Cosmological and Galactic signatures of the Scale-Invariant Vacuum Theory (SIVT)

arXiv:1811.03495 [astro-ph.CO]

Vesselin G. Gueorguiev

Ronin Institute for Independent Scholarship, NJ, USA

& Institute for Advanced Physical Studies, Sofia, Bulgaria in collaboration with

André Maeder, Geneva Observatory, Switzerland

DE GENÈVE

Fotosearch Royalty Free Stock Photography (https://www.fotosearch.com)

DARK Universe Workshop, Oct. 2019 ICTP-SAIFR, São Paulo, Brazil

Outline of the Talk

- Motivation problems with the standard Dark Matter models!
- Brief Math Background SIVT for Gravity and Cosmology.
- > The Growth of the Density Perturbations within the SIVT.
- > More support for SIVT as viable competitor to Λ CDM and MOND.
 - \diamond Dwarf Spheroidal,
 - \diamond Hubble expansion and m-H data,
 - $\diamond\,$ Early universe CMB and Nucleosynthesis.
- Conclusion Q&A.

Maeder & Gueorguiev

- Motivation problems with the standard Dark Matter models!
- Hubble expansion, m-H, CMB & Nucleosynthesis …

THE ROLE OF SYMMETRY IN PHYSICS – TOWARDS SIVT

"It appears as one of the fundamental principles in Nature that the equations expressing basic laws should be invariant under the widest possible group of transformations" (Dirac 1973).

Newton Law
Galilean invarianceSpecial Relativity
Lorentz inv.General Relativity
covarianceMaxwell equations are scale invariant in the empty space $ds' = \lambda(x^{\mu}) ds$ Einstein equations are also scale invariant in empty space if Λ =0,
they are not scale invariant if $\Lambda \neq 0$.

Maeder & Gueorguiev

ARK Universe Workshop, Oct. 201 ICTP-SAIFR, São Paulo, Brazil

MOND and SCALE INVARIANCE

MOND THEORY (Milgrom 2009, 2014):

invariant to (t, r) \rightarrow (λ r, $\overline{\lambda}$ t)

For
$$g \gg a_0$$
 $g \rightarrow g_N$
 $g \ll a_0$ $g \rightarrow (g_N a_0)^{1/2}$

$$g = \frac{g_{\rm N}}{\left[1 - e^{-(g_{\rm N}/a_0)^{\frac{1}{2}}}\right]}$$

Numerous successes in galactic dynamics, clusters, lensing, etc.

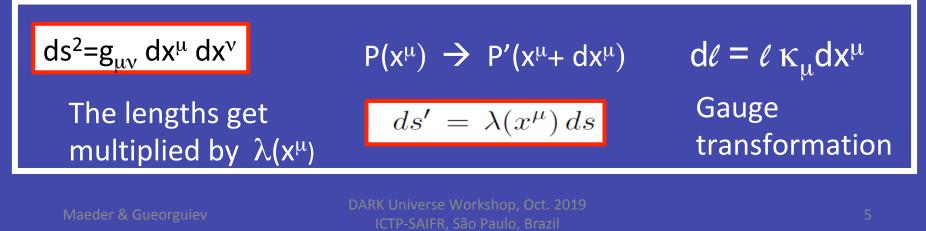
Bondi (1990): *«Einstein's disenchantment with the cosmological constant was partially motivated by a desire to preserve scale invariance of the empty space»*

The appropriate framework:

INTEGRABLE WEYL' GEOMETRY

(Weyl, 1923; Eddington, 1923; Dirac, 1973; Canuto, 1977; Bouvier & Maeder, 1978)

WEYL' GEOMETRY



COTENSOR CALCULUS (Weyl Geometry) Einstein's objection!

