The Top Quark Mass at Lepton Colliders
and the Inclusive Top Quark Pair Production Cross Section from Threshold to Continuum

Angelika Widl (University of Vienna),
Bahman Dehnadi, André Hoang, Vicent Mateu, Maximilian Stahlhofen,
Marça Boronat, Esteban Fullana, Juan Fuster, Pablo Gomis, Marcel Vos

Workshop on Determination of Fundamental QCD Parameters
02/10/2019
Outline

● Top Quark Mass Determination at Lepton Colliders
 ○ Overview
 ○ Threshold Scan
 ○ Radiative Events [Boronat, Fullana, Fuster, Gomis, Hoang, Mateu, AW, Marcel Vos]

● Top Quark Pair Production Cross Section from Threshold to Continuum
 [Dehnadi, Hoang, Mateu, Stahlhofen, AW]
 ○ Threshold Region
 ○ Continuum Region
 ○ Mass Schemes at and above Threshold
 ○ Matching at NNLL_{threshold} + NNNLO_{continuum}

● Conclusions
Top Quark Mass Determination at Lepton Colliders
Overview

lepton colliders

<table>
<thead>
<tr>
<th>Facility</th>
<th>Time Period</th>
<th>Energy (GeV)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP (CERN)</td>
<td>1989 – 2000</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>ILC (Japan)</td>
<td>proposed</td>
<td>250 – 1000</td>
<td>[Baer et al. 2013]</td>
</tr>
<tr>
<td>CLIC (CERN)</td>
<td>proposed</td>
<td>350 – 3000</td>
<td>[CLIC collaboration 2016]</td>
</tr>
<tr>
<td>CEPC (China)</td>
<td>proposed</td>
<td>91 – 240</td>
<td>[CEPC study group 2018]</td>
</tr>
<tr>
<td>FCC-ee (CERN)</td>
<td>proposed</td>
<td>90 – 365</td>
<td>[FCC collaboration 2019]</td>
</tr>
</tbody>
</table>
Overview

top quark mass measurements (main methods)

- threshold scan 350 GeV $\sigma(e^+e^- \rightarrow t\bar{t})$ < 75 MeV precision [Simon 2019]
- radiative events 380 GeV, 500 GeV $\sigma(e^+e^- \rightarrow t\bar{t}\gamma)$ ~ 110 - 150 MeV precision [Boronat et al. 2019 - in preparation]
- direct reconstruction 380 GeV, 500 GeV invariant mass ~ 50 - 100 MeV precision [Abramowicz et al. 2019], [Seidel et al. 2013]
top quark mass measurements (main methods)

- threshold scan 350 GeV \(\sigma(e^+e^- \rightarrow tt) \) < 75 MeV precision [Simon 2019]
- radiative events 380 GeV, 500 GeV \(\sigma(e^+e^- \rightarrow t\bar{t}\gamma) \) \(\sim \) 110 - 150 MeV precision [Boronat et al. 2019 - in preparation]
- direct reconstruction 380 GeV, 500 GeV invariant mass \(\sim \) 50 - 100 MeV precision

well-defined mass scheme (low-scale short-distance mass schemes)

Monte Carlo top quark mass ➞ talk from Daniel Samitz
Threshold Scan (340 GeV - 350 GeV)

- top mass: precision < 75 MeV [Simon 2019]
 (now: $m_{t}^{\text{MC}} = 172.9 \pm 0.4$ GeV [PDG])

- top width: precision < 100 MeV [Simon 2019]
 (now: $\Gamma_t = 1.42^{+0.19}_{-0.15}$ GeV [PDG])

- threshold also sensitive to top Yukawa coupling, strong coupling constant
Threshold Scan (340 GeV - 350 GeV)

- top mass: precision < 75 MeV [Simon 2019]

 \(m_t^{\text{MC}} = 172.9 \pm 0.4 \text{ GeV} \quad \text{[PDG]} \)

- top width: precision < 100 MeV [Simon 2019]

 \(\Gamma_t = 1.42^{+0.19}_{-0.15} \text{ GeV} \quad \text{[PDG]} \)

