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For a system at a temperature of absolute zero, all thermal ¯uctuations are frozen out, while quantum ¯uctuations prevail. These
microscopic quantum ¯uctuations can induce a macroscopic phase transition in the ground state of a many-body system when the
relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition
in a Bose±Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential
depth of the lattice is increased, a transition is observed from a super¯uid to a Mott insulator phase. In the super¯uid phase, each
atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms
are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the
excitation spectrum. We can induce reversible changes between the two ground states of the system.

A physical system that crosses the boundary between two phases
changes its properties in a fundamental way. It may, for example,
melt or freeze. This macroscopic change is driven by microscopic
¯uctuations. When the temperature of the system approaches zero,
all thermal ¯uctuations die out. This prohibits phase transitions in
classical systems at zero temperature, as their opportunity to change
has vanished. However, their quantum mechanical counterparts can
show fundamentally different behaviour. In a quantum system,
¯uctuations are present even at zero temperature, due to Heisen-
berg's uncertainty relation. These quantum ¯uctuations may be
strong enough to drive a transition from one phase to another,
bringing about a macroscopic change.

A prominent example of such a quantum phase transition is the
change from the super¯uid phase to the Mott insulator phase in a
system consisting of bosonic particles with repulsive interactions
hopping through a lattice potential. This system was ®rst studied
theoretically in the context of super¯uid-to-insulator transitions in
liquid helium1. Recently, Jaksch et al.2 have proposed that such a
transition might be observable when an ultracold gas of atoms with
repulsive interactions is trapped in a periodic potential. To illustrate
this idea, we consider an atomic gas of bosons at low enough
temperatures that a Bose±Einstein condensate is formed. The
condensate is a super¯uid, and is described by a wavefunction
that exhibits long-range phase coherence3. An intriguing situation
appears when the condensate is subjected to a lattice potential in
which the bosons can move from one lattice site to the next only by
tunnel coupling. If the lattice potential is turned on smoothly, the
system remains in the super¯uid phase as long as the atom±atom
interactions are small compared to the tunnel coupling. In this
regime a delocalized wavefunction minimizes the dominant kinetic
energy, and therefore also minimizes the total energy of the many-
body system. In the opposite limit, when the repulsive atom±atom
interactions are large compared to the tunnel coupling, the total
energy is minimized when each lattice site is ®lled with the same
number of atoms. The reduction of ¯uctuations in the atom
number on each site leads to increased ¯uctuations in the phase.
Thus in the state with a ®xed atom number per site phase coherence
is lost. In addition, a gap in the excitation spectrum appears. The
competition between two terms in the underlying hamiltonian

(here between kinetic and interaction energy) is fundamental to
quantum phase transitions4 and inherently different from normal
phase transitions, which are usually driven by the competition
between inner energy and entropy.

The physics of the above-described system is captured by the
Bose±Hubbard model1, which describes an interacting boson gas in
a lattice potential. The hamiltonian in second quantized form reads:
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Here Ãai and Ãa²
i correspond to the bosonic annihilation and

creation operators of atoms on the ith lattice site, Ãni � Ãa²
i Ãai is

the atomic number operator counting the number of atoms on
the ith lattice site, and ei denotes the energy offset of the ith
lattice site due to an external harmonic con®nement of the
atoms2. The strength of the tunnelling term in the hamiltonian
is characterized by the hopping matrix element between adja-
cent sites i,j J � 2ed3x w�x 2 xi��2~2=2=2m � V lat�x��w�x 2 xj�,
where w�x 2 xi� is a single particle Wannier function localized to
the ith lattice site (as long as ni < O�1�), Vlat(x) indicates the optical
lattice potential and m is the mass of a single atom. The repulsion
between two atoms on a single lattice site is quanti®ed by the on-site
interaction matrix element U � �4p~2a=m�ejw�x�j4d3x, with a
being the scattering length of an atom. In our case the interaction
energy is very well described by the single parameter U, due to the
short range of the interactions, which is much smaller than the
lattice spacing.

