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% Previous lectures

* Achieving strong coupling
between single atoms and
Slngle phOtonS 0‘00 ’ interaitiontinioe(us) "
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Quantum jumps
- of light
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the same photon
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% Repeated measurements:
" evolution of a continuously monitored field

] Field evolution due to
cavity damping

number of photons

T00 200 300 400 500 600 700
time (ms)

Topic of lecture 2:

1- Using QND information for performing quantum feedback

2- Improving the fidelity of quantum trajectories
by "past-quantum state" analysis



I. Stabilization of number states
by quantum feedback




entrée

 Classical feedback is present in nearly all control systems
o A SENSOR measures the system’s state
0 A CONTROLLER compares the measured quantity with a target value
o An ACTUTATOR reacts on the system to bring it closer to the target

« Quantum feedback has same aims for a quantum system
0 Must face a fundamental difficulty:
— Measurement back-action changes the system state



\u ‘ Stabilizing photon nhumber states in a cavity

S. Deléqglise et al.
Nature 455, 510 (2008)

Highly non-classical:

e Negative Wigner Function

e Fast decoherence
T4.=Tc/n

M. Brune et al. PRL 101, 240402 (2008)




Feedback loop

0 Sensor: atom performing QND photon counting

a Controller: a classical computer (Adwin)
= Estimates cavity state taking into account all information
= Determines optimal actuator action

a Actuator
- Classical field pulse
- Quantum: single photon emission/absorption



Feedback loop: classical actuator

« Actuator

0 Classical source performing displacement of cavity field
0 Real amplitude «

0 K choses A and @ after each atom detection

= Use second order approximation of displacement operator for
fast calculations (computing time <82 us)

= Action limited in the lal<0.1 interval



% ‘ complete feedback algorithm

e s
e

s § :
S = A - p

- Controller tasks: at each atom sample detection:
—> Projects the field on the measurement result
= Take onto account field damping

— Take into account various imperfections: detection
efficiency, two atom samples, detection errors...

= Choses the best actions for next actuator atoms




% Estimate distance with respect to target state?

- A simple measure of distance to target 2. =|%){r|

d=1-Tr(pp,) Fidelity of state

a Equal to zero for the target state
0 Equal to 1 (maximal) for all other Fock states
= Does not discriminate properly
the ‘distance’ to the target

* A more sophisticated distance

Nmax

dinep) =1 3 AT lpl) = 1= (A7) ALY — 1
n=0
a provides sensitivity to photon numbers different from n,

a Optimization of A ?

1. Dotsenko et al. Rev. A 80, 013805 (2009)



‘?* Estimate: distance wrt target state

Mmax

d(ne,p) = 1= Y ALY (mlpln) = 1= Tr (A7)

n=0

A coefficients optimization
0 Distance has an absolute

Tal 1.0 m T & '

minimum (0) close to the RVl / P

target state 5. W .

. / . >

a Distance has a local e \< A\
maximum on all other Fock £F | /’ N\ ‘\ |
states B NN 0\'.
a Final optimization by =/ el
numerical simulations of the oo’ =
0 1 2 3 4 5 6 7 8

conve I’gence prOCGSS Photon number, n



Open loop operation: QND and quantum jumps

Elapsed time = 0.0 ms (O iterations)
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Quantum feedback trajectory: 3 photon target

Elapsed time = 0.0 ms (O iterations)

2eT T T T T T T T T

d(3,p) Detection
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%| Quantum feedback traJectory 3 photon target

- Detection outcomes

mwwwww

- Distance to the target

- Control injection: a real

- Photon-number distribution:
P(n<n,), P(n=n,)
and P(n>n,)

120 140 160
Time t (ms)

- Density matrices




Fidelity of the state stabilization

» Average over 4000 trajectories

« Feedback sequence immediately followed by a “standard” QND measurement

Photon number distribution, P(n)
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% Checking the fidelity of the prepared state

Feedback on Feedback off
- =

0 164 Field measurement Time (ms)

by state
“tomography”

