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An open-system quantum simulator with
trapped ions
Julio T. Barreiro1*, Markus Müller2,3*, Philipp Schindler1, Daniel Nigg1, Thomas Monz1, Michael Chwalla1,2, Markus Hennrich1,
Christian F. Roos1,2, Peter Zoller2,3 & Rainer Blatt1,2

The control of quantum systems is of fundamental scientific interest and promises powerful applications and
technologies. Impressive progress has been achieved in isolating quantum systems from the environment and
coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various
physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled
coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open
quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we
combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We
illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states,
the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit
observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system
quantum simulation and computation.

Every quantum system is inevitably coupled to its surrounding
environment. Significant progress has been made in isolating systems
from their environment and coherently controlling the dynamics of
several qubits1–4. These achievements have enabled the realization of
high-fidelity quantum gates and the implementation of small-scale
quantum computing and communication devices, as well as the
measurement-based probabilistic preparation of entangled states in
atomic5,6, photonic7, NMR8 and solid-state set-ups9–11. In particular,
successful demonstrations of quantum simulators12,13, which allow
one to mimic and study the dynamics of complex quantum systems,
have been reported14.

In contrast, controlling the more general dynamics of open systems
amounts to engineering both the Hamiltonian time evolution of
the system as well as the coupling to the environment. In previous
work15–18, controlled decoherence has been used to systematically
study the detrimental effects of decoherence on many-body or
multi-qubit open systems. The ability to design dissipation can,
however, be a useful resource, as in the context of the preparation of
a desired entangled state from an arbitrary initial state19–21, and in the
closely related fields of dissipative quantum computation22 and
quantum memories23. It also enables the preparation and manipulation
of many-body states and quantum phases20, and provides an enhanced
sensitivity in precision measurements24. In particular, by combining
suitably chosen coherent and dissipative operations, one can engineer
the system–environment coupling, thus generalizing the concept of
Hamiltonian quantum simulation to open quantum systems13,25.

Here we provide an experimental demonstration of a toolbox of
coherent and dissipative multi-qubit manipulations to control the
dynamics of open systems. In a string of trapped ions, each ion
encoding a qubit, we subdivide the qubits into ‘system’ and ‘environ-
ment’. The system–environment coupling is then engineered
through the universal set of quantum operations available in ion-trap
quantum computers26,27, whereas the environment ion is coupled to

the dissipative bath of vacuum modes of the radiation field via optical
pumping. Following ref. 22 (see also ref. 28), these quantum resources
provide a complete toolbox to engineer general Markovian open-
system dynamics in our multi-qubit system25,29.

We first illustrate this engineering by dissipatively preparing a Bell
state in a 211 ion system (that is, two system ions and one ancilla
ion), such that an initially fully mixed state is pumped into a given
Bell state. Similarly, with 411 ions, we also dissipatively prepare a
four-qubit Greenberger–Horne–Zeilinger (GHZ) state, which can be
regarded as a minimal instance of Kitaev’s toric code30. Besides the
dissipative elements, we show coherent n-body interactions by imple-
menting the fundamental building block for four-spin interactions. In
addition, we demonstrate a readout of n-particle observables in a
non-destructive way with a quantum-non-demolition (QND) mea-
surement of a four-qubit stabilizer operator. We conclude by out-
lining future perspectives and implications of the present work for
quantum information processing and simulation, as well as open-
system quantum control scenarios including feedback25.

Open-system dynamics and Bell-state pumping
The dynamics of an open quantum system S coupled to an environ-
ment E can be described by the unitary transformation rSE.UrSEU{,
with rSE the joint density matrix of the composite system S 1 E. Thus,
the reduced density operator of the system will evolve as
rS 5 TrE(UrSEU{). The time evolution of the system can also be
described by a completely positive Kraus map

rS.E rSð Þ~
X

k

EkrSE{
k ð1Þ

with Ek operation elements satisfying
X

k
E{

k Ek~1, and initially
uncorrelated system and environment31. If the system is decoupled
from the environment, the general map (1) reduces to rS.USrSU{