Vector // transported on a closed loop

$\Delta \ell = \ell \left(\partial_{\nu} \kappa_{\mu} - \partial_{\mu} \kappa_{\nu} \right) \sigma^{\mu \nu}$

F_{μν}

ut, if
$$\partial_{\nu}\kappa_{\mu} = \partial_{\mu}\kappa_{\nu}$$
, i.e. $\kappa_{\nu} = -\Phi_{,\nu} = -\frac{\partial \ln \lambda}{\partial x^{\nu}}$
 κ_{ν} is the gradient of a scalar field $\Phi = \ln \lambda$

In particular the co-covariant derivative of a co-scalar S of power n will be

$$S_{*\mu} = \partial_{\mu} S - n \kappa_{\mu} S$$

and for co-vectors (n), we can write (after Dirac)

 $S' = \lambda^n S$

$$A^{\mu}_{*\nu} = \partial_{\nu}A^{\mu} + *\Gamma^{\mu}_{\nu\alpha}A^{\alpha} - n\kappa_{\nu}A^{\mu},$$

 $A_{\mu*\nu} = \partial_{\nu}A_{\mu} - *\Gamma^{\alpha}_{\mu\nu}A_{\alpha} - n\kappa_{\nu}A_{\mu},$

where

B

$$^{*}\Gamma^{lpha}_{\mu
u} = \Gamma^{lpha}_{\mu
u} - g^{lpha}_{\mu}\kappa_{
u} - g^{lpha}_{
u}\kappa_{\mu} + g_{\mu
u}\kappa^{lpha}$$

Maeder & Gueorguiev

ARK Universe Workshop, Oct. 2019 ICTP SAIFR, São Paulo, Brazil

6

One can further develop: THE NEW FIELD EQUATION

-1

Second order co-covariant derivatives, modified Christoffel symbols, Riemann-Christoffel tensor, Ricci tensor, scalar curvature,

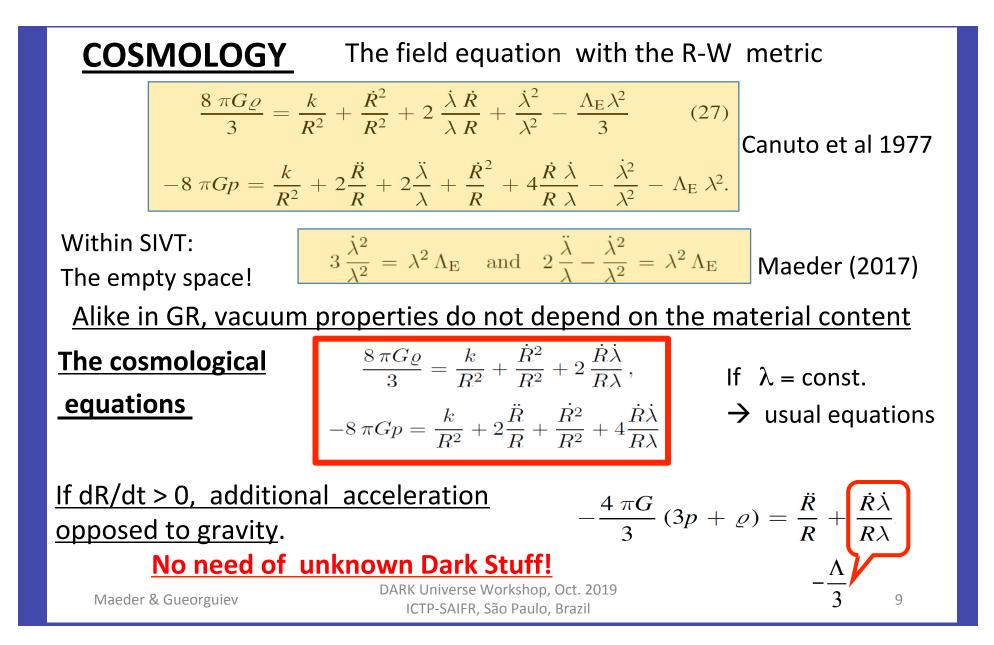
$$R'_{\mu\nu} - \frac{1}{2} g_{\mu\nu}R' - \kappa_{\mu;\nu} - \kappa_{\nu;\mu} - 2\kappa_{\mu}\kappa_{\nu} + 2g_{\mu\nu}\kappa^{\alpha}_{;\alpha} - g_{\mu\nu}\kappa^{\alpha}\kappa_{\alpha} = -8\pi GT_{\mu\nu} - \lambda^{2}\Lambda_{E}g_{\mu\nu}$$

