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Previous lectures 
Cavity QED with microwave photons and circular Rydberg atoms:
•  L1:Achieving strong coupling 
   between single atoms and 
   single photons
•  L2: Performing QND 
   measurement of the field state
•  L3: application to quantum feedback 
   and past quantum state analysis 
   of a quantum trajectory
•  L4: The same experiment seen 
   from the point of view of the field:
➙Schrödinger cat preparation and 
    monitoring of its decoherence
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Lecture 4: 
Quantum measurement,  

Schrödinger cat and decoherence 



Quantum measurement: basic ingredients 

q  We have shown how to built an ideal QND meter of the photon number
q  This detector is based on a destructive detector of the atom energy.
q  Let us now built a more complete, fully quantum, model of detector including 

the dissipative part

|ψA,B〉≠ |ψA〉⊗|ψB〉   

|ψA〉 

"Rest of the world"

isolated system
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|ψB〉 

Dissipation

Now focus on this part
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1. The “Schrödinger cat”  
and the quantum measurement 

The border separation quantum and 
classical behavior



Quantum description of a meter:  
the "Schrödinger cat" problem 

One encloses in a box a cat whose fate is linked to the evolution 
of a quantum system: one radioactive atom.



The "Schrödinger cat" 
•  One closes the box and wait until the atom is desintegrated with 

a probability 1/2

•  When opening the box is the cat dead, alive or in a 
superposition of both?

? 



Schrödinger cat and quantum measurement 

•  Before opening the box, the system is isolated and unitary 
evolution prepares a maximally atom-meter entangled state

•  Does this state "really" exists?
➙ a more relevant question: can one perform experiments 
demonstrating cat superposition state? Up to which limit?

•  That is a fundamental question for the quantum theory of 
measurement: how does the unphysical entanglement of SC 
state vanishes at the macroscopic scale. That is the problem of 
the transition between quantum and classical world

vif morta b+
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Schrödinger cat and quantum measurement 

•  Real measurement provide one definite result and not 
superposition of results: SC states are unphysical ?

•  Schrödinger: unitary evolution should "obviously" not apply any 
more at "some scale".

•  It seems that the atom-meter space contains to many states for 
describing reality

•  Including dissipation due to the coupling of the meter to the 
environment will provide a physical mechanism "selecting" the 
physically acceptable states.

Let's look at this in a real experiment using a meter whose size 
can be varied continuously from microscopic to macroscopic 
world.
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2. A mesoscopic field  
as atomic state measurement aparatus 



A mesoscopic "meter": coherent field states 

•  Number state: 
•  Quasi-classical state:
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• Photon number distribution

ΔN =  1/|α|

ΔN . ΔΦ > 1

ΔΦ=1/|α| 
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•  Phase space representation

F
Re(a)

Im(a)

N



QND detection of atoms using  
non-resonant interaction with a coherent field  
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QND detection of atoms using  
non-resonant interaction with a coherent field  
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a single atom controls 
the phase of the field

QND detection of atoms using  
non-resonant interaction with a coherent field  

➙The field phase "points" on the atomic state
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➙The field phase "points" on the atomic state

QND detection of atoms using  
non-resonant interaction with a coherent field  



Atom-meter entanglement 
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This is a "Schrödinger cat state"

Let us now consider the effect of 
coupling of the cavity to the 

“environment”
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The role of the "environment": 

•  For long atom-cavity interaction time field 
damping couples the system to the outside world

→ a complete description of the system must take into 
account the state of the field energy "leaking" in the 
environment.

•  General method for describing the role of the 
environment: 

master equation of the field density matrix
•  Physical result: decoherence

1 1,
2

field
field field

cav cav

d a a a a
dt T T
ρ

ρ ρ+ +

+
⎡ ⎤= − +⎣ ⎦

N
cav

dec

τ
τ ≈



The origin of decoherence: 
entanglement with the environment 

•  Decay of a coherent field:

q  the cavity field remains coherent
q  the leaking field has the same 

phase as α
q  no entanglement during decay:
That is a property defining coherent 
states: coherent state are the only 
one which do not get entangled while 
decaying

  

α 0( ) ⊗ vacuum
env
→ α t( ) ⊗ β t( )

env

α t( ) =α 0( ).e−t 2τ cav

Environment



The origin of decoherence: 
entanglement with the environment 

•  Decay of a "cat" state:
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The origin of decoherence: 
entanglement with the environment 

•  Decay of a "cat" state:

q  cavity-environment entanglement: 
the leaking field "broadcasts" phase 
information

q  trace over the environment
⇒ decoherence (=diagonal field 

reduced density matrix) as soon as:
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The origin of decoherence: 
entanglement with the environment 

•  Decay of a "cat" state:
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orthogonal as soon as 
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The decoherence time 

Environment

|α| 

Φ

  
Tdecoh =

2Tcav

D2 =
Tcav

N .2sin2 Φ( )

D: "Distance"  
     between the 
     two fields 
     components.

