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There are bounds and bounds...

Different bounds have different implications
and (hopefully soon!)

different signals will deliver different information
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~ Accelerator-Based ~

No astrophysical uncertainty
on the dark matter distribution

but

may not be DM
(we just see something invisible

and at least quasi-stable
N 1 )




There are bounds and bounds...

HISTORY OF THE UNIVERSE

Dark energy
accelerated
expansion
Cosmic'Microwave foructu're
Background radiation ormation
Accelerators |LH is visible

Can we learn about
the pre-BBN universe from
displaced events at colliders?

t=Time (seconds, years)

E = Energy of photons (units GeV = 1.6 x 10~10 joules)
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e originaced in a 1986 paper by Michael Turner: Particle Data Group, LBNL © 2015 Supported by DOE

osmo Bounds - Accelerator-Based ~




Bi and X odd under a Z; symmetry
For this talk: X is the lightest Z;-odd particle

Hall, Jedamzik, March-Russell, West,
JHEP 1003 (2010)
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B, and.x odd w?der a ZZ Symmetry . Hall, Jedamzik, March-Russell, West,
For this talk: X is the lightest Z>-odd particle JHEP 1003 (2010)

Nightmare for darke
makbter searches

Testable by direct detection in some exceptions
(see, e.g., Hambye et al.,, PRD98 (2018))




Bi and X odd under a Z; symmetry

. i . ) Hall, Jedamzik, March-Russell, West,
For this talk: X is the lightest Z>-odd particle JHEP 1003 (2010)

Production mechanism for
FIMPs in the early universe!




Freeze-In

Bath particles collisions and/or
decays dump X out of equilibrium



Freeze-In

Bath particles collisions and/or
decays dump X out of equilibrium

T >» bath particles mass:

after inflation, universe
reheated without any dark
matter particle in the bath

(this is an assumption)

_ CémoVingV;)iLiﬁe y




Freeze-In

Bath particles collisions and/or
decays dump X out of equilibrium B B

1T ~ freeze-in epoch:

dark matter particles
dumped in the primordial plasma

and then free-stream

until the present time
(when this happens is important)

_ CdmovingVoIﬂfne y




Freeze-in via decays

B — SM+ X Bath particles decays produce X
particle that will never thermalize
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Freeze-in via decays

B — SM+ X Bath particles decays produce X
particle that will never thermalize

When does freeze-in happen in the early universe!

mpl pMp

— — Yx(T) ~ —FB t(T) ~ T3

The production is more efficient at low temperatures
(good: we do not need to know the thermal history above!)
Valid as long as the temperature is above the B mass

“IR dominated”



Freeze-in via decays
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Freeze-in via decays

Ag=2x10712

Kimp/T]
Komp/T]

d
% — —SHTLX -+ FBTL?

mp = 300 GeV

10-4 | 0.01 | 1

X =mg/T

100

We can integrate starting from arbitrarily high temperature

(IR domination)

10



Freeze-in via decays

dnx Ki|mp/T)

DX — _3Hnx +Ipn

dt Kolmp/T]

Ag=2x10712

mp = 300 GeV

0.01

X =mg/T

100

Cosmological history enters through the Hubble parameter

10



A collider signal of freeze-in?

B’s pair-produced at colliders,
b — SM+X subsequent decays can be observed!?



A collider signal of freeze-in?

B’s pair-produced at colliders,
b — SM+X subsequent decays can be observed!?

Parameters “constrained” by relic density

300 GeV \ ~
Tl ~ 3.7 x 108 ( mx )
B B 8 - 100 GeV mp

Decay length beyond the detector size,
* unless we consider very light X




A collider signal of freeze-in?

B’s pair-produced at colliders,
b — SM+X subsequent decays can be observed!?

Parameters “constrained” by relic density

300 GeV \ ~
Tl ~ 3.7 x 108 ( mx )
B B 8 N 100 GeV mp

Displaced events at collider could give information
about the dark matter mass
and the cosmological history of our universe



Case 1: Fl and Early MD
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Case 1: Fl and Early MD
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Decaying particle in the bath Freeze-In density depends

on the reheat temperature

Tinax =~ (EITR)1/2 > mp

Y

Co, FD, Hall, Pappadopulo, JCAP 1512 (2015)



Case 1: Fl and Early MD
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Case 2: Fl and Kination
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FD, Fernandez, Profumo, |CAP 1802 (2018)



Case 2: Fl and Kination
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FD, Fernandez, Profumo, |CAP 1802 (2018)



Case 2: Fl and Kination
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v FD, Fernandez, Profumo, |CAP 1802 (2018)



Renormalizable? It matters!

X

B Very different cosmology if the
operator mediating the decay
is renormalizable or not
SM



Renormalizable? It matters!