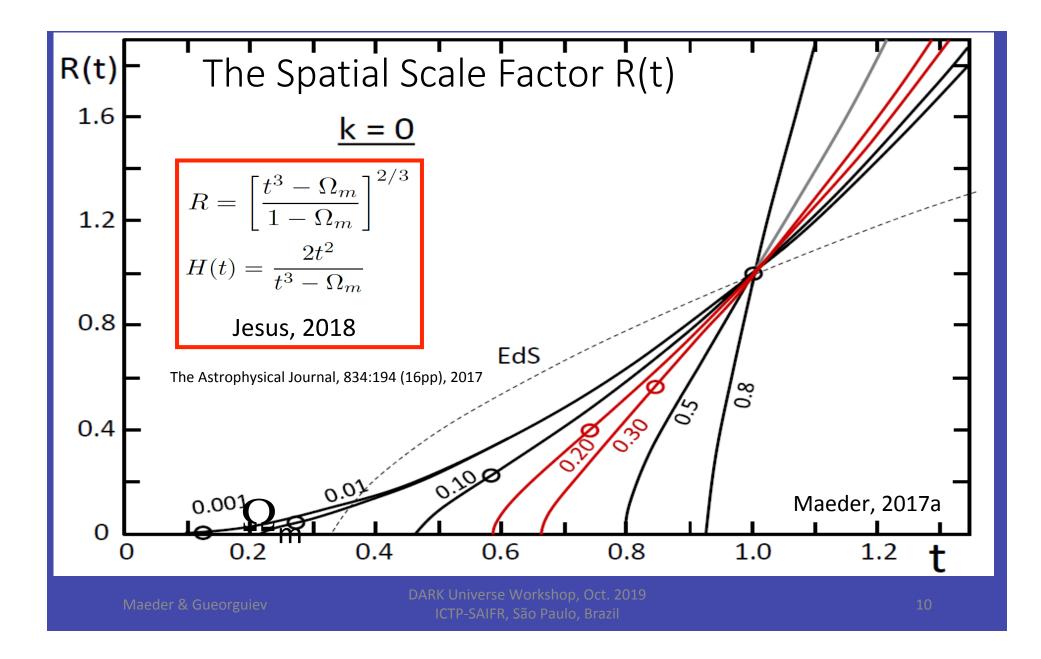
$$GR \qquad Additional terms \qquad Dirac, 1973; Canuto et al. 1977$$
It can also be derived from an action principle (Canuto et al. 1977)
$$\delta \int \lambda^{2} * R \sqrt{g} d^{4}x = 0$$