Infinitely short decoherence time
for macroscopic fields

→ The Schrödinger cat does not exist for 
"long" timeDetailed calculation in

PHYSICA SCRIPTA T78, 29 (1998)  



Quantum measurement: the role of the 
environment 1 

⇒ Physical origin of decoherence: 
leak of information into the environment.

⇒ The experimentalist does not kill the cat when opening the box: the 
environment “knows” whether the cat is dead or alive well before one 

opens the box.

 ⇒ The environment performs continuously unread repeated measurement 
of the cat state

The “collapse” of the quantum state can be considered as a shortcut to 
describe this complex physical process

Does it solves “the measurement problem”?
No: if the problem consists in telling how or why nature chooses 
randomly one classical state. 

Yes: once one a priori accepts the statistical nature of quantum theory, 
dechoherence is the mechanism providing classical probabilities



Quantum measurement: the role of the 
environment 2 

⇒ Definition of "pointer basis" of a meter:   (Zurek)
q  the pointer state of the meter is a classical state
q  once decoherence occurs, the physical state of a meter is described 

by a diagonal density matrix in the pointer basis:

⇒ at this level, quantum description only involves classical 
probabilities and no macroscopic superposition states.

The decoherence approach shows that quantum theory is consistent 
with classical logic at macroscopic scale: it only provides classical 
statistics at the macroscopic scale.
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3. Observing decoherence experimentally 
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Probing the coherence of the cat state 

φ 

D D 

π/2 π/2 

Time 
•  Non resonant phase shift in C

Atom # 2

Atom # 1

φ φ 

π/2 π/2 

"cat" state coherence 
Interference term in two atom correlation

τ



Decoherence signal 

η(τ)

Time delay between atoms  
τ  = t/τcav 

0 1 2 

0.
0 

0.
1 

0.
2 

n=3.3 photons  δ/2π =70 and 170 kHz 

Brune et al. Phys. Rev. Lett. 77, 4887 (1996)  
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4. Full tomography of the field state 

0 1 2

0.
0

0.
1

0.
2

This correlation signal is a very partial 
information on the field state 

 
One can reconstruct the full density matrix 

of the cavity field 



Principle of stet reconstruction 

on 

set of 
observables

unknown state
(density operator)

set of mean 
values 

MeasurementSystem
Results

➙ Each measurement sets a constrain to the density operator

Problems to face:
•  Having a complete set of observable
•  Statistical noise on          may lead to unphysical/very noisy 

density operators



Measuring the field density operator? 

General field state description: density operator
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⎢ ⎥
⎢ ⎥=
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⎢ ⎥
⎣ ⎦

•  Previous lectures:
QND counting of photons 
⇒ measurement of diagonal 
elements ρnn 
⇒How to measure the off-
diagonal elements of ρfield ?

ρ field
α( ) = D̂ α( )ρ field D̂+ α( )

D̂ α( ) = eαa+−α*a    Displacement operator

ρ field

ρ field
(α )

α 
The displacement operator is the unitary 
transform corresponding to the coupling to 
a classical source. It mixes diagonal and 
off-diagonal matrix elements of ρfield. 
Measuring the photon number after 
displacement for a large number of 
different a gives information about all 
matrix elements of ρfield.  

⇒ by counting photons after applying "displacement"



Choice of reconstruction method 

•  Various possibilities:
q  Direct fit of ρfield on the measured data 
q  Maximum likelihood: find ρfield which maximizes the 

probability of finding the actually measured results gi.
q  Maximum entropy principle: find ρfield which fits the 

measurements and additionally maximizes entropy 
S=ρfieldlog(ρfield).   

 
   Estimates the state only on the basis of measured 

information: in case of incomplete set of measurements, 
gives a "worse estimate of ρfield .

   In practice the two last methods give the same result provided 
one measures enough data completely determining the state. 

V. Bužek and G. Drobný, Quantum tomography 
via the MaxEnt principle,  
Journal of Modern Optics 47, 2823 (2000) 

  
gi = tr ρ field .cos φ n̂( )+ϕ( )$

%
&
'



State reconstruction: experimental method 

1- prepare the state to be measured |ψfield〉

2- measure               for a large number of different values 
of α (400 to 600 points).