X
B Very different cosmology if the
operator mediating the decay
is renormalizable or not
SM
R X Y)s(cattering (T) ~x T2d—9
Non-renormalizable:
SM

scattering is UV sensitive

(e.g., production dominated at the
SM SM reheat temperature after inflation)



A motivated example

Hierarchy Problem Strong CP Problem

Standard particles SUSY particles

~ ~ ~
~) ~) ~,

Gravitino and Axino
in SUSY PQ theories

——
Image credit: DESY at Hamburg Image credit: http://motls.blogspot.com

Co, FD, Hall, Phys.Rev. D94 (2016)
Co, FD, Hall, JHEP 1703 (2017)
Co, FD, Hall, Harigaya, JHEP 1707 (2017)



A motivated example

Hierarchy Problem Strong CP Problem
100 00 acacha ’ Gravitino and Axino
”g PIDE muo ootf o Yot in SUSY PQ theories
g e S o - o B R -
Image credit: DESY at Hamburg Image credit: http://motls.blogspot.com
p 0~
Wppgyz C qu AH, H, hY —ah
Vpo ~
hY —aZ
EWinos in thermal equilibrium decaying to axinos, —~ N
production dominated at TeV scale (IR) h* —aW=

Co, FD, Hall, Phys.Rev. D94 (2016)
Co, FD, Hall, JHEP 1703 (2017)
Co, FD, Hall, Harigaya, JHEP 1707 (2017)



A motivated example

Hierarchy Problem Strong CP Problem

Standard particles

2 g. §¢ L bdad Gravitino and Axino
00 Dooc .0 S0 o i in SUSY PQ theories
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Image credit: DESY at Hamburg Image credit: http://motls.blogspot.com

A cosmological disaster from frozen-in LSP axinos!?

pa(FD) _ \ o 1os ((106.75 3/2( ma )( 1 ) 1019 GeV
pobs T gs 100 GeV/ \ 300 GeV f

(cosmological problems also Co, FD, Hall, Phys.Rev. D94 (2016)

. o Co, FD, Hall, JHEP 1703 (2017)
if the axino is not the LSP) Co, FD, Hall, Harigaya, JHEP 1707 (2017)




A motivated example

S1=Vpq

* Lightest observable SUSY 107
particle (LOSP) highly diluted 10-5

* R-odd particles produced by 1077
processes with axino and
gravitino in the final state Y. 1010

 Cold and/or warm dark matter 10-12

* No gravitino problem

23
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* Axion dark radiation 10-17

Freeze—-In by decay

2M1 :M2 = U = 1 TeV
ms = 500 GeV

Freeze-In

by inverse decay
m- =2 TeV

m: = 20 TeV

* Imposing the dark matter relic

density points toward displaced
signals at colliders

1010 10" 102 10" 10™ 410%™ 1076

Veq (GeV)

Co, FD, Hall, Phys.Rev. D94 (2016)
Co, FD, Hall, JHEP 1703 (2017)
Co, FD, Hall, Harigaya, JHEP 1707 (2017)



A bottom-up approach

Classification of all possible operators mediating the decay

B —- SM+ X

Work in progress with Calibbi, Junius, Lopez-Honorez, Mariotti



A bottom-up approach

Classification of all possible operators mediating the decay

B —- SM+ X
For each choice of the SM Class for Agy | Field for Agy | Gauge Charges

particle, we know the Q;L (3, i)+1/6
quantum numbers of B 5 Zﬁ g’ 1;+2/3
X must be a gauge singlet SM R » +)=1/3
( st glet) Ly (1,2)_1/2

d} (1,1)_

We consider: Gﬁ 8. 1)01

spin 0 and 1/2 DM Fo, Wi (1.3)

spin 0, 1/2 and | for B B:u (1,1),
H H (172)+1/2

Work in progress with Calibbi, Junius, Lopez-Honorez, Mariotti



A bottom-up approach

Classification of all possible operators mediating the decay

B — SM+ X
Asm | Spin X | Spin B Interaction Label
0 1/2 Ysm¥E ¢ Fsmg
Ysm 1/2 0 Ysmx ®n Ssnix
1 Ysmlx Vi Visux
P 0 1 VE'F¢ VFEg
w12 1/2 YsmOuwx FH Frx
) 0 oL H ¢ St
H 1 Vg(cng@M(ﬁ +cu¢D, H) VHs
1/2 1/2 Upx H FHy

Work in progress with Calibbi, Junius, Lopez-Honorez, Mariotti



A bottom-up approach

Classification of all possible operators mediating the decay

B —- SM+ X

Related work:

* Singlet-doublet model for standard cosmological history
Calibbi et al., JHEP 1809 (2018) 037

* Scalar DM coupled to SM fermions with a fermion B
particle and instantaneous reheating Bélanger et al., JHEP 1902 (2019) 186

See renevieve Bélangers Talk

Work in progress with Calibbi, Junius, Lopez-Honorez, Mariotti



A fermion DM example

Fermion dark matter with a
scalar partner coupled to leptons

Also a Higgs portal operator
allowed by all symmetries



A fermion DM example

Fermion dark matter with a I v O
scalar partner coupled to leptons X *¥B

Oh? =0.12, mpy =1 GeV, Ay = 0.1
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Heavy Stable 1000 A" |
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< 10| — T, =20GeV
5 — I = 10 GeV
. 1t o _
Displaced Leptons ; T =5 GeV
0 10— — Trh =2 GeV
0.01

200 300 400 500 600 700 800
mg (GeV)



A fermion DM example

Fermion dark matter with a

scalar partner coupl
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Outlook

* Freeze-in in modified
cosmologies and
displaced signatures

* A motivated example:
DFSZ axino disaster
and the saxion

* Bottom-up
classification
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Outlook

mg = 300 GeV gg=2

* Freeze-in in modified :

cosmologies and

displaced signatures ) =
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