S. Gammelmak et al. PRL 111, 160401)

□ The Past quantum state

Best estimate for the results of a quantum measurement at *t* based on the **density matrix** ρ(*t*) computed forward in time
 AND on an "effect matrix" *E*(*t*) computed backwards in time.

Forward-backward estimation

- Forward estimation: usual calculation of the density matrix $\rho(t)$ taking into account projection at measurement and relaxation $P^{f}(n,t)$
- Backward estimation: calculation effect matrix $E(t) \leftarrow$

$$P^{b}(n,t)$$

- \Box Flat distribution at final time T
- □ Same measurement operators as forward
- 'inverse' relaxation (annihilation and creation operators exchanged)
 - \rightarrow Exponential growth of the photon number

Forward-backward estimation

- Forward estimation: usual calculation of the density matrix $\rho(t)$ taking into account projection at measurement and relaxation $P^{f}(n,t)$
- Backward estimation: calculation effect matrix $E(t) \leftarrow$

$$P^{b}(n,t)$$

- $\hfill\square$ Flat distribution at final time ${\cal T}$
- □ Same measurement operators as forward
- 'inverse' relaxation (annihilation and creation operators exchanged)
 - \rightarrow Exponential growth of the photon number
- Foreward/backward for diagonal measurement/relaxation operators

$$P^{fb}(n,t) = \frac{P^f(n,t)P^b(n,t)}{\sum_m P^f(m,t)P^b(m,t)}$$

- PQS reduces to the "forward/backward smoothing algorithm", which can be safely used in this quantum context
- P(n) is the product of two photon number distributions computed forward and backward in time.

Extracting information from a measurement

Generalized measurement scheme:

The measurement result provides (partial) information on S General state reconstruction problem:

- optimize the amount of information extracted on S
- get the best estimate of the state after a measurement

Quantum state reconstruction and time evolution

. .

Quantum state reconstruction and time evolution

• Reconstruct $\hat{\rho}_s(t)$ given a large number of identical preparation \rightarrow quantum state tomography

→ topic of lecture 4

Quantum state reconstruction and time evolution

- Reconstruct ρ̂_s(t) given a large number of identical preparation
 → quantum state tomography
- Estimate $\hat{\rho}_s(t)$ in a given realization knowing measurement results before $t_0 \rightarrow$ quantum trajectory reconstruction "standard approach"

evolution

- Reconstruct $\hat{\rho}_s(t)$ given a large number of identical preparation \rightarrow quantum state tomography
- Estimate $\hat{\rho}_s(t)$ in a given realization knowing measurement results before $t_0 \rightarrow$ quantum trajectory reconstruction "standard approach"

• Estimate $\hat{\rho}_{s}(t)$ in a given realization knowing measurement results before and after $t_{0} \rightarrow$ Past quantum state (Mölmer PRL 2013)

Generalized quantum measurement

Operators $\{\hat{M}_m\}$: set of operators of S such that • **Proba of result m:** $P(m) = tr \hat{M}_m \hat{\rho}_S \hat{M}_m^+$

•

$$\sum_{m} \hat{M}_{m}^{\dagger} \hat{M}_{m} = \hat{1}$$

Generalized quantum measurement

• Operators $\{\hat{M}_m\}$: set of operators of S such that

$$\sum_{m} \hat{M}_{m}^{\dagger} \hat{M}_{m} = \hat{1} \quad .$$

• Proba of result m: $P(m) = tr \hat{M}_m \hat{\rho}_S \hat{M}_m^+$

→ describes any evolution:

- any measurement
- unitary: only one operator $\hat{M}_0 = \hat{U}(t_0, t)$
- relaxation can be seen as unread measurement in some environment \rightarrow also described by the action of \hat{M}_m on $\hat{\rho}_S$

$$\hat{\rho}_{S}(t) = \hat{\rho}_{S/\{m_{j}\}} = \frac{\hat{M}_{m_{j}}...\hat{M}_{m_{0}}\hat{\rho}_{S}(0)\hat{M}_{m_{0}}^{+}...\hat{M}_{m_{j}}^{+}}{Norm}$$

With $\hat{\rho}_{S/\{m_j\}}$ one can describe the results of any measurement $\{\hat{O}_i\}$ performed at time t_i

 \rightarrow one gets the probability of the measurement result o_i conditional to previous measurements

$$P(o_i, t \mid \{m_{1\dots j}\}) = \frac{tr \ \hat{O}_i \ \hat{\rho}_S(t_j)}{Norm}$$

we are now interested in another conditional probabilitional probabilition description of the measurement of $\{\hat{O}_i\}$ knowing the past and future measurement results.