3- reconstruct ρfield by maximum entropy method
4- calculate Wigner function from ρfield.

  
Ĝ α( )



reconstruction of a coherent field 

•  State fidelity:   
F=98%   for  β 2= 2.5 photons 

Density matrix Wigner function
(measurement)

( )fieldF tr β β ρ=

•  Measurement for 161 values of α  (<1 hour measurement)

•  7000 detected atoms in 600 repetition of the experimental sequence 
for each α. 



Reconstruction of number states 
•  Prepare a coherent state β 2= 1.3 or 5.5 photons.
•  Select pure number state by QND measurement of n. 

 Phase shift per photon φ0≈π/2 : measurement of n modulo 4.
•  Measurements of G(α) for 2 different values of ϕ and ~400 values of α.  

              n=0   1   2   3   4 
Fidelity 0.89                    0.98                       0.92                    0.82                      0.51  
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5. Schrödinger cat states reconstruction 

- state preparation
- a movie of decoherence



Preparation of the cavity cat state 

π 
2 

π
2

phase
φR=0 

e-g 
detection

 Φ0

Phase shift 
per photon 

  

1
2

e + g( )⊗ α ⇒
1
2

e ⊗ α.eiΦ0 2 + g ⊗ α.e−iΦ0 2( )



Preparation of the cavity cat state 

π 
2 

π
2

phase
φR=0 

e-g 
detection

•  Field state after detection: 

 Φ0

Phase shift 
per photon 

  

⇒
1
2

α.eiΦ0 2 + α.e−iΦ0 2( )    if   "e" detected

+
1
2

α.eiΦ0 2 − α.e−iΦ0 2( )    if   "g" detected 0 πΦ =
e ➙ even cat state 

g ➙ odd cat state 

Depending on the detected atomic state the cat has a well defined photon 
number parity. 
For π per photon phase shift, one atom measures just the field parity. 
Projection on a cat state is the "back-action" of parity measurement. 

  

1
2

e + g( )⊗ α ⇒
1
2

e ⊗ α.eiΦ0 2 + g ⊗ α.e−iΦ0 2( )
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Ø  We perform measurements at about 600 points in 
the phase space (about 10 scans)
Ø  ≈ 100 state preparations for each point
Ø  ≈ 12 probe atoms for each state preparation



Reconstructed density matrix (real part) 

(ninj ≈ 2.1 photons) (<n> = 2.2 photons)

expectation 
(even cat)

reconstruction
(even cat)

Fidelity of the preparation and reconstruction - 66% 
(71% for the odd state)  

- 

Even (odd) cat has even (odd) photon number statistics



Reconstructed Wigner function 

No a priori knowledge on a 
prepared state 

except for the size of the 
Hilbert space of 

NHilbert = 9

Deleglise et al. Nature 455, 510 (2008)  



Reconstructed Wigner function 
Classical components

≈2.1 photons in each 
classical component

(amplitude of the initial 
coherent field)

cat size D2 ≈ 7.5 photons

coherent components are 
completely separated 

(D > 1)

D 

Deleglise et al. Nature 455, 510 (2008)  



Reconstructed Wigner function 

Quantum coherence

quantum superposition 
of two classical fields
(interference fringes)

quantum signature of 
the prepared state
(negative values of 

Wigner function)

Deleglise et al. Nature 455, 510 (2008)  



A larger cat for observing decoherence 
•  Initial coherent field β 2= 3.5 photons
•  Measurement for 400 values of α.

Even cat Odd cat Sum of two WF:
Statistical mixture

State fidelity with respect to the expected 
state including phase shift non-lineariry (insets) F= 0.72

Deleglise et al. Nature 455, 510 (2008)  



Movie of decoherence 

Deleglise et al. Nature 455, 510 (2008)  



Decoherence of a D2=11.8 photon cat state 

Tdec= 2Tcav/D2 = 22 ms 

Tdec= 17 ± 3 ms 

Theory:

+ small blackbody 
contribution @ 0.8 K 

Tdec= 19.5 ms 
M.S. Kim and V. Bužek, Schrödinger-cat state at finite temperature, Phys. Rev. A 46, 4239 (1992) 



- Generation of cat states in a cavity

-  State measurement (QND) and 
reconstruction (MaxEnt)

-  Wigner function of the cat states

-  Time evolution and decoherence of 
the cats

Summary 
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Perspectives 



CQED with two cavities 

➙ alive-here-and-dead-there state



Exploring non-local states with two 
cavities 

V. Métillon et al., accepted PRL 
arXiv:1904.04681   

 

1
2

1,0 + 0,1( )

•  Full state reconstruction by "quantum trajectory tomography
Method proposed by P. Rouchon 
P. Six et al., Phys. Rev. A 93, 012109 (2016) 
Quantum state tomography with non-instantaneous measurements, imperfections, and decoherence. 