Steady state
of feed-back
operation
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Fidelity of the state stabilization

 Average over 4000 trajectories stopped att=164 ms > T,

« Feedback sequence immediately followed by a “standard” QND measurement

Photon number distribution, P(n)
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Fidelity of the state stabilization

* Average over 4000 trajectories stopped when P(n,) reaches 80%
» Feedback sequence immediately followed by a QND measurement based on the
maximum likelihood reconstruction of P(n)

Photon number distribution, P(n)
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Fidelity of|the prepared
state is 73%

Steady-state distribution
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Fidelity of the state stabilization
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Photon number distribution, P(n)

Photon numb
C. Sayrin et al Nature 477, 73 (2011), arxiv1107.4027



Rate of convergence

* Fraction of experiments reaching 80% fidelity versus time
« Compare feedback with a fail and retry method

0 Measure QND for 10 ms

a If n=3 success

Q If not reset field and retry

200 | 300

0 | 10

" Time t (ms)

- Feedback operation is much more efficient

C. Sayrin et al. Nature, 477, 73 (2011)
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Classical and quantum actuators

* Many injections to compensate for a quantum jump

0 Mismatch between the classical source and the nature of the
single-photon quantum jumps
a Slow recovery from jumps (15 ms)
= Method limited to 4 photons

—Lifetime of |[4>=15 ms

* Quantum feedback with a quantum actuator

a Single atom, interacts resonantly with the cavity mode
= Prepared in e: ideally emits a single photon

-

0 ldea

=

Prepared in g: ideally absorbs a single photon
ly compensates for jumps in a single operation

-ast recovery

= Stabilization of higher-lying Fock states



% Single atom actuator action

Rabi oscillation in n photons

e,n)

g,n+l>




% Single atom actuator action

Rabi oscillation in n photons

e,n)

g,n+1>

P, (em/n)

res

P, (abs/n)

Are obtained
by fitting these data
K models the interaction
using these calibrations

'.rs.z[T.q)




Feedback with atom actuator

 Controller action: (1) 4 possible choices
a Absorber: no pulse in R,, atom set on resonance
0 Emitter: t pulse in R1, atom set on resonance
0 QND sensor: /2 pulses in R1 and R2, atom detuned

a At last time: K can decide while the atom is flying not to set
the atom on resonance if this became a better choice.



Feedback with atom actuator

 Controller action (2)

a For atomic emitter/absorber there are no coherences in the

field. Is is enough to estimate the photon number distribution
P(n).

0 Used distance
d = > (n-— n:)’p(n) = An? + (M — ny)?
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Single closed loop trajectory
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— much faster than the 14 ms convergence time of coherent injection method
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Single closed loop trajectory
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Single closed loop trajectory
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— much faster than the 14 ms convergence time of coherent injection method



Feedback for high photon numbers

Reference
coherent state with
n, photons on the average



Feedback for high photon numbers

1 Tl | [ I J [

Reference Steady state
coherent state with ° Stops |00p at 140 ms
n, photons on the average independent QND
estimation of average
photon number
distribution P(n)



(b)

Feedback for high photon numbers

iy, PN

<
o

coet Q‘Obab\\

2
-

photon N

Reference

coherent state with
n, photons on the average

Steady state
e stops loop at 140 ms
e independent QND
estimation of average
photon number

distribution P(n)
Stabilization of photon numbers up to 7

X. Xhou et al., Phys. Rev. Lett. 108, 243602 (2012)

(c)

[ e o
|

Optimal stop
e Stops loop when
p(n.)>0.8
e Independent QND
estimation of P(n)



Next sections where not presented during lecture

I1. The past quantum state trajectory
reconstruction method
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A particular field trajectory

Photon number

Oor8?7?

Interferometer
counts n modulo 8:
does not distinguish

. 0and 8

T T T v T T T T T —
50 100 150 200 250 30 \ l

Time (ms) c, |O> + e, | 8>



A particular field trajectory

Photon number

Finaly jumps to 7: if was not O but 8!

