Dipolar Fermi gases

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Russian Quantum Center, Moscow

- Introduction
- **•** Topological $p_x + ip_y$ phase in 2D
- BCS-BEC crossover in bilayered systems
- Novel Fermi liquid
- Conclusions and outlook

Sao Paulo, September 25, 2019

Dipolar Fermi gas

What does the dipole-dipole interaction do in a Fermi gas?

repulsion

attraction

p-wave superfluid pairing in a single-component gas

Novel Fermi liquid in two and three dimensions?

Alkali-atom molecules d from 0.6 D for KRb to 5.5 D for LiCs

Polar molecules. Creation of ultracold clouds

Transfer of weakly bound KRb molecules to the ground rovibrational state JILA, D. Jin, J. Ye groups

Ultracold chemical reactions $KRb + KRb \Rightarrow K_2 + Rb_2$

Suppress instability \rightarrow induce intermolecular repulsion 2D geometry with dipoles perpendicular to the plane. JILA experiment What are prospects for novel physics ?

Why single-component fermions are interesting?

Topological aspects of $p_x + ip_y$ state in 2D

Vortices. Zero-energy mode related to two vortices. (Read/Green, 2000)

The number of zero-energy states exp. grows with the number of vortices $2^{(N_v/2-1)}$ Non-abelian statistics \Rightarrow Exchanging vortices creates a different state! Non-local character of the state. Local perturbation does not cause decoherence Topologically protected state for quantum information processing

p-wave resonance for fermionic atoms

p-wave resonance \Rightarrow JILA, ENS, Melbourne, Tokyo, elsewhere

$$\mathsf{BCS} \Rightarrow \quad T_c \sim \exp\left(-\frac{1}{(k_F b)^2}\right) \quad \text{practically zero}$$

Molecular and strongly interacting regimes \Rightarrow rather high T_c but collisional instability

B

Gurarie/Radzihovsky; Gurarie/Cooper; Castin/Jona-Lazinio

RF-dressed polar molecules in 2D. Innsbruck idea

Dressed states $|+\rangle = \alpha |0,0\rangle + \beta |1,1\rangle;$ $, |-\rangle = \beta |0,0\rangle - \alpha |1,1\rangle$ $\alpha = -\frac{A}{\sqrt{A^2 + \Omega^2}};$ $\beta = \frac{\Omega}{\sqrt{A^2 + \Omega^2}};$ $A = \frac{1}{2}(\delta + \sqrt{\delta^2 + 4\Omega^2})$

Two RFD molecules in 2D. The dipole moment is rotating with RF frequency

Large
$$r \to V_{eff} = \langle (1 - 3\cos^2 \phi) \rangle \frac{a_c}{r^3} = -\frac{a_c}{2r^3}; \ r_* = m d_c^2 / 2\hbar^2$$

Fermionic RFD molecules. Superfluid transition

Fermionic RFD molecules in a single quantum state in 2D Attractive interaction for the *p*-wave scattering ($l = \pm 1$)

$$\hat{H} = \int d^2 r \,\hat{\Psi}^{\dagger}(\mathbf{r}) \{ -(\hbar^2/2m)\Delta + \int d^2 r' \hat{\Psi}^{\dagger}(\mathbf{r}') V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}') - \mu \} \hat{\Psi}(\mathbf{r})$$
$$\Delta(\mathbf{r} - \mathbf{r}') = \langle V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}) \hat{\Psi}(\mathbf{r}') \rangle$$

Gap equation $\Delta(\mathbf{k}) = -\int \frac{d^2k}{(2\pi)^2} V_{eff}(\mathbf{k} - \mathbf{k}') \Delta(\mathbf{k}') \frac{\tanh(\epsilon(k')/T)}{2\epsilon(k')}$

 $\epsilon(k) = \sqrt{(\hbar^2 k^2 / 2m - \mu)^2 + |\Delta(k)|^2}; \quad \mu \approx E_F$ $T_c \approx E_F \exp(-3\pi/4k_F r_*)$ $\Delta(\mathbf{k}) = \Delta \exp(i\phi_k) \quad p_x + ip_y \text{ state } (l = \pm 1)$