S ,
with US the unitary time evolution operator acting only on the system.
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Control of both coherent and dissipative dynamics is then achieved
by finding corresponding sequences of maps (1) specified by sets of
operation elements {Ek} and engineering these sequences in the labor-
atory. In particular, for the example of dissipative quantum-state pre-
paration, pumping to an entangled state jyæ reduces to implementing
appropriate sequences of dissipative maps. These maps are chosen to
drive the system to the desired target state irrespective of its initial state.
The resulting dynamics have then the pure state jyæ as the unique
attractor, rS. yj i yh j. In quantum optics and atomic physics, the tech-
niques of optical pumping and laser cooling are successfully used for
the dissipative preparation of quantum states, although on a single-
particle level. The engineering of dissipative maps for the preparation of
entangled states can be seen as a generalization of this concept of
pumping and cooling in driven dissipative systems to a many-particle
context. To be concrete, we focus on dissipative preparation of stabilizer
states, which represent a large family of entangled states, including
graph states and error-correcting codes32.

We start by outlining the concept of Kraus map engineering for the
simplest non-trivial example of ‘pumping’ a system of two qubits into a
Bell state. The Hilbert space of two qubits is spanned by the four Bell states
defined as W+

�� �
~ 1ffiffi

2
p 00j i+ 11j ið Þ and Y+

�� �
~ 1ffiffi

2
p 01j i+ 10j ið Þ. Here,

j0æ and j1æ denote the computational basis of each qubit, and we use the
short-hand notation j00æ 5 j0æ1j0æ2, for example. These maximally
entangled states are stabilizer states: the Bell state jW1æ, for instance, is
said to be stabilized by the two stabilizer operators Z1Z2 and X1X2, where
X and Z denote the usual Pauli matrices, as it is the only two-qubit state
that is an eigenstate of eigenvalue 11 of these two commuting obser-
vables, that is, Z1Z2jW1æ 5 jW1æ and X1X2jW1æ 5 jW1æ. In fact, each of
the four Bell states is uniquely determined as an eigenstate with eigen-
values 61 with respect to Z1Z2 and X1X2. The key idea of pumping is
that we can achieve dissipative dynamics which pump the system into a
particular Bell state, for example rS. Y{j i Y{h j, by constructing two
dissipative maps, under which the two qubits are irreversibly transferred
from the 11 into the 21 eigenspaces of Z1Z2 and X1X2.

The dissipative maps are engineered with the aid of an ancilla
‘environment’ qubit25,33 and a quantum circuit of coherent and dissip-
ative operations. The form and decomposition of these maps into basic
operations are discussed in Box 1. The pumping dynamics are deter-
mined by the probability of pumping from the 11 into the 21 stabilizer
eigenspaces, which can be directly controlled by varying the parameters
in the employed gate operations. For pumping with unit probability
(p 5 1), the two qubits reach the target Bell state—regardless of their
initial state—after only one pumping cycle, that is, by a single application

of each of the two maps. In contrast, when the pumping probability is
small (p = 1), the process can be regarded as the infinitesimal limit of
the general map (1). In this case, the system dynamics under a
repeated application of the pumping cycle are described by a master
equation34:

_rS~{i HS,rS½ �

z
X

k

ckrSc{k{
1
2

c{kckrS{rS
1
2

c{kck

� � ð2Þ

Here HS is a system Hamiltonian, and ck are Lindblad operators reflect-
ing the system–environment coupling. For the purely dissipative maps
discussed here, HS 5 0. Quantum jumps from the 11 into the 21
eigenspace of Z1Z2 and X1X2 are mediated by a set of two-qubit
Lindblad operators (see Box 1 for details); here the system reaches
the target Bell state asymptotically after many pumping cycles.