L

v ! 4 I 4 I v 1
50 100 150 200 250
Time (ms)

Looking at the future from that time
tells you that 0 was indeed 8 photons!

Interferometer
counts n modulo 8:
does not distinguish
0and 8

\

CO|0>+C8|8>
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The Past Quantum State approach

e A posteriori estimation of the photon number at ¢ based on all available
information, gathered from 0 to £t AND from tto T

o From the journalist’s to the historian’s perspective
e A quantum formalism: (S. Gammelmak et al. PRL 111, 160401
o The Past quantum state

0 Best estimate for the results of a quantum measurement at ¢ based on
the density matrix o( t;computed forward in time

AND on an "effect matrix" £(7) computed backwards in time.
<€
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Forward-backward estimation

v

e Forward estimation: usual calculation of the density matrix p(t) taking into
account projection at measurement and relaxation > [P/ (n.r)

e Backward estimation: calculation effect matrix E(z) € P’ (n,t)

o Flat distribution at final time T
0 Same measurement operators as forward

0 ‘inverse’ relaxation (annihilation and creation operators exchanged)
- Exponential growth of the photon number



A4

Forward-backward estimation

v

e Forward estimation: usual calculation of the density matrix p(t) taking into
account projection at measurement and relaxation > [P/ (n.r)

e Backward estimation: calculation effect matrix E(z) € P’ (n,t)

o Flat distribution at final time T
0 Same measurement operators as forward

0 ‘inverse’ relaxation (annihilation and creation operators exchanged)
- Exponential growth of the photon number

e Foreward/backward for diagonal measurement/relaxation operators
Pf('n., t)Pb('n.ﬁ t)
> PI(m,t)P%(m,t)

o PQS reduces to the "forward/backward smoothing algorithm", which can
be safely used in this quantum context

o P(n) is the product of two photon number distributions computed
forward and backward in time.

PTb(n. t) =




w% Extracting information from a measurement

- Generalized measurement scheme:

— |/
Cspen ) g et .
Coherent

Irreversible ‘® o o
interaction A projection .

Os O

PR P, <—) [ mmm)  Resultm
pS/m

pS m— pS/m

The measurement result provides (partial) information on S
General state reconstruction problem:

- optimize the amount of information extracted on S
- get the best estimate of the state after a measurement



%uantum state reconstruction and time evolution
v

t .

| > lime
— [State preparation ﬁS ( l‘) M M M S
— IState preparation ﬁS ( t) M M M >
— IState preparation ﬁS ( t) M M M LS




%uantum state reconstruction and time evolution
W

t .
| > lime

()M M M
______|State preparation [’)S ( t) M M M | 5
(

— IState preparation [A)

— [State preparation

»
075)

Reconstruct p,(z) given a large number of identical preparation
- quantum state tomography

= topic of lecture 4
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%u%ntum state reconstruction and time evolution

t

| > time
Ps(0)—M M M —pbst) =M - M M
ps(O)—M M M —pst) MMM —
psO)—M M —M —pst)—M MM —

« Reconstruct p,(z) given a large number of identical preparation
= gquantum state tomography

« Estimate p,(z) in a given realization knowing measurement
results before f, = quantum trajectory reconstruction
"standard approach"



@ptimal quantum state reconstruction and time
n \ evolution

> time

=M MM

M <
nO MMM a0 M MM
<

=M MM

« Reconstruct p,(z) given a large number of identical preparation
- quantum state tomography

« Estimate p,(z) in a given realization knowing measurement
results before f, = quantum trajectory reconstruction

"standard approach"
 Estimate p;(7) in a given realization knowing measurement
results before and after {, = Past quantum state Wasimer PRL 2013)



% Generalized quantum measurement

. Operators{

@ e ( Meter )
Coherent

interaction Irreversible
projection
A M pM*
pS l IOS/m _
Norm

M m} : set of operators of S such that
Proba of result m: |P(m)= M,pM,

1 O

/.