Superfluid transition. Role of anomalous scattering

For short-range potentials should be $V_{eff} \propto k^2$ and $T_c \propto \exp(-1/(k_F b)^2)$ This is the case for the atoms

Anomalous scattering in $1/r^3$ potential \rightarrow Contribution from $r \sim 1/k$

$$V_{eff}(k) = -\frac{8\hbar^2}{3m}(kr_*); \qquad |k| = |k'|$$
$$T_c \propto \exp\left(-\frac{1}{\nu(k_F)|V_{eff}(k_F)|}\right); \qquad \nu = \frac{m}{2\pi\hbar^2}$$
$$T_C \propto \exp\left(-\frac{3\pi}{4k_Fr_*}\right)$$

Transition temperature

Do better than simple BCS. Reveal the role of short-range physics

Renormalized gap equation

$$\Delta(\mathbf{k}') = -\int f(\mathbf{k}', \mathbf{k}) \Delta(\mathbf{k}) \left\{ \frac{\tanh[\epsilon(k)/2T]}{2\epsilon(k)} - \frac{1}{(E_k - E_{k'} - i0)} \right\} \frac{d^2k}{(2\pi)^2}$$

 $\Delta(\mathbf{k}) = \Delta(k) \exp(i\phi_k); f(\mathbf{k}', \mathbf{k}) = f(k', k) \exp[i(\phi_k - \phi_{k'})] \text{ scattering amplitude}$

Related results for the off-shell scattering amplitude

Manipulate T_c?

Put
$$f(k',k)$$
 and include k^2 -term $f = \frac{1}{2}\pi d^2 r_* k^2 \ln[kr_*u]$
 $T_c = \frac{2e^C}{\pi} E_F \exp\left\{-\frac{3\pi}{4k_F r_*} - \frac{9\pi^2}{64}\ln[k_F r_*u]\right\}$

Take into account second-order Gor'kov-Melik-Barkhudarov processes

 κ depends on short-range physics and can be varied within 2 orders of magnitude

Collisional stability and T_c

p-wave atomic superfluids: $BCS \Rightarrow T_c \rightarrow 0$ Resonance \Rightarrow collisional instability

Polar molecules \Rightarrow sufficiently large T_c and collisional stability

 $\alpha_{in} = A \frac{\hbar}{m} (kr_*)^2; \quad A \Rightarrow 10^{-3} - 10^{-4} \quad \alpha_{in} \to (10^{-8} - 10^{-9}) \text{ cm}^2/\text{s}$

 $\begin{array}{rll} {\sf LiK\ molecules} & \rightarrow & d\simeq 3.5\ {\sf D} & r_*\approx 4000 a_0 \\ n=2\times 10^8\ {\sf cm}^{-2} \Rightarrow & E_F=2\pi\hbar^2n/m=120\ {\sf nK} & T_c\approx 10\ {\sf nK}; & \tau\sim 2{\sf s} \end{array}$

Papers to look in

Stable Topological Superfluid Phase of Ultracold Polar Fermionic Molecules N. R. Cooper and G. V. Shlyapnikov Phys. Rev. Lett. 103, 155302 (2009)

Topological px+ipy superfluid phase of fermionic polar molecules J. Levinsen, N. R. Cooper, and G. V. Shlyapnikov Phys. Rev. A 84, 013603 (2011)

Bilayered dipolar fermionic systems. BCS-BEC crossover

 $V(\rho) = d^{2} \left\{ \frac{1}{(\rho^{2} + b^{2})^{3/2}} - \frac{3b^{2}}{(\rho^{2} + b^{2})^{5/2}} \right\} \text{ Always a bound state of } \text{ and } \text{ dipoles}$ Dipole-dipole length $r_{*} = md^{2}/\hbar^{2}$ Dipole-dipole strength r_{*}/b . $r_{*} \leq b \Rightarrow \quad \epsilon_{b} \simeq \frac{\hbar^{2}}{4mb^{2}} \exp \left[-\frac{8b^{2}}{r_{*}^{2}} \left(1 - \frac{r_{*}}{b} \right) - (5 + 2\gamma) \right]$ $\epsilon_{b} \ll E_{F} \Rightarrow f < 0 \rightarrow \quad s\text{-wave BCS pairing}$ $\epsilon_{b} \gg E_{F} \Rightarrow \quad \text{Molecules of } \uparrow \text{ and } \uparrow \text{ dipoles. Molecular BEC}$ New BCS-BEC crossover (Pikovski, Klawunn, Santos, GS)