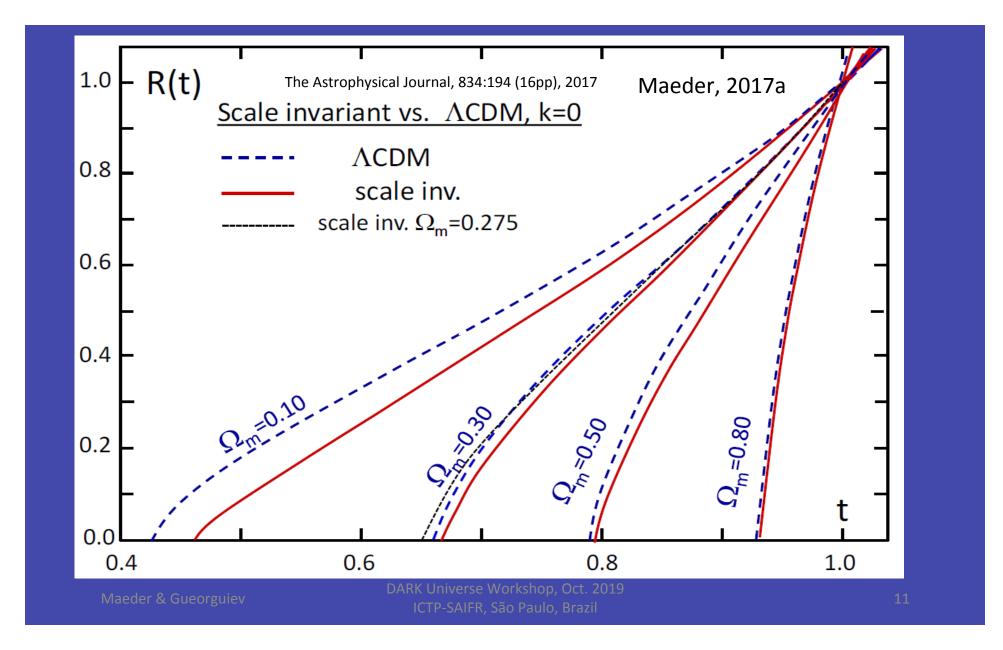
$$\lambda \text{ is not constrained}$$

$$\lambda \text{ is not constrained}$$

Hypothesis of the Scale Invariant Vacuum Theory (SIVT): The macroscopic empty space is scale invariant $P_{vac} = -\rho_{vac} \rightarrow \rho_{vac}$ constant for adiabatic exp. or contraction (S.Carroll, 1992). As we use Einstein's theory at large scales, even if we do not have a quantum theory of gravitation, we consider that the large scale empty space is scale invariant, even if this is not true at the quantum level $\frac{1}{2}g_{\mu\nu}R' - \kappa_{\mu;\nu} - \kappa_{\nu;\mu} - 2\kappa_{\mu}\kappa_{\nu} + 2g_{\mu\nu}\kappa^{\alpha}_{;\alpha} - g_{\mu\nu}\kappa^{\alpha}\kappa_{\alpha} = -8\pi GT_{\mu\nu} - \lambda^2\Lambda_{\rm E}g_{\mu\nu}$ This is what remains in empty space Homogeneity and isotropy \rightarrow $\kappa_0 = -\lambda/\lambda$ only the time component of K_{v} : $3\frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$ and $2\frac{\ddot{\lambda}}{\lambda} - \frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$. The time and space components give:







The Growth of the Density Perturbation

Equations of continuity, of Euler, and Poisson within the SIVT:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = \kappa \left[\rho + \vec{r} \cdot \vec{\nabla} \rho \right] \quad \frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} = -\vec{\nabla} \Phi - \frac{1}{\rho} \vec{\nabla} p + \kappa \vec{v}$$

Applied to a density perturbation δ they give:

 $\ddot{\vec{x}}$

$$\vec{\nabla}^2 \Psi = 4\pi G a^2 \rho_b \delta \,.$$

 $\dot{\delta} + \vec{\nabla} \cdot \dot{\vec{x}} = \mathbf{n} \kappa \delta$,

$$+ 2H\dot{\vec{x}} + = -\frac{\vec{\nabla}\Psi}{a^2} - \frac{v_s^2}{a^2}\vec{\nabla}\delta + \kappa(t)\dot{\vec{x}}, \quad \text{Mae}$$

Maeder & Gueorguiev, 2018

 $n\delta = \vec{x} \cdot \vec{\nabla}\delta$

Euler h-order of δ .

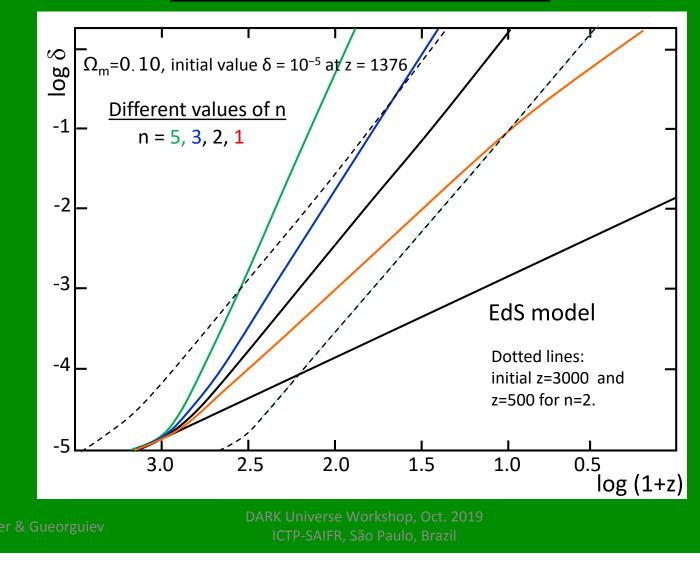
 $\vec{\nabla}^2 \Phi = \triangle \Phi = 4\pi G\rho$

$$\ddot{\delta} + (2H - (1+n)\kappa)\dot{\delta} = 4\pi G \varrho_b \delta + 2n\kappa (H-\kappa)\delta.$$

