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Exact Hydrodynamics of a Trapped Dipolar Bose-Einstein Condensate
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We present exact results in the Thomas-Fermi regime for the statics and dynamics of a harmonically
trapped Bose-Einstein condensate that has dipole-dipole interactions in addition to the usual s-wave
contact interactions. Remarkably, despite the nonlocal and anisotropic nature of the dipolar interac-
tions, the density profile in a general time-dependent harmonic trap is an inverted parabola. The
evolution of the condensate radii is governed by local, ordinary differential equations, and as an
example we calculate the monopole and quadrupole shape oscillation frequencies.
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upon release of the trap (often necessary for imaging
the BEC).

excitations in a homogeneous dipolar BEC: for "dd > 1
instabilities can occur in the hydrodynamic limit [16,17].
A Bose-Einstein condensate (BEC) whose particles
interact via dipole-dipole forces constitutes an example
of a superfluid with long-range and anisotropic interpar-
ticle interactions. This is in contrast to usual BECs which
have isotropic interactions whose range is far less than the
average interparticle separation (see [1] for a review). The
long-range and anisotropic nature of dipole-dipole inter-
actions has been predicted to lead to BECs with unusual
stability properties [2], exotic states such as supersolid
and checkerboard phases [3,4], and modified excitation
spectra [5], even to the extent of a roton minimum [6].
Alkali atoms typically have small dipole-dipole interac-
tions, but a good candidate for a dipolar BEC is chromium
since it has a large magnetic moment of six Bohr mag-
netons, and there has recently been progress in cooling it
towards degeneracy [7]. Molecules can, of course, have
huge dipole moments: advances in the cooling of polar
molecules [8], photoassociation of ultracold heteronu-
clear molecules [9], and molecular BECs [10] suggest
we might soon see superfluids where dipolar effects
dominate.

Here we consider a harmonically trapped BEC that
has dipole-dipole interactions as well as short-range
s-wave scattering. In the Thomas-Fermi limit (where
the zero-point kinetic energy of the atoms in the trap
is negligible in comparison to the interparticle interaction
energy and the trapping potential) the collective dynam-
ics of a BEC are described by the collisionless hydro-
dynamic theory of Bose superfluids at zero temperature
[11]. The dipolar interactions render the already nonlin-
ear hydrodynamic equations nonlocal. Nevertheless,
we shall obtain the density profile in the presence of
time-dependent harmonic trapping, which is equivalent
to the results obtained for ordinary nondipolar BECs
by Kagan et al. [12] and by Castin and Dum [13].
The solutions for the dynamics provide a general
tool, which can be used for analyzing a dipolar BEC,
e.g., large amplitude oscillations, or ballistic expansion
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The dominant interactions in the ultracold gases cre-
ated thus far are asymptotically of the van der Waals type,
which decay as r�6 and are short range in comparison to
the average interatomic distance. Within the mean-field
regime of the Gross-Pitaevskii equation [1] these inter-
actions are modeled by a pseudopotential, g��r� �
�4�as �h2=m���r�, where m is the atomic mass, and g
incorporates the quantum aspects of low-energy scatter-
ing via the s-wave scattering length, as. By using a
Feshbach resonance, the value of as can be adjusted
between positive (repulsive) and negative (attractive) val-
ues [14]. Dipolar interactions occur if the atoms are
polarized by an electric field [15], or if the atoms possess
a magnetic moment [16]. By analogy to nuclear magnetic
resonance techniques, dipole-dipole interactions can also
be controlled in both magnitude and sign by rapidly
rotating an external field [17]—they vanish when the
rotation is at the so-called magic angle.

The long-range part of the interaction between two
dipoles separated by r, and aligned by an external field
along a unit vector êe, is given by

Udd�r� �
Cdd

4�
êeiêej

��ij � 3r̂rir̂rj�

r3
: (1)

Dipoles induced by an electric field E � Eêe have a cou-
pling Cdd � E2�2=�0, where � is the static polarizability,
and �0 the permittivity of free space. For atoms with a
magnetic dipole moment dm aligned by a magnetic field
B � Bêe, one has Cdd � �0d

2
m, where �0 is the perme-

ability of free space. A measure of the strength of the
dipolar interactions relative to the s-wave scattering is
given by the dimensionless quantity

"dd �
Cdd

3g
: (2)