Transition temperature

Kosterlitz-Thouless transition $\epsilon_b \ll E_F \rightarrow T_{KT}$ is close to T_{BCS} $k_F r_* \ll r_*^2/b^2 \rightarrow \text{Short-range contribution } f = -4\pi\hbar^2/m\ln(E_F/\epsilon_b)$ $T_{KT} \simeq \frac{e^{\gamma}}{\pi} \sqrt{2E_F \epsilon_b}$ $k_F r_* \gg r_*^2/b^2 (b \gg r_*) \rightarrow \text{Anomalous scattering wins}$ $f(k) = \frac{\hbar^2}{m} \left\{ -8kr_* - \frac{\pi r_*^2}{2b^2} + 4\pi k^2 r_* b + 3\pi (kr_*)^2 \ln \zeta kb \right\}; \quad kb \ll 1 \ \zeta \approx 6$ $T_{KT} \simeq 0.1 \left(\frac{E_0}{E_F}\right)^{0.46} \exp\left\{-\frac{\pi}{4k_F r_*}G(k_F b, r_*/b)\right\}$ $E_0 = \hbar^2 / mb^2; \ G(x, y) = (1 - \pi x/2 + \pi y/16x)^{-1}$

 $E_F \ll \epsilon_b \rightarrow$ Formation of bound pairs by fermions of different layers T_{KT} of a weakly interacting Bose gas

Transition temperature

LiCs and KRb molecules $b \simeq 250$ nm, $n \simeq 5 \, 10^8$ cm⁻², $k_F b \simeq 2$, $E_F \simeq 110$ nk $\Rightarrow T_{KT}$ of a few nanokelvin

Papers to look in

Interlayer Superfluidity in Bilayer Systems of Fermionic Polar Molecules A. Pikovski, M. Klawunn, G. V. Shlyapnikov, and L. Santos Phys. Rev. Lett. 105, 215302 (2010)

Fermi liquid behavior

Can one do something interesting with a "simple" system of \uparrow polar molecules in 2D?

Suppressed ultracold chemistry

Novel Fermi liquid?

'Old" question of beyond mean field effects for weak interactions

Short-range weak repulsion. Two-component Fermi gas

Lee/Huang/Yang and Abrikosov/Khalatnikov

Milestone in this direction \Rightarrow recent ENS experiment (Nature, 2010)

$$\frac{E}{N} = \frac{3\hbar^2 k_F^2}{10m} \left[1 + \frac{10}{9\pi} k_F a + \frac{4(11 - 2\ln 2)}{21\pi^2} (k_F a)^2 \right]$$

Measurement of $P = -\partial E / \partial V$. Recover the non-mean field correction

(for
$$k_F a = -1$$
)

Novel Fermi liquid

Single-component polar \uparrow molecules

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{4m} \left[1 + \frac{128}{45\pi} k_F r_* + \frac{1}{4} (k_F r_*)^2 \ln u k_F r_* \right]$$
$$u \simeq 1.13 \text{ and } r_* = m d^2 / \hbar^2$$
$$k_F r_* \sim 0.5 \Rightarrow \text{measure all terms}$$

Can one make a two-component Fermi gas of \uparrow polar molecules?

Single layer \Rightarrow ultracold chemistry may come into play

Bilayer system Can be made imbalanced

Papers to look in

Fermi liquid of two-dimensional polar molecules Zhen-Kai Lu and G. V. Shlyapnikov Phys. Rev. A 85, 023614 (2012)

Conclusions

Creation of ultracold polar molecules opens wide avenues to make new quantum states

- $p_x + ip_y$ topological state for identical fermions
 - BCS-BEC crossover in bilayered fermionic dipolar systems
- Novel Fermi liquid in 2D