In the limit where the tunnelling term dominates the hamilto-
nian, the ground-state energy is minimized if the single-particle
wavefunctions of N atoms are spread out over the entire lattice with
M lattice sites. The many-body ground state for a homogeneous
system (ei � const:) is then given by:
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Here all atoms occupy the identical extended Bloch state. An
important feature of this state is that the probability distribution
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for the local occupation ni of atoms on a single lattice site is
poissonian, that is, its variance is given by Var�ni� � hÃnii. Further-
more, this state is well described by a macroscopic wavefunction
with long-range phase coherence throughout the lattice.

If interactions dominate the hamiltonian, the ¯uctuations in
atom number of a Poisson distribution become energetically very
costly and the ground state of the system will instead consist of
localized atomic wavefunctions with a ®xed number of atoms per
site that minimize the interaction energy. The many-body ground
state is then a product of local Fock states for each lattice site. In this
limit, the ground state of the many-body system for a commensu-
rate ®lling of n atoms per lattice site in the homogeneous case is
given by:
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This Mott insulator state cannot be described by a macroscopic
wavefunction like in a Bose condensed phase, and thus is not
amenable to a treatment via the Gross-Pitaevskii equation or
Bogoliubov's theory of weakly interacting bosons. In this state no
phase coherence is prevalent in the system, but perfect correlations
in the atom number exist between lattice sites.

As the strength of the interaction term relative to the tunnelling
term in the Bose±Hubbard hamiltonian is changed, the system
reaches a quantum critical point in the ratio of U/J, for which the
system will undergo a quantum phase transition from the super¯uid
state to the Mott insulator state. In three dimensions, the phase
transition for an average number of one atom per lattice site is
expected to occur at U=J � z 3 5:8 (see refs 1, 5, 6, 7), with z being
the number of next neighbours of a lattice site. The qualitative
change in the ground-state con®guration below and above the
quantum critical point is also accompanied by a marked change
in the excitation spectrum of the system. In the super¯uid regime,
the excitation spectrum is gapless whereas the Mott insulator phase
exhibits a gap in the excitation spectrum5±8. An essential feature of a
quantum phase transition is that this energy gap ¢ opens up as the
quantum critical point is crossed.

Studies of the Bose±Hubbard hamiltonian have so far included
granular superconductors9,10 and one- and two-dimensional
Josephson junction arrays11±16. In the context of ultracold atoms,
atom number squeezing has very recently been demonstrated with a
Bose±Einstein condensate in a one-dimensional optical lattice17.
The above experiments were mainly carried out in the limit of large
boson occupancies ni per lattice site, for which the problem can be
well described by a chain of Josephson junctions.

In our present experiment we load 87Rb atoms from a Bose±
Einstein condensate into a three-dimensional optical lattice poten-
tial. This system is characterized by a low atom occupancy per
lattice site of the order of hnii < 1 2 3, and thus provides a unique
testing ground for the Bose±Hubbard model. As we increase the
lattice potential depth, the hopping matrix element J decreases
exponentially but the on-site interaction matrix element U
increases. We are thereby able to bring the system across the critical
ratio in U/J, such that the transition to the Mott insulator state is
induced.

Experimental technique
The experimental set-up and procedure to create 87Rb Bose±
Einstein condensates are similar to those in our previous experi-
mental work18,19. In brief, spin-polarized samples of laser-cooled
atoms in the (F � 2, mF � 2) state are transferred into a cigar-
shaped magnetic trapping potential with trapping frequencies of
nradial � 240 Hz and naxial � 24 Hz. Here F denotes the total angular
momentum and mF the magnetic quantum number of the state.
Forced radio-frequency evaporation is used to create Bose±Einstein
condensates with up to 2 3 105 atoms and no discernible thermal
component. The radial trapping frequencies are then relaxed over a

period of 500 ms to nrad � 24 Hz such that a spherically symmetric
Bose±Einstein condensate with a Thomas±Fermi diameter of
26 mm is present in the magnetic trapping potential.