Note that the value of g can be altered by the presence
of a strong electric field [5]. The definition (2) arises
naturally from an analysis of the frequencies of collective
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Alkali atoms can have a magnetic dipole moment of
dm � 1�B (Bohr magneton), and for 87Rb, which has
as � 103a0 (Bohr radius), "dd � 0:007. Na has "dd �
0:004, and accordingly magnetic dipolar effects in
BECs of these atoms are small, at least in a stationary
condition: the effects of dipolar interactions can be made
visible by rotating the magnetic field in resonance with a
collective excitation frequency of the system [17]. Also,
using a Feshbach resonance to reduce as could substan-
tially increase "dd [18]. Chromium, on the other hand, has
dm � 6�B. The more common bosonic isotope, 52Cr, has
as � 170 � 40a0 [7], giving "dd � 0:089. The less com-
mon bosonic isotope 50Cr has as � 40 � 15a0 [7], and
"dd � 0:36 is much higher. Using a crossed optical trap,
atom numbers in a 52Cr BEC on the order of N � 104

might be within reach, and the frequencies of the har-
monic confinement would be in the region of !x � !y �
2�170 s�1 and!z � 2�240 s�1 [19]. The trap anisotropy
� � !z=!x � 1:41 is optimal for enhancing the conden-
sate shape deformations [20]. For a trapped BEC with
just s-wave scattering the Thomas-Fermi limit is reached
for large values of the parameter Nas=aho [1], where
aho �

��������������
�h=m!

p
is the harmonic oscillator length of

the trap, and N is the total number of atoms. For 52Cr
one has Nas=aho � 102, illustrating that an analysis
within the Thomas-Fermi regime is appropriate for these
experiments.

Collisionless hydrodynamics derives from the exis-
tence of a macroscopic condensate order parameter
 �r; t� �

�������������
n�r; t�

p
expi!�r; t�, normalized to N, consisting

of density n�r; t�, and phase !�r; t�. The phase determines
the superfluid velocity via potential flow, v�r; t� �
� �h=m�r!�r; t�. The nonlinear evolution of a nondipolar
BEC in the Thomas-Fermi regime is dictated by the
continuity and Euler equations given by, respectively,

@n
@t

� �r � �nv�; (3)

m
@v
@t

� �r

�
mv2

2
	 Vext 	 gn

�
: (4)

Vext is the external potential, which is provided by
the harmonic trap, Vext�r� � m�!2

xx
2 	!2

yy
2 	!2

zz
2�=2.

Equations (3) and (4) are equivalent to the time-
dependent Gross-Pitaevskii equation [1] when a zero-
point fluctuation term �� �h2r2

���
n

p
=2m

���
n

p
� is included in

the brackets on the right-hand side (rhs) of (4). The
equilibrium solution of (3) and (4), which has v � 0, is
the well-known Thomas-Fermi inverted parabola, n�r� �
��� Vext�r�
=g for n�r� � 0, and n�r� � 0 elsewhere. �
is the chemical potential. The density profile is com-
pletely determined by the trapping potential and has the
same aspect ratio as the trap.

Motivated by the experimental possibility of changing
the trapping frequencies in time, so that !j ! !j�t� with
j � x; y; z, Refs. [12,13] studied a special class of an exact
‘‘scaling’’ solution to (3) and (4) for time-dependent
250401-2
harmonic traps, corresponding to [1]

n�r; t� � n0�t�
�
1 �

x2

R2
x�t�

�
y2

R2
y�t�

�
z2

R2
z�t�

�
; (5)

v �r; t� �
1

2
r��x�t�x2 	 �y�t�y2 	 �z�t�z2
; (6)

for n�r; t� � 0, and n�r; t� � 0 elsewhere. n0�t� �
15N=�8�Rx�t�Ry�t�Rz�t�
 is the central density. The time
evolution of the radii Rj is governed by three ordinary
differential equations, and �j � _RRj=Rj.