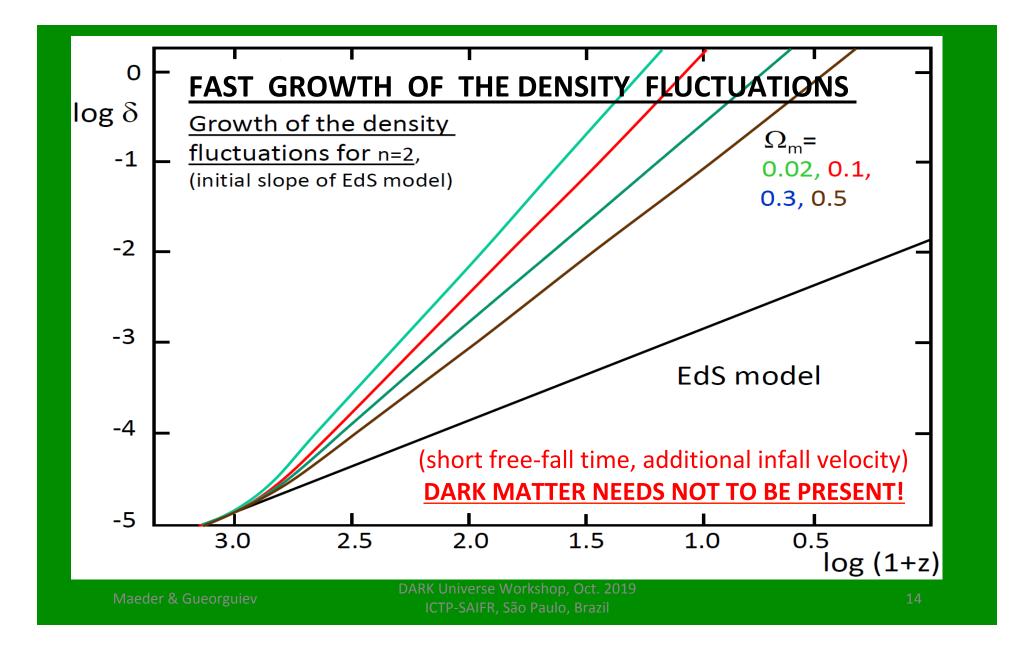
Maeder & Gueorguie\

DARK Universe Workshop, Oct. 2019 ICTP-SAIFR, São Paulo, Brazil Physics of the Dark Universe 25 (2019) 100315; arXiv: 1811.03495 [astro_ph.CO]12

<u>n-dependence of the growth</u>



13



<u>The geodesics</u>: curve whose tangent vector $u^{\mu}=dx^{\mu}/ds$ is transported by // displacement along the curve. Dirac, 1973

$$u^{\mu}_{*\lambda} = 0$$
 \longrightarrow $\frac{\mathrm{d}u^{\mu}}{\mathrm{d}s} + *\Gamma^{\mu}_{\nu\lambda}u^{\nu}u^{\lambda} + \kappa_{\lambda}u^{\lambda}u^{\mu} = 0.$

From an action: Bouvier & Maeder, 1978

$$\delta \mathscr{I} = \int_{P_0}^{P_1} \delta(\mathrm{d}\tilde{s}) = \int \delta(\beta \, \mathrm{d}s) = \int \delta\left(\beta \, \frac{\mathrm{d}s}{\mathrm{d}\tau}\right) \mathrm{d}\tau = 0$$