In order to form the three-dimensional lattice potential, three
optical standing waves are aligned orthogonal to each other, with
their crossing point positioned at the centre of the Bose±Einstein
condensate. Each standing wave laser ®eld is created by focusing a
laser beam to a waist of 125 mm at the position of the condensate. A
second lens and a mirror are then used to re¯ect the laser beam back
onto itself, creating the standing wave interference pattern. The
lattice beams are derived from an injection seeded tapered ampli®er
and a laser diode operating at a wavelength of l � 852 nm. All
beams are spatially ®ltered and guided to the experiment using
optical ®bres. Acousto-optical modulators are used to control the
intensity of the lattice beams and introduce a frequency difference of
about 30 MHz between different standing wave laser ®elds. The
polarization of a standing wave laser ®eld is chosen to be linear and
orthogonal polarized to all other standing waves. Due to the
different frequencies in each standing wave, any residual interfer-
ence between beams propagating along orthogonal directions is
time-averaged to zero and therefore not seen by the atoms. The
resulting three-dimensional optical potential (see ref. 20 and
references therein) for the atoms is then proportional to the sum
of the intensities of the three standing waves, which leads to a simple
cubic type geometry of the lattice:

V�x; y; z� � V 0�sin2
�kx� � sin2

�ky� � sin2
�kz�� �4�

Here k � 2p=l denotes the wavevector of the laser light and V0 is
the maximum potential depth of a single standing wave laser ®eld.
This depth V0 is conveniently measured in units of the recoil energy
Er � ~2k2=2m. The con®ning potential for an atom on a single
lattice site due to the optical lattice can be approximated by a
harmonic potential with trapping frequencies nr on the order of
nr < �~k2=2pm�

�����������
V 0=Er

p
. In our set-up potential depths of up to

22 Er can be reached, resulting in trapping frequencies of approxi-
mately nr < 30 kHz. The gaussian intensity pro®le of the laser
beams at the position of the condensate creates an additional
weak isotropic harmonic con®nement over the lattice, with trap-
ping frequencies of 65 Hz for a potential depth of 22 Er.

The magnetically trapped condensate is transferred into the
optical lattice potential by slowly increasing the intensity of the
lattice laser beams to their ®nal value over a period of 80 ms using an
exponential ramp with a time constant of t � 20 ms. The slow ramp
speed ensures that the condensate always remains in the many-body
ground state of the combined magnetic and optical trapping
potential. After raising the lattice potential the condensate has
been distributed over more than 150,000 lattice sites (,65 lattice
sites in a single direction) with an average atom number of up to
2.5 atoms per lattice site in the centre.

In order to test whether there is still phase coherence between
different lattice sites after ramping up the lattice potential, we
suddenly turn off the combined trapping potential. The atomic
wavefunctions are then allowed to expand freely and interfere with
each other. In the super¯uid regime, where all atoms are delocalized
over the entire lattice with equal relative phases between different
lattice sites, we obtain a high-contrast three-dimensional interfer-
ence pattern as expected for a periodic array of phase coherent
matter wave sources (see Fig. 1). It is important to note that the
sharp interference maxima directly re¯ect the high degree of phase
coherence in the system for these experimental values.

Entering the Mott insulator phase
As we increase the lattice potential depth, the resulting interference
pattern changes markedly (see Fig. 2). Initially the strength of
higher-order interference maxima increases as we raise the potential
height, due to the tighter localization of the atomic wavefunctions at
a single lattice site. Quite unexpectedly, however, at a potential
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depth of around 13 Er the interference maxima no longer increase in
strength (see Fig. 2e): instead, an incoherent background of atoms
gains more and more strength until at a potential depth of 22 Er no
interference pattern is visible at all. Phase coherence has obviously
been completely lost at this lattice potential depth. A remarkable
feature during the evolution from the coherent to the incoherent
state is that when the interference pattern is still visible no broad-
ening of the interference peaks can be detected until they completely
vanish in the incoherent background. This behaviour can be
explained on the basis of the super¯uid±Mott insulator phase
diagram. After the system has crossed the quantum critical point
U=J � z 3 5:8, it will evolve in the inhomogeneous case into
alternating regions of incoherent Mott insulator phases and coher-
ent super¯uid phases2, where the super¯uid fraction continuously
decreases for increasing ratios U/J.