- threshold also sensitive to top Yukawa coupling, strong coupling constant

uncertainties for top quark mass determination

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD scale variation</td>
<td>~ 40 MeV</td>
</tr>
<tr>
<td>parametric (\alpha_s)</td>
<td>~ 30 MeV</td>
</tr>
<tr>
<td>(for (\Delta \alpha_s = 0.001))</td>
<td></td>
</tr>
<tr>
<td>statistical</td>
<td>~ 20 MeV</td>
</tr>
<tr>
<td>systematic (experimental)</td>
<td>~ 25 - 50 MeV</td>
</tr>
</tbody>
</table>

[Abramowicz et al. 2019]
Radiative Events (380 GeV, 500 GeV)
[Boronat, Fullana, Fuster, Gomis, Hoang, Mateu, Vos, AW 2019 - to appear soon]

invariant mass of top quark pair:

$$ (q')^2 = s' = s \left(1 - \frac{2E_{\gamma}}{\sqrt{s}} \right) $$
Radiative Events (380 GeV, 500 GeV)
[Boronat, Fullana, Fuster, Gomis, Hoang, Mateu, Vos, AW 2019 - to appear soon]

invariant mass of top quark pair:

\[(q')^2 = s' = s \left(1 - \frac{2E_\gamma}{\sqrt{s}} \right)\]

cross section factorizes (in ISR approximation):

\[
\frac{d\sigma_{t\bar{t}\gamma}}{d \cos \theta d \sqrt{s'}} = \frac{\alpha_{\text{em}}}{\pi \sqrt{s}} g(x, \theta) \sigma_{t\bar{t}}(s') + O(\alpha_{\text{em}}^2), \quad g(x, \theta) = \frac{2\sqrt{1-2x}}{x \sin^2 \theta} \left[1 - 2x + (1 + \cos^2 \theta)x^2\right], \quad x = \frac{E_\gamma}{\sqrt{s}}
\]

- large photon energy \(E_\gamma > 5\) GeV
- \(\theta\) integrated from 8° to 172°
- highest mass sensitivity for collinear top quarks
 - \(s' \sim 4m_t^2\)
 - radiative return to threshold
Radiative Events (380 GeV, 500 GeV)

[Boronat, Fullana, Fuster, Gomis, Hoang, Mateu, Vos, AW 2019 - to appear soon]

invariant mass of top quark pair:

\[(q')^2 = s' = s \left(1 - \frac{2E_\gamma}{\sqrt{s}}\right)\]

cross section factorizes (in ISR approximation):

\[
\frac{d\sigma_{tt\gamma}}{d\cos \theta \ d\sqrt{s'}} = \frac{\alpha_{em}}{\pi \sqrt{s}} g(x, \theta) \sigma_{tt}(s') + \mathcal{O}(\alpha_{em}^2), \quad g(x, \theta) = \frac{2\sqrt{1-2x}}{x \sin^2 \theta} \left[1 - 2x + (1 + \cos^2 \theta)x^2\right], \quad x = \frac{E_\gamma}{\sqrt{s}}
\]
Radiative Events (380 GeV, 500 GeV)

[Boronat, Fullana, Fuster, Gomis, Hoang, Mateu, Vos, AW 2019 - to appear soon]

invariant mass of top quark pair:

\[(q')^2 = s' = s \left(1 - \frac{2E_\gamma}{\sqrt{s}}\right)\]

cross section factorizes (in ISR approximation):

\[
\frac{d\sigma_{tt\gamma}}{d\cos\theta d\sqrt{s'}} = \frac{\alpha_{em}}{\pi \sqrt{s}} g(x, \theta) \sigma_{tt}(s') + O(\alpha_{em}^2), \quad g(x, \theta) = \frac{2 \sqrt{(1-2x)}}{x \sin^2\theta} \left[1 - 2x + (1 + \cos^2\theta)x^2\right]. \quad x = \frac{E_\gamma}{\sqrt{s}}
\]

\[
\begin{array}{|l|l|l|}
\hline
\text{cms energy} & \text{CLIC, } \sqrt{s} = 380 \text{ GeV} & \text{ILC, } \sqrt{s} = 500 \text{ GeV} \\
\text{luminosity [fb}^{-1}] & 500 & 1000 & 500 & 4000 \\
\text{statistical} & 140 \text{ MeV} & 90 \text{ MeV} & 350 \text{ MeV} & 110 \text{ MeV} \\
\text{theory} & 46 \text{ MeV} & 55 \text{ MeV} & \text{20 MeV} & \text{20 MeV} \\
\text{lum. spectrum} & 20 \text{ MeV} & 85 \text{ MeV} & \text{20 MeV} & \text{20 MeV} \\
\text{photon response} & 16 \text{ MeV} & 85 \text{ MeV} & \text{20 MeV} & \text{20 MeV} \\
\text{total} & 150 \text{ MeV} & 110 \text{ MeV} & 360 \text{ MeV} & 150 \text{ MeV} \\
\hline
\end{array}
\]
Inclusive Top Quark Pair Production Cross Section from Threshold to Continuum
Inclusive Cross Section - Theory Overview

non-relativistic QCD (NRQCD)