THE WEAK FIELD APPROXIMATION for SIVT

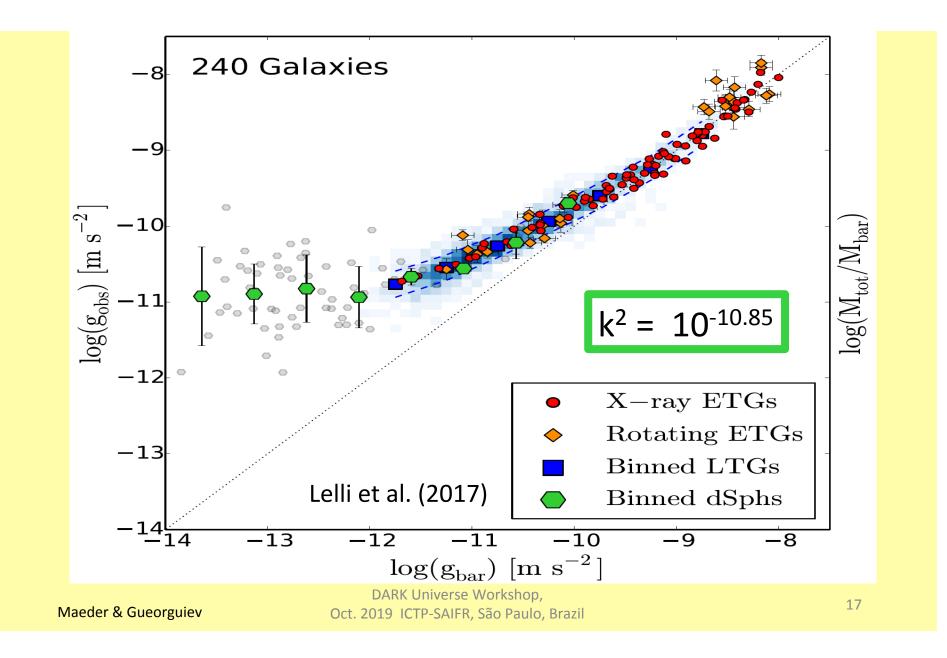
$$g_{i i} = -1, \text{ for } i = 1, 2, 3$$

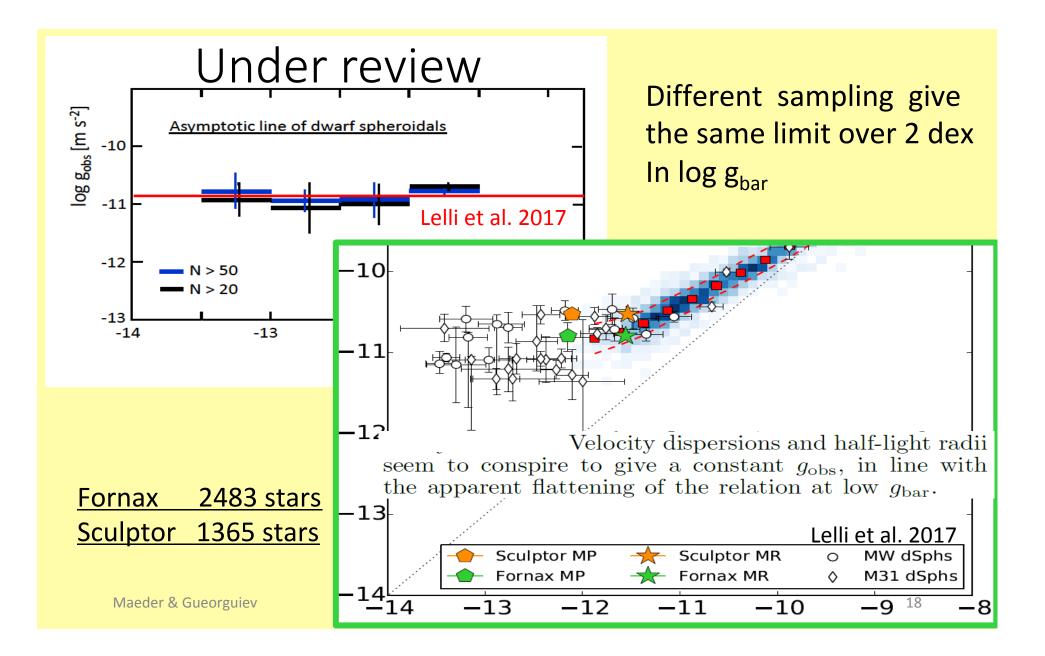
$$g_{00} = 1 + (2\Phi/c^{2}).$$
Potential Φ =GM/r
is scale invariant
$$\frac{d^{2}\mathbf{r}}{dt^{2}} = -\frac{G}{r}\frac{M}{r^{2}}\frac{\mathbf{r}}{r} + \kappa(t)\frac{d\mathbf{r}}{dt} \quad \kappa(t) = 1/t$$