Restoring coherence
A notable property of the Mott insulator state is that phase
coherence can be restored very rapidly when the optical potential
is lowered again to a value where the ground state of the many-body
system is completely super¯uid. This is shown in Fig. 3. After only
4 ms of ramp-down time, the interference pattern is fully visible
again, and after 14 ms of ramp-down time the interference peaks
have narrowed to their steady-state value, proving that phase
coherence has been restored over the entire lattice. The timescale
for the restoration of coherence is comparable to the tunnelling time
ttunnel � ~=J between two neighbouring lattice sites in the system,

which is of the order of 2 ms for a lattice with a potential depth of 9
Er. A signi®cant degree of phase coherence is thus already restored
on the timescale of a tunnelling time.

It is interesting to compare the rapid restoration of coherence
coming from a Mott insulator state to that of a phase incoherent
state, where random phases are present between neighbouring
lattice sites and for which the interference pattern also vanishes.
This is shown in Fig. 3b, where such a phase incoherent state is
created during the ramp-up time of the lattice potential (see Fig. 3
legend) and where an otherwise identical experimental sequence is
used. Such phase incoherent states can be clearly identi®ed by
adiabatically mapping the population of the energy bands onto
the Brillouin zones19,21. When we turn off the lattice potential
adiabatically, we ®nd that a statistical mixture of states has been
created, which homogeneously populates the ®rst Brillouin zone of
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Figure 1 Schematic three-dimensional interference pattern with measured absorption

images taken along two orthogonal directions. The absorption images were obtained after

ballistic expansion from a lattice with a potential depth of V 0 � 10E r and a time of ¯ight of

15 ms.
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Figure 2 Absorption images of multiple matter wave interference patterns. These were

obtained after suddenly releasing the atoms from an optical lattice potential with different

potential depths V0 after a time of ¯ight of 15 ms. Values of V0 were: a, 0 Er; b, 3 Er; c, 7 E r ;

d, 10 Er; e, 13 Er; f, 14 Er; g, 16 E r ; and h, 20 E r.

22
a

c d e

b

9V
0 

(E
r)

W
id

th
 o

f c
en

tr
al

 p
ea

k 
(µ

m
)

0

0
0 2 4 6 8 10 12 14

25

50

75

100

125

80 ms 20 ms

t (ms)

τ = 20 ms

t
Time

Figure 3 Restoring coherence. a, Experimental sequence used to measure the restoration

of coherence after bringing the system into the Mott insulator phase at V 0 � 22E r and

lowering the potential afterwards to V 0 � 9E r; where the system is super¯uid again. The

atoms are ®rst held at the maximum potential depth V0 for 20 ms, and then the lattice

potential is decreased to a potential depth of 9 Er in a time t after which the interference

pattern of the atoms is measured by suddenly releasing them from the trapping potential.

b, Width of the central interference peak for different ramp-down times t, based on a

lorentzian ®t. In case of a Mott insulator state (®lled circles) coherence is rapidly

restored already after 4 ms. The solid line is a ®t using a double exponential decay

(t1 � 0:94�7�ms, t2 � 10�5�ms). For a phase incoherent state (open circles) using the

same experimental sequence, no interference pattern reappears again, even for ramp-

down times t of up to 400 ms. We ®nd that phase incoherent states are formed by applying

a magnetic ®eld gradient over a time of 10 ms during the ramp-up period, when the

system is still super¯uid. This leads to a dephasing of the condensate wavefunction due to

the nonlinear interactions in the system. c±e, Absorption images of the interference

patterns coming from a Mott insulator phase after ramp-down times t of 0.1 ms (c), 4 ms

(d), and 14 ms (e).
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the three-dimensional lattice. This homogeneous population proves
that all atoms are in the vibrational ground state of the lattice, but
the relative phase between lattice sites is random. Figure 3b shows
that no phase coherence is restored at all for such a system over a
period of 14 ms. Even for evolution times t of up to 400 ms, no
reappearance of an interference pattern could be detected. This
demonstrates that the observed loss of coherence with increasing
potential depth is not simply due to a dephasing of the condensate
wavefunction.