NNLL_threshold
[Hoang, Stahlhofen 2013]
- QCD + LO electroweak (double-resonant)
- vNRQCD
- 1S mass

NNNLO_threshold
[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser 2015]
[Beneke, Kiyo, Maier, Piclumn]
- QCD + EW + Higgs
- pNRQCD
- PS mass
Inclusive Cross Section - Theory Overview

non-relativistic QCD (NRQCD)

- **NNLL**threshold: [Hoang, Stahlhofen 2013]
 - QCD + LO electroweak (double-resonant)
 - vNRQCD
 - 1S mass

- **NNNLO**threshold: [Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser 2015]
 - QCD + EW + Higgs
 - pNRQCD
 - PS mass

full QCD

- **NNNLO**continuum: [Hoang, Mateu, Zebarjad 2009]
- **NNLL**continuum: [Kiyo, Maier, Maierhofer, Marquard 2009]
 - QCD corrections

Inclusive QCD Cross Section $\sigma(e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t})$

$
\sigma_{\text{matched}}^{\text{NNLL}} \sim \alpha_s
$

\[\sqrt{s} \text{ [GeV]}\]
Inclusive Cross Section - Theory Overview

non-relativistic QCD (NRQCD)

- NNLL$^\text{threshold}$
 - QCD + LO electroweak (double-resonant)
 - vNRQCD
 - 1S mass

- NNNLO$^\text{threshold}$
 - QCD + EW + Higgs
 - pNRQCD
 - PS mass

full QCD

NNNLO$^\text{continuum}$

- QCD + LO electroweak (double-resonant)
- QCD + LO electroweak (double-resonant)
- vNRQCD
- 1S + MSR mass scheme

Matched NRQCD + QCD

- photon-induced cross section
- QCD + LO EW at threshold
- 1S + MSR mass scheme

Inclusive QCD Cross Section $\sigma(e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t})$

$v \sim \alpha_s$
Inclusive Cross Section -

Threshold
Threshold - Coulomb Resummation

At threshold: \(v \sim \alpha_s, \; \alpha_s \log(v) \sim 1 \)
Threshold - Coulomb Resummation

At threshold: $v \sim \alpha_s, \alpha_s \log(v) \sim 1$

→ ladder diagrams are enhanced

\[e^- + e^+ \rightarrow t + \bar{t} \] + \[\frac{v}{\alpha_s} \] + \[\left(\frac{v}{\alpha_s} \right)^2 \] + ...

→ resummation of ladder diagrams with Schrödinger equation

→ numerical solution with Toppik [Hoang, Teubner 1999]
Threshold - Coulomb Resummation

At threshold: $v \sim \alpha_s, \alpha_s \log(v) \sim 1$

\rightarrow ladder diagrams are enhanced

$e^- \quad t$
\hspace{1cm} +
\hspace{1cm} $\frac{v}{\alpha_s}$
\hspace{1cm} +
\hspace{1cm} $\left(\frac{v}{\alpha_s}\right)^2$
\hspace{1cm} +
\hspace{1cm} \ldots

$e^+ \quad \bar{t}$

1

\rightarrow resummation of ladder diagrams with Schrödinger equation

\rightarrow numerical solution with Toppik [Hoang, Teubner 1999]

\rightarrow upgraded version of Toppik

- precision now 10^{-4}
- 10 - 50 times faster than original version
Threshold - Coulomb Resummation

At threshold: \(v \sim \alpha_s, \alpha_s \log(v) \sim 1 \)

- resummation of ladder diagrams gives toponium resonances
- large top quark width smears out the top quark resonances

\[\Gamma_t = 10^{-4} \text{ GeV} \]

\[\Gamma_t = 1.5 \text{ GeV} \]

\[\sqrt{s} + i\epsilon \rightarrow \sqrt{s} + i\Gamma_t \] (gives LO electroweak contributions at threshold) [Fadin, Khoze 1987]
Threshold - Large Logarithms