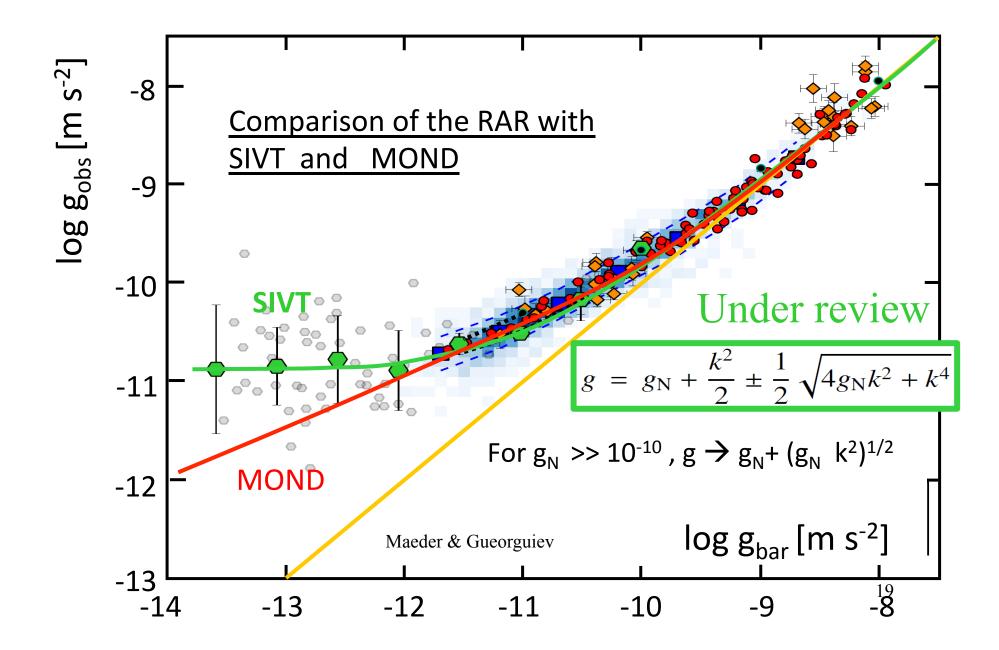
$$\frac{The ratio of the 2 terms is}{DARK Universe Workshop,} \quad \mathbf{X} = \frac{\kappa v r^{2}}{GM} \quad \mathbf{M} = 1/t$$