Exact static solution for a Thomas-Fermi dipolar
BEC.—The simplicity of the inverted-parabola solution
(5) and (6) relies upon the local character of s-wave
contact interactions to give a mean-field potential gn�r�.
Dipolar interactions, on the other hand, are long range
and give rise to a potential [5]

�dd�r� �
Z
d3r0Udd�r� r0�n�r0�: (7)

The hydrodynamic equations for a dipolar BEC are
the same as given in (3) and (4), but with (4)
supplemented by adding �dd�r� into the bracket on
the rhs. Using the identity ���ij � 3r̂rir̂rj�=4�r3
 �
�rirj�1=4�r� �

1
3�ij��r�, we can rewrite (7) as

�dd�r� � �Cdd

�
êeiêejrirj!�r� 	

1

3
n�r�

�
; (8)

with

!�r� �
1

4�

Z d3r0n�r0�
jr� r0j

: (9)

We thereby reduce the dipolar problem to an analogy
with electrostatics, involving the ‘‘potential’’!�r� arising
from the ‘‘static charge’’ distribution n�r�. Indeed, !�r�
given by (9) obeys Poisson’s equation, r2! � �n�r�. The
integral (9) can therefore be calculated by using methods
such as the Green’s functions for Poisson’s equation in a
coordinate system appropriate to the boundary conditions
set by the form of n�r�. The surprising result that this
form should also be parabolic can be seen from the
following argument: if the density is parabolic then
Poisson’s equation is satisfied by a potential ! � a0 	
a1x2 	 a2y2 	a3z2 	a4x2y2 	 a5x2z2 	 a6y2z2 	 a7x4 	
a8y4 	 a9z4. By inserting this! into (8) one sees that the
dipolar mean-field potential, �dd�r�, is also parabolic.
Therefore, in a harmonic trap, all the terms in the bracket
on the rhs of the Euler equation are either quadratic or
constants, just as in the simple s-wave only case, and
remarkably an inverted parabola remains a self-consis-
tent solution to the dipolar hydrodynamic equations.

For simplicity (though not necessity), we restrict at-
tention to cylindrical symmetry for both trap and BEC
about the z axis, along which the applied polarizing field
is taken to point. Thus Rx � Ry and Vext � �m=2��!2

x&2 	
!2
zz

2
, where &2 � x2 	 y2. The evaluation of the integral
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FIG. 1. Aspect ratio ( of the parabolic solution as a function
of "dd. Each line is for a different trap aspect ratio � (( � �
when "dd � 0). When 0< ��(
< 1 the trap [condensate] is
prolate, ��(
 > 1 the trap [condensate] is oblate. Dashed lines
indicate unstable branches. Note, however, that short-wave-
length phonons can also cause instabilities if "dd > 1.
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FIG. 2. The monopole (dashed line) and quadrupole (dash-
dotted line) oscillation frequencies as functions of "dd. The trap
aspect ratio is set at � � 240=170. The solid lines are for
s-wave contact interactions only, �0

�. The frequencies become
complex at the value of "dd at which the equilibrium solution
(12) becomes unstable to scaling perturbations, but other in-
stabilities, such as phonons, can also arise when "dd > 1.
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FIG. 3. The monopolar (dashed line) and quadrupolar (solid
line) frequencies as fractions of their s-wave-only frequencies,
�0

�, for 52Cr ("dd � 0:089) and 50Cr ("dd � 0:36), plotted as
functions of the trap anisotropy �.
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(9) over the inverted-parabola (5) density distribution can
be achieved using Green’s functions in spheroidal coor-
dinates. We give this calculation elsewhere [21]. The result
is a potential (8) inside the condensate region, given by

�dd �
n0Cdd

3

�
&2

R2
x
�

2z2

R2
z
� f�(�

�
1 �

3

2

&2 � 2z2

R2
x � R2

z

��
;

(10)

where

f�(� �
1 	 2(2

1 � (2 �
3(2arctanh

���������������
1 � (2

p

�1 � (2�3=2
; (11)

and ( � Rx=Rz is the condensate aspect ratio. We recover
the result (9) of [17] in the particular case of spherical
symmetry (Rx � Rz). We have also checked (10) and (11)
by direct numerical integration of (7).