At threshold: \(v \sim \alpha_s, \alpha_s \log(v) \sim 1 \)

\[\Rightarrow \text{resummation with vNRQCD (velocity non-relativistic QCD) [Hoang, Stahlhofen 2013]} \]

Contributions to the cross section at threshold:

\[
\sigma_{\text{NRQCD}}^{\text{NNLL}} = v \sum_{n,m} \left(\frac{\alpha_s}{v} \right)^n (\alpha_s \log v)^m \quad \text{LL}
\]

\[+ v^2 \sum_{n,m} \left(\frac{\alpha_s}{v} \right)^n (\alpha_s \log v)^m \quad \text{NLL} \]

\[+ v^3 \sum_{n,m} \left(\frac{\alpha_s}{v} \right)^n (\alpha_s \log v)^m \quad \text{NNLL} \]
Threshold - Large Logarithms

At threshold: \(v \sim \alpha_s, \alpha_s \log(v) \sim 1 \)

\(\rightarrow \) resummation with vNRQCD (velocity non-relativistic QCD) [Hoang, Stahlhofen 2013]

Contributions to the cross section at threshold:

\[
\text{Threshold Cross Section}
\]

\(\sigma_{\text{NRQCD}} \) [pb]

\(\sqrt{s} \) [GeV]

\(m_t = 171.6 \text{ GeV} \)

(error bands from variation of renormalization scales)
Inclusive Cross Section - Continuum
Continuum Cross Section

The inclusive cross section is related to the vacuum polarization by the optical theorem:

\[
\sigma_{t\bar{t}} = \frac{(4\pi\alpha)^2}{s} Q_t^2 \text{Im} \left[\Pi(\sqrt{s} + i\Gamma_t) \right]
\]

In the continuum:

\[
\sigma_{QCD}^{N^3\text{LO}} = \frac{(4\pi\alpha)^2}{s} Q_t^2 \text{Im} \left[\Pi^{(0)} + \alpha_s \Pi^{(1)} + \alpha_s^2 \Pi^{(2)} + \alpha_s^3 \Pi^{(3)} \right]
\]

\(\Pi^{(0)},\ \Pi^{(1)}\) \(\ldots\) known analytically

\(\Pi^{(2)},\ \Pi^{(3)}\) \(\ldots\) reconstructed with Padé approximations

(validity of Padé approximations for \(\Pi^{(2)}\) shown by comparison to exact numerical result in [Maier, Marquard 2017])
The inclusive cross section is related to the vacuum polarization by the optical theorem:

\[
\sigma_{t\bar{t}} = \frac{(4\pi\alpha)^2}{s} Q_t^2 \text{Im} \left[\sum \pi \right] = \frac{(4\pi\alpha)^2}{s} Q_t^2 \text{Im} \left[\Pi(\sqrt{s} + i\Gamma_t) \right]
\]

In the continuum:
Inclusive Cross Section -

Mass Schemes

- pole mass scheme
- 1S mass scheme
- MS mass scheme
- MSR mass scheme

- renormalon
- for the threshold
- for the continuum
- for all regions
Mass Schemes - Pole Mass

Full propagator:

\[S_F^0 = \frac{i}{\not{p} - m_0 + \Sigma(\not{p}, m_0)} \]

Pole mass:

\[\not{p} - m_0 + \Sigma(\not{p}, m_0)|_{p^2=m_{pole}^2} = 0 \]

\[\Sigma(\not{p}, m_0) = \cdots + \ldots \]

→ pole mass renormalon leads to bad convergence of the cross section already at lower orders

Renormalon at threshold:
Mass Schemes - MS Mass

Full propagator:

\[S_F = \frac{i}{\phi - \overline{m}(\mu) + \sum_{\text{finite}}(\phi, \overline{m}(\mu))} \, \Sigma(\phi, m_0) = \]

Conversion:

\[m_{\text{pole}} = \overline{m} + \sum_{n=1}^{\infty} a_n(n_l, n_h) \alpha_s(\overline{m})^n \]

\[= \overline{m} + \overline{m} \alpha_s a_1 + \ldots \quad (\overline{m} = \overline{m}^{(n_l+1)}(\overline{m}(n_l+1)) \big) \]

\[\sim m v \]