Experimental Bell-state pumping
The dissipative preparation of n-particle entangled states is realized in a
system of n 1 1 40Ca1 ions confined to a string by a linear Paul trap and
cooled to the ground state of the axial centre-of-mass mode35. For each
ion, the internal electronic Zeeman levels D5/2(m 5 21/2) and
S1/2(m 5 21/2) encode the logical states j0æ and j1æ of a qubit. For
coherent operations, a laser at a wavelength of 729 nm excites the
quadrupole transition connecting the qubit states (S1/2 « D5/2). A broad
beam of this laser couples to all ions (Fig. 1a) and realizes the collective
single-qubit gate UX hð Þ~exp {i h

2

P
i Xi

� �
as well as a Mølmer-

Sørensen36 (MS) entangling operation UX2 hð Þ~exp {i h
4

P
i Xi

� �2
	 


when using a bichromatic light field (h is controlled by the intensity
and length of the laser pulses). Shifting the optical phase of the drive
field by p/2 exchanges Xi by Yi in these operations. As a figure of merit
of our entangling operation, we can prepare 3 (5) qubits in a GHZ state
with 98% (95%) fidelity37. These collective operations form a universal
set of gates when used in conjunction with single-qubit rotations
UZi hð Þ~exp {i h

2 Zi
� �

, which are realized by an off-resonant laser
beam that can be adjusted to focus on any ion.

For engineering dissipation, the key element of the mapping steps,
shown as (i) and (iii) in Box 1, is a single MS operation. The two-qubit
gate, step (ii), is realized by a combination of collective and single-qubit
operations. The dissipative mechanism, step (iv), is here carried out on
the ancilla qubit by a reinitialization into j1æ, as shown in Fig. 1b.
Another dissipative process (P.S. et al., manuscript in preparation)
can be used to prepare the system qubits in a completely mixed state
by the transfer 0j i? 0j iz S’j ið Þ

� ffiffiffi
2
p

followed by optical pumping of
jS9æ into j1æ, where jS9æ is the electronic level S1/2(m 5 1/2).

Qubit read-out is accomplished by fluorescence detection on the
S1/2 « P1/2 transition. The ancilla qubit can be measured without affect-
ing the system qubits by applying hiding pulses that shelve the system
qubits in the D5/2 state manifold during fluorescence detection38.

We use these tools to implement up to three Bell-state pumping
cycles on a string of 211 ions. Starting with the two system qubits in a
completely mixed state, we pump towards the Bell state jY2æ. Each
pumping cycle is accomplished with a sequence of eight entangling
operations, four collective unitaries and six single-qubit operations
(see Supplementary Information). The pumping dynamics are probed
by quantum state tomography of the system qubits after every half
cycle. The reconstructed states are then used to map the evolution of
the Bell-state populations.

In a first experiment, we set the pumping probability at p 5 1 to
observe deterministic pumping, and we obtain the Bell-state popula-
tions shown in Fig. 2a. As expected, the system reaches the target state
after the first pumping cycle. Regardless of experimental imperfec-
tions, the target state population is preserved under the repeated
application of further pumping cycles and reaches up to 91(1)% (all
numbers in parentheses denote 1s confidence intervals) after 1.5
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Figure 1 | Experimental tools for the simulation of open quantum systems
with ions. a, The coherent component is realized by collective (UX, UY, UX2 ,
UY2 ) and single-qubit operations (UZi ) on a string of 40Ca1 ions which consists
of the environment qubit (ion 0) and the system qubits (ions 1 to n). Coherent
operations on S and E, combined with a controllable dissipative mechanism
involving spontaneous emission of a photon from the environment ion, allow
one to tailor the coupling of the system qubits to an artificial environment. This
should be contrasted to the residual, detrimental coupling of the system (and
environment) ions to their physical environment. b, The dissipative mechanism
on the ancilla qubit is realized in the two steps shown on the Zeeman-split 40Ca1

levels by (1) a coherent transfer of the population from | 0æ to | S9æ (brown
arrow) and (2) an optical pumping to | 1æ after a transfer to the 42P1/2 state by a
circularly-polarized laser at 397 nm (represented by a blue straight arrow).
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cycles (ideally 100%). In a second experiment, aimed at simulating
master-equation dynamics, the probability is set at p 5 0.5 to probe
probabilistic pumping dynamics. The target state is then approached
asymptotically (Fig. 2b). After pumping the system for three cycles
with p 5 0.5, up to 73(1)% of the initially mixed population is pumped
into the target state (ideally 88%). To achieve Bell-state pumping in
the limit of p = 1, the gate fidelities need to be raised closer to one
because close to the stationary state of the dynamics, the pumping
probability p per step for populating the target state competes directly

with loss processes at a rate e. Such losses are associated with gate
errors and lead to a steady state loss of fidelity that scales as / e/p (see
Supplementary Information for further details).