A two-cavity experiment: exploring quantum 
thermodynamics 

•  Fast atoms crossing two microwave 
high-Q cavities 

 
 
 
 
 
•  Projects 
Quantum thermodynamics 
(ANR with A. Auffeves and P. Sénellart) 

Heat going from 
cold to hot using 
information! 
Exp. In progress 

•  People: Igor Dostenko, collab. A. Auffeves 

Igor Dotsenko



Slow atoms cavity QED set-up 

 
 
 
•  parspectives: 

q  Large cats, metrology of 
decoherence 

q  Quantum Zeno dynamics 
 
q  Reservoir engineering 

 

J.M. Raimond et al PRL 105, 213601 (2010) 

A. Sarlette, A. et al. PRL  107, 010402 (2011)  

Dressed states 
spectroscopy 

V=10 m/s 

Collapse and 
revival of Rabi 

oscillation 

Preparatio n of a 44 
photons cat state 



Another direction: Rydberg atoms without cavities 

81 

Engineering quantum state of the 
Rydberg electron motion 

One Rydberg atom 
➙ use multi-level structure of  

for quantum metrology 
 

➙more about this in the coloquium 

Trapped Rydberg atoms with dipole 
interactions 

➙quantum simulations with circular atoms 
 

➙ topic of lecture 5 

. . .   
51C 

m=n-1 
m=n-2 

m=n-3 

n,l,m : n2 levels with same n 

A S D

x

z y



The LKB-ENS cavity QED team 
•  Staring, in order of apparition 
 

q  Serge Haroche 
q  Michel Gross 
q  Claude Fabre 
q  Philippe Goy 
q  Pierre Pillet 
q  Jean-Michel Raimond 
q  Guy Vitrant 
q  Yves Kaluzny 
q  Jun Liang 
q  Michel Brune 
q  Valérie Lefèvre-Seguin 
q  Jean Hare 
q  Jacques Lepape 
q  Aephraim Steinberg 
q  Andre Nussenzveig 
q  Frédéric Bernardot 
q  Paul Nussenzveig 
q  Laurent Collot 
q  Matthias Weidemuller 
q  François Treussart 
q  Abdelamid Maali 
q  David Weiss 
q  Vahid Sandoghdar 
q  Jonathan Knight 
q  Nicolas Dubreuil 
q  Peter Domokos 
q  Ferdinand Schmidt-Kaler 
q  Jochen Dreyer 

q  Peter Domokos 
q  Ferdinand Schmidt-

Kaler 
q  Ed Hagley 
q  Xavier Maître 
q  Christoph Wunderlich 
q  Gilles Nogues 
q  Vladimir Ilchenko 
q  Jean-François Roch 
q  Stefano Osnaghi 
q  Arno Rauschenbeutel 
q  Wolf von Klitzing 
q  Erwan Jahier 
q  Patrice Bertet 
q  Alexia Auffèves 
q  Romain Long 
q  Sébastien Steiner 
q  Paolo Maioli 
q  Philippe Hyafil 
q  Tristan Meunier 
q  Perola Milman 
q  Jack Mozley 
q  Stefan Kuhr 
q  Sébastien Gleyzes 
q  Christine Guerlin 
q  Thomas Nirrengarten 
q  Cédric Roux 
q  Julien Bernu 

 
q  Ulrich Busk-Hoff 
q  Andreas Emmert 
q  Adrian Lupascu 
q  Jonas Mlynek 
q  Igor Dotsenko 
q  Samuel Deléglise 
q  Clément Sayrin 
q  Xingxing Zhou 
q  Bruno Peaudecerf 
q  Raul Teixeira 
q  Sha Liu 
q  Theo Rybarczyk 
q  Carla Hermann 
q  Adrien Signolles 
q  Adrien Facon 
q  Stefan Gerlich  
q  Than Long Nguyen 

q  Eva Dietsche 
q  Dorian Grosso 
q  Frédéric Assémat 
q  Athur Larrouy 
q  Valentin Métillon 
q  Tigrane Cantat-

Moltrecht 

 

Collaboration: L davidovich, N. Zaguri, P. Rouchon, A. Sarlette, S Pascazio, K. Mölmer … 
Cavity technilogy: CEA Saclay, Pierre Bosland 
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