→ works in the continuum, but not at threshold

Breaking of non-relativistic power counting at threshold in the MS scheme:

\[v_{\text{pole}} = \sqrt{\frac{\sqrt{s} - 2 m_{\text{pole}}}{m_{\text{pole}}}} \]

\[= \sqrt{\frac{\sqrt{s} - 2 (\overline{m} + \overline{m} a_1 \alpha_s/4\pi)}{\overline{m} + \overline{m} a_1 \alpha_s/4\pi}} \]

\[= v_{\text{MS}} - a_1 \left(\frac{\alpha_s}{4\pi} \right) \left(\frac{v_{\text{MS}}}{2} + \frac{1}{v_{\text{MS}}} \right) + a_1^2 \left(\frac{\alpha_s}{4\pi} \right)^2 \left(\frac{3 v_{\text{MS}}}{8} + \frac{1}{2 v_{\text{MS}}} - \frac{1}{2 v_{\text{MS}}^3} \right) + \mathcal{O}(\alpha_s^3) \]

\[\sim \alpha_s \]

\[\sim \alpha_s^0 \]

\[\sim \alpha_s^{-1} \]
Mass Schemes - MS Mass

Full propagator:

\[
S_F = \frac{i}{\not\!p - \bar{m}(\mu) + \sum_{\text{finite}}(\not\!p, \bar{m}(\mu))}, \quad \Sigma(\not\!p, m_0) = \quad + \ldots
\]

Conversion:

\[
m_{\text{pole}} = \bar{m} + \bar{m} \sum_{n=1}^{\infty} a_n(n_l, n_h) \alpha_s(\bar{m})^n = \bar{m} + \bar{m} \alpha_s a_1 + \ldots \quad (\bar{m} = m_l^{(n_l+1)}(\bar{m}(n_l+1)))
\]

\[\sim m v\]

→ works in the continuum, but not at threshold

Breaking of non-relativistic power counting at threshold in the MS scheme:
Mass Schemes - 1S Mass

[Hoang, Ligeti, Manohar 1998]

Mass of 1S resonance: \[M_{1S}^{3S1} = E_{\text{bin}} + 2m_{\text{pole}} \]

1S mass: \[m_{1S} = \frac{1}{2} M_{tt}^{3S1} = m_{\text{pole}} + \frac{1}{2} E_{\text{bin}} \]

\[\Gamma_t = 10^{-4} \text{ GeV} \]

other low-scale short-distance mass schemes:
PS mass [Beneke 1998], RS mass [Pineda 2001], kinetic mass [Czarnecki, Melnikov, Uraltsev 1998]
Mass Schemes - 1S Mass

Mass of 1S resonance: \(M_{tt}^{3S_1} = E_{\text{bin}} + 2m_{\text{pole}} \)

1S mass:
\[
m_{1S} = \frac{1}{2} M_{tt}^{3S_1} = m_{\text{pole}} + \frac{1}{2} E_{\text{bin}}
\]

Conversion:
\[
m_{1S} = m_{\text{pole}} + (C_F \alpha_s(\mu)m_{\text{pole}}) \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} c_{n,k} \alpha_s(\mu)^n \log \left(\frac{\mu}{C_F \alpha_s(\mu)m_{\text{pole}}} \right)
\]
\[
= m_{\text{pole}} - \frac{2}{9} \alpha_s^2 m_{\text{pole}} + \ldots
\]
\[
\sim m v^2
\]

no breaking of the non-relativistic power counting at threshold:

\[
v_{\text{pole}} = \sqrt{\frac{\sqrt{s} - 2 m_{\text{pole}}}{m_{\text{pole}}}}
\]
\[
= \sqrt{\frac{\sqrt{s} - 2 (m_{1S} + m_{1S} a_1 \alpha_s/4\pi)}{m_{1S} + m_{1S} a_1 \alpha_s/4\pi}}
\]
\[
= v_{1S} - a_1 \left(\frac{\alpha_s}{4\pi} \right)^2 \left(\frac{v_{1S}}{2} + \frac{1}{v_{1S}} \right) + a_1^2 \left(\frac{\alpha_s}{4\pi} \right)^4 \left(\frac{3 v_{1S}}{8} + \frac{1}{2 v_{1S}} - \frac{1}{2 v_{1S}^3} \right) + \mathcal{O}(\alpha_s^6)
\]
\[
\sim \alpha_s
\]
\[
\sim \alpha_s
\]
\[
\sim \alpha_s
\]
Mass Schemes - MSR Mass