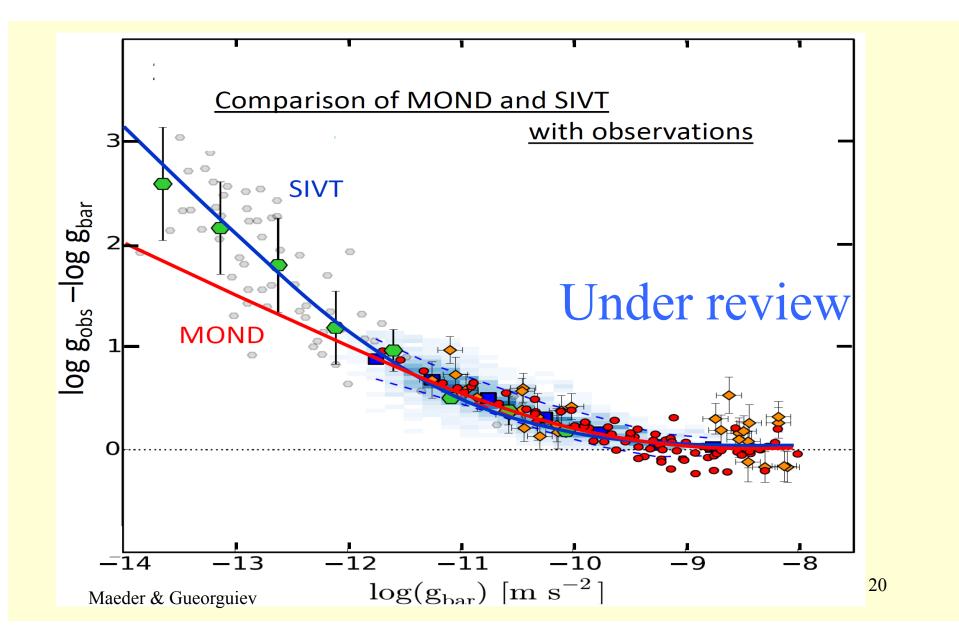
TOWARDS the RAR
$$x = \frac{\kappa \vee r^2}{GM}$$
 At any time, $\kappa = 1/t = \frac{H}{\xi}$
Using $v = (r g_{obs})^{1/2} \rightarrow x = \frac{H}{\xi} \frac{(r g_{obs})^{1/2}}{g_{bar}} \sim \frac{g_{obs} - g_{bar}}{g_{bar}}$
Consider 2 gravit. systems 1 and 2 at the same t and r,
 $\frac{\left(\frac{g_{obs} - g_{bar}}{g_{bar}}\right)_2}{\left(\frac{g_{obs} - g_{bar}}{g_{bar}}\right)} = \left(\frac{g_{obs},2}{g_{obs,1}}\right)^{1/2} \left(\frac{g_{bar,1}}{g_{bar,2}}\right)$
Calling $g_{obs,2} \rightarrow g$ and $g_{bar,2} \rightarrow g_N$
for system 2, system 1 is a reference
 2^{nd} degree equation
 $g^2 - g(2g_N + k^2) + g_N^2 = 0$
If $g_N \rightarrow 0$, then $g \rightarrow g_N$
If $g_N \rightarrow 0$, then $g \rightarrow k^2$ for any r
 k^2 is the lower limit of g for $g_N \rightarrow 0$, this limit is the same everywhere
thus $k^2 \ge \min[g_N]$

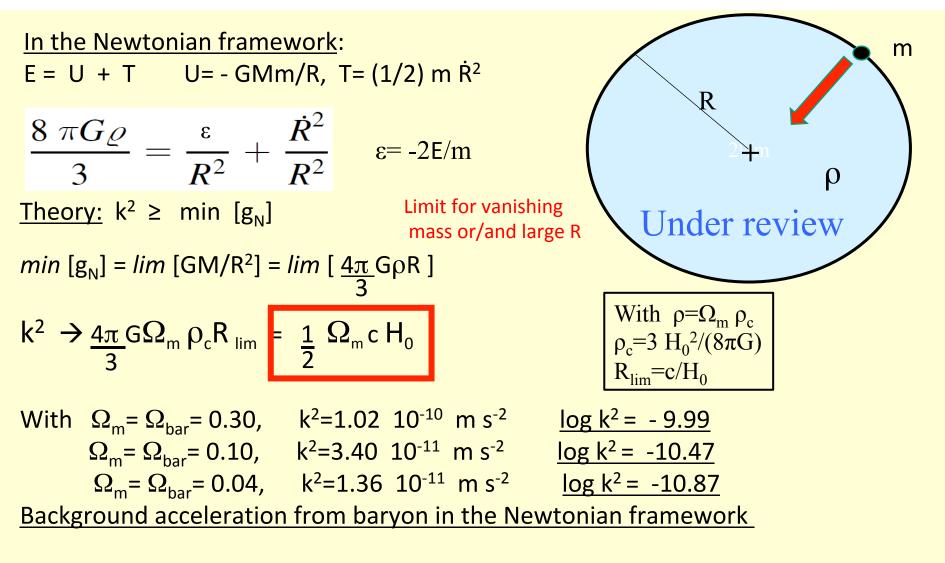
Maeder & Gueorguiev	DARK Universe Workshop,	
	Oct. 2019 ICTP-SAIFR, São Paulo, Brazil	











Maeder & Gueorguiev

Conclusion:

✓ SIVT is a minimal generalization of the Einstein GR,
 ✓ Framework for Cosmology & Gravity,

- Density perturbations can grow fast enough!
- No need of Dark Matter!
- Explains the Dwarf Spheroidal, unlike MOND!
 Scale invariance might explain dark matter effects!
 New perspective on dark energy and CC problem?

Thank You!

Maeder & Gueorguiev