In order to completely characterize the Bell-state pumping process,
we also perform a quantum process tomography31. As an example, the
reconstructed process matrix for p 5 1 after 1.5 cycles (Fig. 2c) has a
Jamiolkowski process fidelity39 of 87.0(7)% with the ideal dissipative
process rS. Y{j i Y{h j which maps an arbitrary state of the system
into the Bell state jY2æ.

BOX 1

Engineering dissipative open-system dynamics
Dissipativedynamics thatpumptwoqubits fromanarbitrary initial state into theBell state jY 2æ are realizedby twomaps thatgeneratepumping from
the 11 into the 21 eigenspaces of the stabilizer operators Z1Z2 and X1X2:

For Z1Z2, the dissipative map pumping into the 21 eigenspace is rS.E rSð Þ~E1rSE{
1zE2rSE{

2 with

E1~
ffiffiffi
p
p

X2
1
2

1zZ1Z2ð Þ

E2~
1
2

1{Z1Z2ð Þz
ffiffiffiffiffiffiffiffiffiffiffi
1{p

p 1
2

1zZ1Z2ð Þ

Themap’s action as aunidirectional pumping process canbeseen as follows. As theoperationelementE1 contains theprojector 1
2 1zZ1Z2ð Þ onto the

11 eigenspace of Z1Z2, the spin flip X2 can then convert 11 into 21 eigenstates of Z1Z2; for example, Wzj i. Yzj i. In contrast, the 21 eigenspace of
Z1Z2 is left invariant. In the limit p = 1, the repeated application of this map reduces the process to a master equation with Lindblad operator

c~ 1
2 X2 1zZ1Z2ð Þ.

We implement the twodissipative maps by quantum circuits of three unitary operations (i)–(iii) and a dissipative step (iv). Both maps act on the two
system qubits S and an ancilla which plays the role of the environment E.

Pumping Z1Z2 proceeds as follows: (i) Information about whether the system is in the 11 or 21 eigenspace of Z1Z2 is mapped by M(Z1Z2) onto the
logical states j0æ and j1æ of theancilla (initially in j1æ). (ii) A controlled gateC(p) converts 11 into 21eigenstatesby flipping the stateof thesecond qubit
with probability p, where

C pð Þ~ 0j i 0h j06UX2
pð Þz 1j i 1h j061

with UX2
pð Þ~exp iaX2ð Þ and a controlling the pumping probability p 5 sin2 a. (iii) The initial mapping is inverted by M21(Z1Z2). At this stage, in general,

the ancilla andsystem qubits are entangled. (iv) The ancilla is dissipatively reset to j1æ, which carries away entropy to ‘cool’ the two system qubits. The
second map for pumping into the 21 eigenspace of X1X2 is obtained from interchanging the roles of X and Z above.

The engineering of dissipative maps can be readily generalized to systems of more qubits. As an example, dissipative preparation of n-qubit
stabilizer states canberealizedbyasequenceofndissipativemaps (for example, forZ1Z2 andX1X2X3X4 pumping),whichare implemented inanalogy
to the quantum circuits for Bell state pumping discussed above.
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Four-qubit stabilizer pumping
The engineering of the system–environment coupling, as demon-
strated by Bell-state pumping above, can be readily extended to larger
n-qubit open quantum systems. We illustrate such an engineering
experimentally with the dissipative preparation of a four-qubit
GHZ state 0000j iz 1111j ið Þ

� ffiffiffi
2
p

. This state is uniquely characterized
as the simultaneous eigenstate of the four stabilizers Z1Z2, Z2Z3, Z3Z4

and X1X2X3X4, all with eigenvalue 11 (Fig. 3a). Therefore, the pump-
ing dynamics into the GHZ state are realized by four consecutive
dissipative steps, each pumping the system into the 11 eigenspaces
of the four stabilizers. In a system of 411 ions, we implement such
pumping dynamics in a manner analogous to the Bell-state pumping
sequence. Here, however, the circuit decomposition of one pumping
cycle involves 16 five-ion entangling operations, 20 collective
unitaries and 34 single-qubit operations; further details are given in
Supplementary Information.