Probing the excitation spectrum
In the Mott insulator state, the excitation spectrum is substantially
modi®ed compared to that of the super¯uid state. The excitation
spectrum has now acquired an energy gap ¢, which in the limit
J p U is equal to the on-site interaction matrix element ¢ � U (see
refs 5±8). This can be understood within a simpli®ed picture in the
following way. We consider a Mott insulator state with exactly
n � 1 atom per lattice site. The lowest lying excitation for such a
state is the creation of a particle±hole pair, where an atom is
removed from a lattice site and added to a neighbouring lattice
site (see Fig. 4a). Due to the on-site repulsion between two atoms,
the energy of the state describing two atoms in a single lattice site is
raised by an amount U in energy above the state with only a single
atom in this lattice site. Therefore in order to create an excitation the
®nite amount of energy U is required. It can be shown that this is
also true for number states with exactly n atoms per lattice site. Here
the energy required to make a particle±hole excitation is also U.
Hopping of particles throughout the lattice is therefore suppressed
in the Mott insulator phase, as this energy is only available in virtual
processes. If now the lattice potential is tilted by application of a
potential gradient, tunnelling is allowed again if the energy
difference between neighbouring lattice sites due to the potential
gradient equals the on-site interaction energy U (see Fig. 4b). We
thus expect a resonant excitation probability versus the applied

energy difference between neighbouring lattice sites for a Mott
insulator phase.

We probe this excitation probability by using the experimental
sequence shown in Fig. 5a. If excitations have been created during
the application of the potential gradient at the potential depth
V 0 � Vmax, we will not be able to return to a perfectly coherent
super¯uid state by subsequently lowering the potential to a depth of
V 0 � 9Er. Instead, excitations in the Mott insulator phase will lead
to excitations in the lowest energy band in the super¯uid case. These
excitations are simply phase ¯uctuations between lattice sites, and
cause a broadening of the interference maxima in the interference
pattern (see Fig. 5b). Figure 5c±f shows the width of the interference
peaks versus the applied gradient for four different potential depths
Vmax. For a completely super¯uid system at 10 Er, the system is easily
perturbed already for small potential gradients and for stronger
gradients a complete dephasing of the wavefunctions leads to a
saturation in the width of the interference peaks. At a potential
depth of about 13 Er two broad resonances start to appear in the
excitation spectrum, and for a potential depth of 20 Er a dramatic
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Figure 4 Excitation gap in the Mott insulator phase with exactly n � 1 atom per lattice

site. a, The lowest lying excitations in the Mott insulator phase consist of removing an

atom from a lattice site and adding it to neighbouring lattice sites. Owing to the on-site

repulsion between the atoms, this requires a ®nite amount U in energy and hopping of the

atoms is therefore suppressed. b, If a potential gradient is applied to the system along the

z-direction, such that the energy difference between neighbouring lattice sites equals the

on-site interaction energy U, atoms are allowed to tunnel again. Particle±hole excitations

are then created in the Mott insulator phase.
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Figure 5 Probing the excitation probability versus an applied vertical potential gradient.

a, Experimental sequence. The optical lattice potential is increased in 80 ms to a potential

depth V 0 � V max. Then the atoms are held for a time of 20 ms at this potential depth,

during which a potential gradient is applied for a time tperturb. The optical potential is then

lowered again within 3 ms to a value of V 0 � 9E r, for which the system is super¯uid

again. Finally, a potential gradient is applied for 300 ms with a ®xed strength, such that the

phases between neighbouring lattice sites in the vertical direction differ by p. The

con®ning potential is then rapidly turned off and the resulting interference pattern is

imaged after a time of ¯ight of 15 ms (b). Excitations created by the potential gradient at a

lattice depth of V 0 � V max will lead to excitations in the super¯uid state at V 0 � 9E r.

Here excitations correspond to phase ¯uctuations across the lattice, which will in¯uence

the width of the observed interference peaks. c±f, Width of interference peaks versus

the energy difference between neighbouring lattice sites DE, due to the potential

gradient applied for a time tperturb. c, V max � 10E r, tperturb � 2 ms; d, V max � 13E r,

tperturb � 6 ms; e, V max � 16E r, tperturb � 10 ms; and f, V max � 20E r, tperturb � 20 ms.