We are now interested in another conditional probability: probability of the measurement results $\{o_i\}$ knowing the past and future measurement results.

$$\begin{split} P\left(o_{i}, t / \{m_{1...k}\}\right) &= \frac{tr \ \hat{O}_{i} \ \hat{\rho}_{S}\left(t\right) \ \hat{O}_{i}^{+} \ \hat{E}_{S}\left(t\right)}{Norm} \overset{M\"{o}lmer}{PRL 2013} \\ \hat{O}_{S}\left(t\right) &= \hat{\rho}_{S/\{m_{k}\}} &= \frac{\hat{M}_{m_{j}} ... \hat{M}_{m_{0}} \hat{\rho}_{S}\left(0\right) \hat{M}_{m_{0}}^{+} ... \hat{M}_{m_{j}}^{+}}{Norm} \\ \hat{E}_{S}\left(t\right) &= \frac{\hat{M}_{m_{j+1}}^{+} ... \hat{M}_{m_{k}}^{+} \hat{1} \ \hat{M}_{m_{k}} ... \hat{M}_{m_{j+1}}}{Norm} \end{split}$$

The "effect" matrix $\hat{E}_s(t)$ is similar to $\hat{\rho}_s(t)$, it involves the same measurement operators but in opposite order.

II. The past quantum state trajectory reconstruction method

2. Experimental implementation

Experimental setup: an atomic clock

- An atomic clock (Ramsey setup) made of Rydberg for probing light-shifts induced by "trapped" photons
- State selective detection of atoms by field ionization: Atoms detected on "e" or "g" one by one

S. Gammelmak et al. PRL 111, 160401(2013)

$$P(o_i, t / \{m_k\}) = \frac{tr \hat{O}_i \hat{\rho}_S(t) \hat{O}_i^+ \hat{E}_S(t)}{Norm}$$

Apply to photon number operator $\hat{O} = \hat{N}$: $\hat{O}_n = |n\rangle\langle n|$

S. Gammelmak et al. PRL 111, 160401(2013)

$$P(o_i, t / \{m_k\}) = \frac{tr \ \hat{O}_i \ \hat{\rho}_S(t) \ \hat{O}_i^+ \ \hat{E}_S(t)}{Norm}$$

Apply to photon number operator $\hat{O} = \hat{N}$: $\hat{O}_n = |n\rangle\langle n|$

$$P(n,t / \{m_k\}) = \frac{tr |n\rangle \langle n| \hat{\rho}_s(t) |n\rangle \langle n| \hat{E}_s(t)}{Norm}$$

$$P(n,t / \{m_k\}) = \frac{\hat{\rho}_{n,n}^S(t) \hat{E}_{n,n}^S(t)}{Norm}$$

→ implies only diagonal matrix elements

$$P(n,t / \{m_k\}) = \frac{tr \hat{\rho}_{n,n}^{S}(t) \hat{E}_{n,n}^{S}(t)}{Norm}$$

→ Photon number distributions:

$$P(n,t / \{m_k\}) = \frac{tr \hat{\rho}_{n,n}^{S}(t) \hat{E}_{n,n}^{S}(t)}{Norm}$$

→ Photon number distributions:

• Forward estimation:
$$\longrightarrow$$
 $P^{f}(n,t) = \hat{\rho}_{n,n}^{s}(t)$

standard calculation of the density matrix $\rho(t)$ taking into account

- projection at measurement
- relaxation between measurements

$$P(n,t / \{m_k\}) = \frac{tr \hat{\rho}_{n,n}^{S}(t) \hat{E}_{n,n}^{S}(t)}{Norm}$$

→ Photon number distributions:

• Forward estimation: $\longrightarrow P^{f}(n,t) = \hat{\rho}_{n,n}^{S}(t)$

standard calculation of the density matrix $\rho(t)$ taking into account

- projection at measurement
- relaxation between measurements
- Backward estimation: \checkmark $P^{b}(n,t) = \hat{E}_{n,n}^{S}(t)$

calculation effect matrix E(t):

- □ Flat distribution at final time *T*: describes an unknown final state
- □ Same measurement operators as forward
- 'inverse' relaxation (annihilation and creation operators exchanged)
 - → Exponential growth of the photon number in "backward time"

$$P(n,t / \{m_k\}) = \frac{tr \hat{\rho}_{n,n}^S(t) \hat{E}_{n,n}^S(t)}{Norm}$$

→ Photon number distributions:

- Forward estimation: \longrightarrow $P^{f}(n,t) = \hat{\rho}_{n,n}^{S}(t)$
- Backward estimation: \leftarrow $P^{b}(n,t) = \hat{E}^{S}_{n,n}(t)$
- Past quantum state / forward-backward estimation

$$P^{fb}(n,t) = \frac{P^{f}(n,t).P^{b}(n,t)}{Norm}$$

 \rightarrow P(n) is the product of two photon number distributions computed forward and backward in time.

In our case PQS reduces to the "forward/backward smoothing algorithm", which can be safely used in this quantum context

Quantum trajectory for a larger initial field

• Forward estimation of the field at time t

Quantum trajectory for a larger initial field

• Forward estimation of the field at time t

Obvious limitations

- → Noise due to statistical fluctuations of atomic detections
- → Initial ambiguity in the photon number due to the periodicity of the measurement operators
 - Absurd photon number jumps (from 0 to 7)

Forward and backward estimations

T. Rybarczyk, et al. Phy Rev A **91**, 062116 (2015)

Forward and backward estimations

- → Noise due to statistical fluctuations of atomic detections
 → Final ambiguity in the photon number due flat distribution at T and to the periodicity of the measurement operators
- → "Reverse" relaxation makes a good job!

T. Rybarczyk, et al. Phy Rev A **91**, 062116 (2015)

Forward and backward estimations

PQS estimation of a single-photon quantum jump

- A single photon is emitted by a resonant atom at *t*=0
- The estimator only knows QND measurement results

T. Rybarczyk, et al. Phy Rev A 91, 062116 (2015)

Conclusion of lecture 2

• Quantum feedback stabilization of number states

- PQS analysis is a fruitful tool for quantum state estimation:
 - → reconstruction of quantum trajectories with much better fidelity

Also performed for spin 1/2-like systems

- → Gammelmark et al., PRA **89**, 043839
- → Armen et al., PRL **103**, 173601
- → Kerkhoff et al. Opt. Expr. **19**, 6478
- → Tan et al., PRL **114**, 040903

Reference (4)

- Quantum feedback:
 - C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, JM. Raimond and S. Haroche, Nature 477, 73 (2011): "Real-time quantum feedback prepares and stabilizes photon number states".
 - X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J.M. Raimond, M. Brune, and S. Haroche, Phys. Rev. Lett. 108, 243602 (2012): "Field locked to Fock state by quantum feedback with single photon corrections"
 - C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, J.M. Raimond ans S. Haroche, New J. Phys. 14 115007 (2012) doi:10.1088/1367-2630/14/11/115007: "Optimal time-resolved photon number distribution reconstruction of a cavity field by maximum likelihood"
 - B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J.M. Raimond, M. Brune and S. Haroche1, PRA 87, 042320 (2013): "Quantum feedback experiments stabilizing Fock states of light in a cavity".
 - B. Peaudecerf, T. Rybarczyk, S. Gerlich, S. Gleyzes, J. M. Raimond, S. Haroche, I. Dotsenko, and M. Brune, Phys. Rev. Lett. 112, 080401 (2014): "Adaptive Quantum Nondemolition Measurement of a Photon Number".
- Past quantum state:
 - S.Gammelmark, B. Julsgaard, K. Molmer, PRL 111 160401(2013); "Past Quantum States of a Monitored System".
 - T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B. Julsgaard, K. Molmer, S. Gleyzes, M. Brune, J.M. Raimond, S. Haroche, and I. Dotsenko, Phy Rev A 91, 062116 (2015):" Forward-backward analysis of the photon-number evolution in a cavity".