/

on
®

yMM, =1,




% Generalized quantum measurement

@ by ( Meter ) ey |/
Coherent

interaction Irreversible ‘® o e
projection §

MmlaSM;z

Norm

(See T. Gorin lecture)

pS ——> Iﬁs/m —

+ Operators{M, } : set of operators of S such that |>#,M, =1/ .
- Proba of result m: |P(m)=r M,pM;, :

— describes any evolution:

- any measurement

- unitary: only one operator M, =U (t,,t)

- relaxation can be seen as unread measurement in some
environment = also described by the action of M, on POy




Quantum trajectory reconstruction:

: _ slt;andaZeragPrg_ach

/ > time

M AM AM —bs() 1M M M |~




\W | Quantum trajectory reconstruction:

— slt;andaZeragPrg_ach

: > time

ps(O) M =M M |—ps(t) M M M |~

'65/ {m;}

= one gets the probability of the measurement result o,
conditional to previous measurements

tr O, pq 1.
P(Oi,t/{ml...j})= Norjfrg J)




% The "past quantum state approach”

..t t t b

| > time
Ps(0) MMM 6s(t) MMM >
my mj O mj+1
another conditional probability:
{éi} knowing
the past and future measurement results.




w% The "past quantum state approach”

t

;

t

+1

tk

> time

ps(0)

M

M

VoS

— s (1)

M M

M

>

my

M
my

A\

0,

m.,,

J+

We are now interested in anot
probability of the measurement results {o,} knowing

the past and future measurement results.

ner conditional probability:

A

Ps(t)= Osiim) =

r 0. p.(t)O! E.(t --
P(Oi’t/{ml...k}) =— pS]\(IO)rml s() PRL 2013
Mmj M, ps(0)M;, ...M,;J_ £.(1)- M, . M; 1 M, ..M,
Norm > Norm

The "effect" matrix E(¢) is similar to g;(t), it involves the same
measurement operators but in opposite order.




I The past quantum state trajectory
. reconstruction method

2. Experimental implementation



% Experimental setup: an atomic clock

detection

« An atomic clock (Ramsey setup) made of Rydberg for probing
light-shifts induced by “trapped” photons

« State selective detection of atoms by field ionization:
Atoms detected on “e” or “g” one by one



A

Following a quantum trajectory

"
\

S. Gammelmak et al. PRL 111, 160401(2013)
—_— S e———— P(Oi,t/{mk})=tr0ips(t)0i E(t)
i o(t) p B(t) _T Norm

Apply to photon number operator O=N : 0, =|n)(n




A

Following a quantum trajectory

"
\

S. Gammelmak et al. PRL 111, 160401(2013)
M\/\N\/\” r 0. 0.(t) O E.(t
ﬁ_ P(Oi,t/{mk})= lpS]\(]O)rml S( )

0 p(t) / E(t) _iv

Apply to photon number operator O=N : 0, =|n)(n

P(nt{m,}) = 2L s Ol ) (1)

Norm

— implies only diagonal matrix elements



Following a quantum trajectory

W

/

P(n,t/{mk}) =

55, (1) ES, (1)

Norm

- Photon number distributions:




*?» Following a quantum trajectory

(| t ES
MM P(n,t/{mk}) rpnn( ) ( )
— | e Norm

o X (t) t i T| =Photon number distributions:

e Forward estimation: > P/ (nt)=p;,(1)

standard calculation of the density matrix p(t) taking into account

- projection at measurement
- relaxation between measurements




*?» Following a quantum trajectory

(| t ES
MM P(n,t/{mk}) rpnn( ) ( )
SN (_ Norm

o X (t) t A T| =Photon number distributions:

e Forward estimation: > P/ (nt)=p;,(1)

standard calculation of the density matrix p(t) taking into account
- projection at measurement
- relaxation between measurements

e Backward estimation: < P"(nt)=E® ()
calculation effect matrix E(7):
o Flat distribution at final time 7: describes an unknown final state
o Same measurement operators as forward

0 ‘inverse’ relaxation (annihilation and creation operators exchanged)
- Exponential growth of the photon number in "backward time"




Following a quantum trajectory

e Forward estimation: >

e Backward estimation: <

P(n,t/{mk})

or pi, (1) E,, (1)

Norm

- Photon number distributions:

P! (n.1)=

AS

O (?)