The perturbation times tperturb have been prolonged for deeper lattice potentials in order to

account for the increasing tunnelling times. The solid lines are ®ts to the data based on

two gaussians on top of a linear background.
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change in the excitation spectrum has taken place. Two narrow
resonances are now clearly visible on top of an otherwise
completely ¯at excitation probability. The slightly higher offset
of the excitation probability for a deep optical lattice (Fig. 5e, f)
compared to the initial width of the interference peaks in Fig. 5c,
is due to the fact that after 3 ms ramp down time from a deep
optical lattice, the system is still in the dynamical process of
restoring coherence coming from the Mott insulator phase. For
longer hold times this offset approaches almost the same initial
width as in Fig. 5c, showing that we are not able to excite the
system at all except for the two resonance gradients. At these large
potential depths, the narrow resonances show that the energy gap
¢ of the system, which is measured here as the minimum energy
difference between neighbouring lattice sites for which the system
can be perturbed, is almost equal to the centre position of the
resonance.

We have in fact found the Mott insulator state to be extremely
robust to external perturbations, such as a modulation of the
trapping potential or a modulation of the gradient potential, as
long as the resonance gradients are avoided. The ®rst resonance can
be directly attributed to the creation of single particle±hole excita-
tions in the Mott insulator state, and directly proves that we have
indeed entered the Mott insulator regime. The second, weaker
resonance occurs at exactly twice the energy difference of the ®rst,
stronger resonance. It can most probably be attributed to at least
one of the following processes: (1) simultaneous tunnelling of two
particles in a Mott insulator phase with n . 1 atoms, (2) second-
order processes, in which two particle±hole pairs are created
simultaneously, with only one in the direction of the applied
gradient, and (3) tunnelling processes occurring between lattice
sites with n � 1 atom next to lattice sites with n � 2 atoms. In
comparison, a two-dimensional lattice at a maximum potential
depth of Vmax � 20Er, which we still expect to be in the super¯uid
regime, shows no resonances but a smooth excitation spectrum,
similar to Fig. 5c.

The position of the resonances in the three-dimensional lattice
can be seen to shift with increasing potential depth due to the tighter
localization of the wave packets on a lattice site (see Fig. 6). We have
compared the position of the ®rst resonance versus the potential

depth Vmax to an ab initio calculation of U based on Wannier
functions from a band structure calculation, and ®nd good agree-
ment within our experimental uncertainties (see Fig. 6).

Transition point
Both the vanishing of the interference pattern and the appearance of
resonances in the excitation spectrum begin to occur at potential
depths of V 0 � 12�1�±13�1� Er, indicating the transition to the Mott
insulator phase. We therefore expect the experimental transition
point to lie above V 0 � 10�1� Er, where no resonances are visible,
and below V 0 � 13�1� Er. It is important to compare this parameter
range to the theoretical prediction based on the expected critical
value U=J � z 3 5:8. In our simple cubic lattice structure, six next
neighbours surround a lattice site. J and U can be calculated
numerically from a band structure calculation for our experimental
parameters, from which we ®nd that U/J < 36 for a potential depth
of 13 Er. The theoretical prediction for the transition point is
therefore in good agreement with the experimental parameter
range for the transition point.

Outlook
We have realized experimentally the quantum phase transition from
a super¯uid to a Mott insulator phase in an atomic gas trapped in an
optical lattice. The experiment enters a new regime in the many-
body physics of an atomic gas. This regime is dominated by
atom±atom interactions and it is not accessible to theoretical
treatments of weakly interacting gases, which have so far proved to
be very successful in describing the physics of Bose±Einstein
condensates22. The experimental realization of the Bose±Hubbard
model with an atomic gas now allows the study of strongly
correlated many-body quantum mechanics with unprecedented
control of parameters. For example, besides controlling mainly
the tunnelling matrix element, as done in this work, it should be
possible in future experiments to control the atom±atom inter-
actions via Feshbach resonances23,24.

The atoms in the Mott insulator phase can be considered as a new
state of matter in atomic gases with unique properties. Atom
number ¯uctuations at each lattice site are suppressed, and a well-
de®ned phase between different lattices sites no longer exists. These
number states have been proposed for the realization of a Heisen-
berg-limited atom interferometer25, which should be capable of
achieving improved levels of precision. The Mott insulator phase
also opens a new experimental avenue for recently proposed
quantum gates with neutral atoms26. M
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