In order to observe this deterministic pumping process into the GHZ
state, we begin by preparing the system ions in a completely mixed state.
The evolution of the state of the system after each pumping step is
characterized by quantum state tomography. The reconstructed den-
sity matrices shown in Fig. 3b for the initial and subsequent states
arising in each step have a fidelity (in %), or state overlap40, with the
expected states of {79(2),89(1),79.7(7),70.0(7),55.8(4)} (the final state is
genuinely multi-partite entangled41); see Supplementary Information
for further details. The pumping dynamics is clearly reflected by the
measured expectation values of the stabilizers ZiZj (ij 5 12, 23, 34, 14)
and X1X2X3X4 at each step, as shown in Fig. 3c.

Although the simulation of a master equation strictly requires small
pumping probabilities, we perform an exploratory study as follows.
We implement up to five consecutive X1X2X3X4-stabilizer pumping
steps with two probabilities p 5 1 and 0.5, for the initial state j1111æ.
The measured expectation values of all relevant stabilizers for pump-
ing with p 5 1 are shown in Fig. 3d. After the first step, the stabilizer
X1X2X3X4 reaches an expectation value of 20.68(1); after the second
step and up to the fifth step, it is preserved at 20.72(1) regardless of
experimental imperfections.

For X1X2X3X4-stabilizer pumping with p 5 0.5, the four-qubit
expectation value increases at each step and asymptotically approaches
20.54(1) (ideally 21; fit shown in Fig. 3d). A state tomography after

each pumping step yields fidelities (in %) with the expected GHZ state
of {53(1), 50(1), 49(1), 44(1), 41(1)}. From the reconstructed density
matrices, we determine that the states generated after one to three
cycles are genuinely multi-partite entangled41.

Coherent four-particle interactions
The coupling of the system to an ancilla particle, as used above for the
engineering of dissipative dynamics, can also be harnessed to mediate
effective coherent n-body interactions between the system qubits31,33.
The demonstration of a toolbox for open-system quantum simulation
is thus complemented by adding unitary maps rS.USrSU{

S to the
dissipative elements described above. Here, US 5 exp(2itHS) is the
unitary time evolution operator for a time step t, which is generated
by a system Hamiltonian HS. In contrast to the recent achievements42,43

of small-scale analogue quantum simulators based on trapped ions,
where two-body spin Hamiltonians have been engineered directly44,
here we pursue a gate-based implementation following the concept of
Lloyd’s digital quantum simulator13, where the time evolution is
decomposed into a sequence of coherent (and dissipative) steps.

In particular, the available gate operations enable a simulation of
n-body spin interactions, which we illustrate by implementing time
dynamics of a four-body Hamiltonian HS 5 2gX1X2X3X4. This
example is motivated by the efforts to experimentally realize Kitaev’s
toric code Hamiltonian30, which is a sum of commuting four-qubit
stabilizer operators representing four-body spin interactions. This
paradigmatic model belongs to a whole class of spin systems, which
have been discussed in the context of topological quantum computing
and quantum phases exhibiting topological order45.