P"(nt)=E® ()

e Past quantum state / forward-backward estimation

< >

P” (n,t) =

Pf(n,t).Pb(n,t)

Norm

= P(n) is the product of two photon number distributions computed

forward and backward in time.

In our case PQS reduces to the "forward/backward smoothing algorithm”,
which can be safely used in this quantum context




w% Quantum trajectory for a larger initial field

e Forward estimation of the field at time ¢

15

o~
)
—

G
(n) =~ Photon number, n
> o >

i
2

Pinax

T. Rybarczyk, et al. Phy Rev A 91, 062116 (2015)
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Quantum trajectory for a larger initial field

e Forward estimation of the field at time ¢

(a) 15

-
o
1

Photon number, n
(4]

P’ (n.1)

>

T. Rybarczyk, et al. Phy Rev A 91, 062116 (2015)

Obvious limitations
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— Noise due to statistical fluctuations of atomic detections

= Initial ambiguity in the photon number due to the periodicity of

the measurement operators
— Absurd photon number jumps (from 0 to 7)



% Forward and backward estimations
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T. Rybarczyk, et al. Phy Rev A91,062116 (2015)



Forward and backward estimations

(a) 15

Photon number, n
(4]
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1.0

P’ (n.1)

>

P’ (n,t)

— Noise due to statistical fluctuations of atomic detections

= Final ambiguity in the photon number due flat distribution at T
and to the periodicity of the measurement operators

= "Reverse" relaxation makes a good job!

T. Rybarczyk, et al. Phy Rev A 91, 062116 (2015)
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Forward and backward estimations

(a) 154

104

54

Photon number, n

—

_—

) <
N
oc©°

i

Pfrnax (n
o

W

0.0

() 151

-
o
!

Photon number, n
2]

]
-
il v -~ v ~7
~ _,f»-‘-r’”‘rhﬂf',,r,«“ 2 %‘f ‘WW "'y

JU ¥
IS-MMV o/
T T T :

0 20 40 60

80 100 200 300 400 500

Time, t (ms)

i N ) :
gos MWN M"U 4 T “]H f MM :
-?L.g ' AH‘ JJ“ L‘ J '

20 40 60 80 100

Time, t (ms)

(e) 151 '
= fb
5 o P” (n,t)
[ 9
-
=
S 54 =
°
=
o
0
(f) 1.0 s o :
9876 5 4 3 2 P 1
5 / =
& 05
=4
0.0 : - ; . . ; ; . ;
0 20 40 60 80 100 200 300 400

Time, t (ms)

1.0

P’ (n.1)

>

P’ (n,t)
<€

- Measurement ambiguities lifted

- Considerable noise reduction:
All estimations take into
account ALL available
information

% T Rybarczyk, et al. Phy Rev A 91, 062116 (2015)



% PQS estimation of a single-photon
quantum jump

* A single photon is emitted by a resonant atom at =0
» The estimator only knows QND measurement results

20

| (a : .
(@) : P P’ (n,t)
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T. Rybarczyk, et al. Phy Rev A 91, 062116 (2015)



¥

Conclusion of lecture 2

e Quantum feedback stabilization of number states

e PQS analysis is a fruitful tool for quantum state

estimation:
— reconstruction of quantum trajectories with much better fidelity

p(t) ; 0]

20

1.54

1.0

0.5

T T ‘
0.0 S & VT : =\ O & LN
-100 0 100 200

Also performed for spin 1/2-like systems

-

LR A

Gammelmark et al., PRA 89, 043839
Armen et al., PRL 103, 173601
Kerkhoff et al. Opt. Expr. 19, 6478
Tan et al., PRL 114, 040903
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