[Hoang, Jain, Scimemi, Stewart 2008], [Hoang, Jain, Lepenik, Mateu, Preisser, Scimemi, Stewart 2017]

Conversion:

\[m_{\text{pole}} = \overline{m} + \overline{m} \sum_{n=1}^{\infty} a_n \alpha_s(\overline{m})^n = \overline{m} + \overline{m} \alpha_s a_1 + \ldots \]

\[m_{\text{pole}} = m_{\text{MSR}}(R) + R \sum_{n=1}^{\infty} a_n \alpha_s(R)^n = m_{\text{MSR}}(R) + R \alpha_s a_1 + \ldots \]

→ no breakdown of the non-relativistic power counting at threshold
→ improves convergence of the continuum cross section in the intermediate region:

MSR mass scheme

\[\Gamma_t = 1.5 \text{ GeV}, \overline{m}_t = 163 \text{ GeV} \]

R profile

\[\sqrt{s} \text{ [GeV]} \]
Mass Schemes - MSR Mass

[Hoang, Jain, Scimemi, Stewart 2008], [Hoang, Jain, Lepenik, Mateu, Preisser, Scimemi, Stewart 2017]

Conversion:

\[m_{\text{pole}} = \overline{m} + \overline{m} \sum_{n=1}^{\infty} a_n \alpha_s(\overline{m})^n = \overline{m} + \overline{m} \alpha_s a_1 + \ldots \]

\[m_{\text{pole}} = m_{\text{MSR}}(R) + R \sum_{n=1}^{\infty} a_n \alpha_s (R)^n = m_{\text{MSR}}(R) + R \alpha_s a_1 + \ldots \]

→ no breakdown of the non-relativistic power counting at threshold
→ improves convergence of the continuum cross section in the intermediate region:
Inclusive Cross Section - Matching

Inclusive QCD Cross Section $\sigma(e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t})$

intermediate region

$\sigma[^{\text{NNLL}}\text{matched}][\text{pb}]$

$\sqrt{s} \text{ [GeV]}$

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

340 350 360 370 380 390 400
Matching

\[\sigma_{\text{matched}} = \sigma_{\text{QCD}} + (\sigma_{\text{vNRQCD}} - \sigma_{\text{double-counted}}) \cdot f_s \]
Matching

\[\sigma_{\text{matched}} = \sigma_{\text{QCD}} + (\sigma_{\text{vNRQCD}} - \sigma_{\text{double-counted}}) \cdot \hat{f}_s \]

\[
\sigma_{\text{NNLO}}^{\text{vNRQCD}} = \nu + \alpha_s + \frac{\alpha_s^2}{\nu} + \frac{\alpha_s^3}{\nu^2} + \frac{\alpha_s^4}{\nu^3} + \ldots \\
+ \nu^2 + \alpha_s \nu + \frac{\alpha_s^2}{\nu} + \frac{\alpha_s^3}{\nu^2} + \frac{\alpha_s^4}{\nu^2} + \ldots \\
+ \nu^3 + \alpha_s \nu^2 + \frac{\alpha_s^2}{\nu} + \frac{\alpha_s^3}{\nu^2} + \frac{\alpha_s^4}{\nu} + \ldots
\]

\[
\sigma_{\text{N^3LO}}^{\text{QCD}} = \nu + \nu^2 + \nu^3 + \nu^4 + \ldots \\
+ \alpha_s + \alpha_s \nu + \alpha_s \nu^2 + \alpha_s \nu^3 + \ldots \\
+ \frac{\alpha_s^2}{\nu} + \frac{\alpha_s^2}{\nu} + \frac{\alpha_s^2}{\nu} + \frac{\alpha_s^2}{\nu^2} + \ldots \\
+ \frac{\alpha_s^3}{\nu^2} + \frac{\alpha_s^3}{\nu} + \frac{\alpha_s^3}{\nu^2} + \frac{\alpha_s^3}{\nu^3} + \ldots
\]
Matching

\[\sigma_{\text{matched}} = \sigma_{\text{QCD}} + (\sigma_{\text{vNRQCD}} - \sigma_{\text{double-counted}}) \cdot f_s \]