The elementary unitary operation US can be realized in three steps
by the circuit shown in Fig. 4a. (i) As in the stabilizer pumping above,
an operation M(X1X2X3X4), here realized by an entangling MS gate
UX2 p=2ð Þ, coherently maps the information about whether the four
system spins are in the 11(21) eigenspace of X1X2X3X4 onto the
internal states j0æ and j1æ of the ancilla qubit. (ii) Owing to this map-
ping, effectively all 11 (21) eigenstates acquire a phase b/2 (2b/2) by
a subsequent single-qubit rotation UZ(b) on the ancilla ion. The simu-
lation time step t is related to the phase by b 5 2gt. (iii) After the initial
mapping is inverted by a second MS gate UX2 p=2ð Þ, the ancilla qubit
returns to its initial state and decouples from the four system qubits,
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Figure 2 | Experimental signatures of Bell-state pumping. a, b, Evolution of
the Bell-state populations | W1æ (green down triangles), | W2æ (orange circles),
| Y1æ (blue squares) and | Y 2æ (red up triangles) of an initially mixed state
under a pumping process with probability p 5 1 or deterministic (a) and
p 5 0.5 (b). Error bars, not shown, are smaller than 2% (1s). c, Reconstructed
process matrix x (real part), displayed in the Bell-state basis, describing the

deterministic pumping of the two ions after one-and-a-half cycles. The ideal
process mapping any input state into the state | Y 2æ has as non-zero elements
only the four transparent bars shown. The imaginary elements of x, ideally all
zero, have an average magnitude of 0.004 and a maximum of 0.03. The
uncertainties in the elements of the process matrix are smaller than 0.01 (1s).
The colours of tickmarks and bars follow the colours used in a and b.
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which in turn have evolved according to US. This compact sequence
makes the simulation of n-body interactions experimentally efficient.
Here, the use of global MS gates conveniently bundles the effect of
several operations (M.M., K. Hammerer, Y. Zhou, C.F.R. and P.Z.,
manuscript in preparation) which arise in alternative circuit decom-
positions based on two-qubit gates31.

In an experiment carried out with 411 ions, we apply US for dif-
ferent values of t to the system ions initially prepared in j1111æ. We
observe coherent oscillations in the subspace spanned by j0000æ and
j1111æ, as shown in Fig. 4b. We characterize our implementation of US

by comparing the expected and measured states, determined by
quantum state tomography, for each value of t. The fidelity between
the expected and measured states is on average 85(2)%.

QND measurement of a four-qubit stabilizer
Our toolbox for quantum simulation of open systems is extended by
the possibility of reading out n-body observables in a non-destructive

way, which is also an essential ingredient in quantum error correction
protocols. Here, we illustrate this for a four-qubit stabilizer operator
X1X2X3X4. As above, we first coherently map the information about
whether the system spins are in the 11(21) eigenspace of the stabilizer
operator onto the logical states j0æ and j1æ of the ancilla qubit. In
contrast to the engineering of coherent and dissipative maps above,
where this step was followed by single-and two-qubit gate operations,
here we proceed instead by measuring the ancilla qubit.

Thus, depending on the measurement outcome for the ancilla, the
system qubits are projected onto the corresponding eigenspace of the
stabilizer: rS.PzrSPz=Nz P{rSP{=N{ð Þ for finding the ancilla in
j0æ (j1æ) with the normalization factor N6 5 Tr(P6rSP6). Here,
P+~ 1

2 1+X1X2X3X4ð Þ denote the projectors onto the 61 eigenspaces
of the stabilizer operator. Note that our measurement is QND in the
sense that (superposition) states within one of the two eigenspaces are
not affected by the measurement.

In the experiment with 411 ions, we prepare different four-qubit
system input states (tomographically characterized in additional
experiments), carry out the QND measurement and tomographically
determine the resulting system output states.

To characterize how well the measurement device prepares a
definite state, we use as input j1111æ, which is a non-eigenstate of
the stabilizer. In this case, when the ancilla qubit is found in j0æ or
j1æ the system qubits are prepared in the state 0000j i+ 1111j ið Þ

� ffiffiffi
2
p

by the QND measurement. Experimentally we observe this behaviour
with a quantum state preparation (QSP) fidelity46 of FQSP 5 73(1)%.
On the other hand, for a stabilizer eigenstate, the QND measurement
preserves the stabilizer expectation value. Experimentally, for the
input state 0011j i{ 1100j ið Þ

� ffiffiffi
2
p

, we observe a QND fidelity46 of
FQND 5 96.9(6)%. For more details, see Supplementary Information.