To determine the equilibrium values of the radii, the
result (10) for �dd should be substituted into the Euler
Eq. (4) with v � 0, giving

Rx � Ry �
�

15gN(

4�m!2
x

�
1 	 "dd

�
3

2

(2f�(�

1 � (2 � 1

�	�
1=5

(12)

andRz � Rx=(. The value of the aspect ratio ( is given by
the solution of a transcendental equation [5,20]

(2

�2

�
3"ddf�(�

1 � (2

�
�2

2
	 1

�
�2"dd � 1

�
� "dd � 1; (13)

where � � !z=!x is the ratio of the trapping frequencies.
Figure 1 shows the dependence of ( upon "dd for various
trap aspect ratios. Dipole-dipole forces polarized along z
cause an elongation of the BEC along this axis. For an
oblate trap (� > 1) the BEC becomes spherical when
"dd � �5=2���2 � 1�=��2 	 2�.
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An analysis of the energy functional associated with
the scaling solution (5) shows that when "dd > 1 the
solution loses its global stability to scaling perturbations
and is only metastable [2,5] (only a local minimum of the
energy, the global minimum being a collapsed pencil-like
prolate state). Increasing "dd further, the scaling solution
ceases to exist entirely in the region marked as unstable in
Fig. 1. However, we caution the reader that as one enters
the region where "dd > 1 an inverted-parabola scaling
solution also becomes unstable to phonons with wave-
lengths much smaller than the size of the BEC [21],
similarly to the homogenous case. Our solutions are
therefore unlikely to remain accurate outside the stable
region, and the figures extend beyond "dd � 1 only to
indicate the influence of the instability in organizing the
250401-3
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solutions in the stable region. In order to obtain an accu-
rate picture for "dd � 1 it is necessary to include the zero-
point fluctuation term neglected in Eq. (4).

Exact hydrodynamics of a dipolar condensate.—
Substituting (5) and (6) into the continuity and Euler
equations yields the equations of motion for the radii

 RR x � �!2
x�t�Rx

	
15gN

4�mRxRz

�
1

R2
x
� "dd�t�

�
1

R2
x
	

3

2

f�Rx=Rz�

R2
x � R2

z

��
;

(14)

 RR z � �!2
z�t�Rz

	
15gN

4�mR2
x

�
1

R2
z
	 2"dd�t�

�
1

R2
z
	

3

2

f�Rx=Rz�

R2
x � R2

z

��
:

(15)

These equations for the dynamics are exact, and together
250401-4
with the equilibrium radii (12), form the main results
of this paper. They provide an efficient way to calculate
the evolution of a dipolar BEC in a time-dependent
trap [!j�t�], including ballistic expansion if the trap is
turned off [18,20]. Another possibility is time-dependent
dipolar coupling ["dd�t�], which can be realized by mod-
ulating the polarizing field in time. This can be used, e.g.,
to parametrically excite the quadrupole shape oscillation
mode [17]. Such an experiment would allow a determi-
nation of "dd. If the trap is turned off, the s-wave and
dipolar interaction energies are converted into kinetic
energy, the so-called release energy, which can be
measured in an experiment. We find Erel � 15gN2�1 �
"ddf�(�
=�28�R2

xRz�, where (, Rx, and Rz are the equi-
librium values calculated from (13) and (12).

Linearizing (14) and (15) around the static solution
(12) gives the frequencies for small amplitude oscillations
�2
� �

!2
x

2
�hxx	 hzz�

���������������������������������������������
�hxx�hzz�2 	 4hxzhzx

q

; hxx � 1	 3

�
1�"dd

�
1� 2(2

1�(2 	
(2�4(2 	 1�f�(�

2�1�(2�2

���
";

hzz � �2 	 2(2

�
1	"dd

�
5� 2(2

1�(2 �
3�(2 	 4�f�(�

2�1�(2�2

���
"; hzx � 2hxz � 2(

�
1�"dd

�
1	 2(2

1�(2 �
15(2f�(�

2�1�(2�2

���
";

(16)

2 2
where " � 1 	 "dd�3( f�(�=�2 � 2( � � 1
. �� corre-
sponds to quadrupole, and �	 to monopole (breathing)
shape oscillations, respectively [5]; see Fig. 2. Certain
trap anisotropies maximize the effects of dipolar inter-
actions upon the frequencies, as shown in Fig. 3.

Conclusion.—The versatility of quantum gases makes
them good systems to study the role of interactions in
superfluidity.We have solved the dipolar superfluid hydro-
dynamic equations in a harmonic trap: the condensate
density is parabolic, like in the pure s-wave case but with
modified radii. The evolution of the radii due to a time-
dependent harmonic trap/dipolar interaction is given by
Eqs. (14) and (15), which therefore represent a valuable
tool for the analysis of upcoming experiments.
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