\[\sigma_{\text{NNLO}}^{\text{vNRQCD}} = \begin{align*}
&v + \alpha_s + \frac{\alpha_s^2}{v} + \frac{\alpha_s^3}{v^2} + \frac{\alpha_s^4}{v^3} + \ldots \\
&+ v^2 + \alpha_s v + \alpha_s^2 + \frac{\alpha_s^3}{v} + \frac{\alpha_s^4}{v^2} + \ldots \\
&+ v^3 + \alpha_s v^2 + \alpha_s^2 v + \alpha_s^3 + \frac{\alpha_s^4}{v} + \ldots
\end{align*} \]

\[\sigma_{\text{N}^3\text{LO}}^{\text{QCD}} = \begin{align*}
&v + v^2 + v^3 + v^4 + \ldots \\
&+ \alpha_s + \alpha_s v + \alpha_s v^2 + \alpha_s v^3 + \ldots \\
&+ \frac{\alpha_s^2}{v} + \alpha_s^2 + \alpha_s^2 v + \alpha_s^2 v^2 + \ldots \\
&+ \frac{\alpha_s^3}{v^2} + \alpha_s^3 v + \alpha_s^3 v^2 + \ldots \\
&+ \frac{\alpha_s^4}{v^3} + \alpha_s^4 v + \alpha_s^4 v^2 + \ldots
\end{align*} \]

\[\sigma_{\text{double-counted}} \]
Matching

\[
\sigma_{\text{matched}} = \sigma_{\text{QCD}} + (\sigma_{\text{vNRQCD}} - \sigma_{\text{double-counted}}) \cdot f_s
\]

switch-off function:

- variation gives an error estimate of the matching
- introduces scheme dependence
- do we get convergence when going to higher orders?

mass schemes:

- \(\sigma_{\text{vNRQCD}}\)
- \(\sigma_{\text{QCD}}\)
- \(\sigma_{\text{double-counted}}\) 1S mass scheme
- MSR mass scheme
- MSR mass scheme
Matching

matched cross section from lowest to highest order:

- error from variation of renormalization scales and the switch off function
- matching smoothly connects threshold with continuum
- overall error reduces from order to order
Matching

- good convergence from order to order
- matching error smaller than variation of renormalization scales
- matching error reduces from order to order
Matching

threshold cross section vs. matched cross section

→ matched cross section starts to differ from the threshold cross section immediately above the peak region

→ higher order corrections from continuum cross section give small shift at threshold

continuum cross section vs. matched cross section

→ matched cross section and continuum MSR cross section overlap above 365 GeV

→ MSR mass scheme valid down to smaller center-of-mass energies than pole mass scheme and MS mass scheme
Theory Error for NNNLO\textsubscript{continuum} the cross section at NNNLO\textsubscript{continuum} shows a difference between the pole scheme and the MSR scheme:

- cross section in the pole scheme and the MSR scheme are incompatible (error bands do not overlap)
- scale variation seems to underestimate the error
- difference corresponds to 1 GeV difference in the top quark mass

- higher order mass corrections seem to favor MSR mass scheme
Conclusions

- The top quark pair production cross section at lepton colliders will provide high precision measurements for the top mass and width from a threshold scan and radiative events.

- We constructed a consistent matched cross section at QCD NNLL\textsubscript{threshold} + NNNLO\textsubscript{continuum} with LO electroweak corrections at threshold.

- The MSR mass provides a consistent mass scheme in all regions from threshold to the continuum.

- The cross section at NNNLO\textsubscript{continuum} in the pole and MSR scheme show a large difference.

- **Outlook:**
 - study on the difference of the continuum cross section in different mass schemes
 - differential matched cross section at NLL\textsubscript{threshold} + NLO\textsubscript{continuum}
Conclusions

- The top quark pair production cross section at lepton colliders will provide high precision measurements for the top mass and width from a threshold scan and radiative events.

- We constructed a consistent matched cross section at QCD $\text{NNLL}_{\text{threshold}} + \text{NNNLO}_{\text{continuum}}$ with LO electroweak corrections at threshold.

- The MSR mass provides a consistent mass scheme in all regions from threshold to the continuum.

- The cross section at $\text{NNNLO}_{\text{continuum}}$ in the pole and MSR scheme show a large difference.

- **Outlook:**
 - study on the difference of the continuum cross section in different mass schemes
 - differential matched cross section at $\text{NLL}_{\text{threshold}} + \text{NLO}_{\text{continuum}}$

Thank you for your attention!