Conclusions and outlook
In the present work, we have demonstrated engineering of dissipative
Kraus maps for Bell-state and four-qubit stabilizer pumping. These
particular examples exploited the available quantum resources by
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Figure 3 | Experimental signatures of four-qubit stabilizer pumping.
a, Diagram of the four system qubits to be pumped into the GHZ state

0000j iz 1111j ið Þ
� ffiffiffi

2
p

, which is uniquely characterized as the simultaneous
eigenstate with eigenvalue 11 of the shown stabilizers. b, Reconstructed density
matrices (real part) of the initial mixed state rmixed and subsequent states r1,2,3,4

after sequentially pumping the stabilizers Z1Z2, Z2Z3, Z3Z4 and X1X2X3X4.
Populations in the initial mixed state with qubits i and j antiparallel, or in the
21 eigenspace of the ZiZj stabilizer, disappear after pumping this stabilizer into
the 11 eigenspace. For example, populations in dark blue disappear after Z1Z2-
stabilizer pumping. A final pumping of the stabilizer X1X2X3X4 builds up the

coherence between | 0000æ and | 1111æ, shown as red bars in the density matrix
of r4. c, Measured expectation values of the relevant stabilizers; ideally, non-
zero expectation values have a value of 11. d, Evolution of the measured
expectation values of the relevant stabilizers for repetitively pumping an initial
state | 1111æ with probability p 5 0.5 into the 21 eigenspace of the stabilizer
X1X2X3X4. The incremental pumping is evident by the red line fitted to the
pumped stabilizer expectation value. The evolution of the expectation value
ÆX1X2X3X4æ for deterministic pumping (p 5 1) is also shown. The observed
decay of ÆZiZjæ is due to imperfections and is detrimental to the pumping
process (see Supplementary Information). Error bars (c and d), 61s.
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coupling the system qubits to an ancilla by a universal set of entang-
ling operations. The engineered environment was here represented by
an ancilla ion undergoing optical pumping by dissipative coupling to
the vacuum modes of the radiation field. These experiments, where
the ancilla remains unobserved, represent an open-loop dynamics.
Such scenarios were recently discussed in the context of an open-
system quantum simulator for spin models, including lattice gauge
theories, realized with Rydberg atoms in optical lattices. In fact, four-
qubit stabilizer pumping together with four-spin interactions demon-
strate the basic ingredients28 for the simulation of spin dynamics and
ground-state cooling for Kitaev’s toric code Hamiltonian30 on a single
four-spin plaquette.

For a closed system, only a small number of Hamiltonians as
generators are required to generate all possible unitary time evolu-
tions. In the context of qubits, this is given by a finite set of single qubit
operations together with an entangling CNOT gate. In contrast, as
noted in refs 25 and 29, when a single ancilla qubit is used, the most
general Markovian open-system dynamics cannot be obtained with a
finite set of non-unitary open-loop transformations. However, such a
universal dynamical control can be achieved through repeated
application of coherent control operations and measurement of the
ancilla qubit, followed by classical feedback operations onto the sys-
tem. We note that our demonstration of a multi-qubit QND mea-
surement provides, in combination with our previously demonstrated
feedback techniques47, the basic ingredient for the realization of such
closed-loop dynamics.

Our experimental demonstration of a toolbox of elementary build-
ing blocks in a system of trapped ions should be seen as a conceptual
step towards the realization of an open quantum system simulator
with applications in various fields14, including condensed-matter physics
and quantum chemistry, possibly in modelling quantum effects in bio-
logy48, and in quantum computation driven by dissipation22.

Although the present experiments were performed with a linear
ion-trap quantum computer architecture, the continuing development
of two-dimensional trap arrays promises scalable implementations of
spin-model simulators. In addition, gate-based simulation approaches
can incorporate quantum error correction protocols, which may prove
essential for fault-tolerant quantum simulation. The demonstrated
concepts can also be readily adapted to other physical platforms,
ranging from optical, atomic and molecular systems to solid-state
devices.
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