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Introduction

• DM may be the most stablished reason for physics BSM



• The solution as a thermal relic it is very elegant as it 
depends very little on the details of the model.



• It turns out that a WIMP: a stable massive object with 
weak interactions and a mass around the EW scale 
reproduces the observed relic abundance.


• It has interesting experimental consequences.
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• On the other hand, the hierarchy problem, can be 
addressed with supersymmetry.


• Merging both ideas, SUSY & DM, is possible and quite 
exciting.


• Among the usual candidates for DM in the MSSM 
(neutralinos) the one with less constrains (specially from 
direct detections) is a pure Higgsino with mass ~1.1-1.2 
TeV.



•  In this talk I will build a model with just there free 
parameters that achieves the following:


• Correct relic abundance with a (mostly pure) Higgsino


• Correct EWSB


• Correct mass of the Higgs


• In agreement with all experimental bounds.



The model

• The model is 5D extension of the MSSM.


• The extra dimension of size πR is compactified on an 
orbifold S1/Z2


• The minimal supersymmetric content in 5D is equivalent 
to N=2


• The discrete symmetry Z2 breaks half of the super 
symmetries making all fields either even/odd



• All fields live in the bulk and from N=2 representations


• Fields are decomposed in modes and      terms become masses 

S1/Z2
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• The theory in the bulk has a SU(2)R symmetry under which 
the gauginos in vector multiplets and scalars in 
hypermultiplets transforms non trivially. 


• Like in the MSSM, there are 2 Higgs hypermultiplets 
which are related by a global SU(2)H symmetry


• By relating the boundary conditions in both end points of 
the orbifold using SU(2)R and SU(2)H  one can generate 
masses for the, otherwise massless, zero mode that we 
will identify as the usual MSSM fields.


• This amounts for a non-trivial twist related to phases 
(qR,qH)



•   Decomposition of Gauge multiplets

operators localized at the y = 0 brane [16,17] or extra triplets in the bulk [15] are required
in order to drive EWSB. Moreover, integrating out the top/stop sector, including all KK-
modes, provides a threshold e↵ect for the Higgs quartic coupling �. After evolving � to the
electroweak scale (by the SM radiative corrections) it is su�ciently large that the model
accommodates the mass of the Higgs to be 125 GeV. This is again an advantage over
similar constructions with stops localized in the y = 0 brane, where an extra U(1)0 [16,17]
or singlets and/or triplets [15] had to be introduced to accommodate the physical value
of the Higgs mass. The Higgs mass condition will also carve out contours in the (qR, 1/R)
plane, so that the phenomenologically interesting values of qR and 1/R are given by the
intersection of the Higgs mass (qR, 1/R) curves with the (qR, 1/R) contours from correct
electroweak breaking.

In short, the simultaneous conditions of a 1.1 to 1.2 TeV Higgsino, a 125 GeV Higgs,
and correct electroweak breaking provide a discrete set of values for the three parameters
(qR, qH , 1/R) – this is a non-trivial statement since it was not guaranteed a priori that
a viable solution would exist. Moreover, for the qH , qR, and 1/R values consistent with
these conditions, we find solutions that have spectra that are completely compatible with
current LHC superpartner and direct dark matter searches [18, 19]. The net result is
a model with three free parameters (qR, qH , 1/R) that is able to reproduce the correct
electroweak breaking, the correct Higgs mass, provide a viable DM candidate, and passes
all experimental bounds.

The plan of this paper goes as follows. In Sec. 2 we will introduce in some detail the
5D model and its mass spectrum. In Sec. 3 we will describe the conditions on electroweak
symmetry breaking. In Sec. 4 we will compute the threshold corrections to the Higgs
quartic coupling and the physical value of the Higgs mass. In particular we will impose
on the light Higgs a mass of 125 GeV, according to experimental measurements. The
spectrum, and some experimental prospects to detect it, is presented in Sec. 5. Finally
some concluding remarks are postponed to Sec. 6.

2 The model

Our starting point is a flat, five-dimensional space where the fifth dimension y is com-
pactified on the orbifold S

1
/Z2, with branes at the two fixed points y = 0, ⇡R. We are

going to embed the SM into a supersymmetric model in 5D [9–11]. Since the minimal
(N = 1) supersymmetry in 5D is the equivalent of N = 2 in four-dimensions (4D),
we have to incorporate new fields into every multiplet to satisfy this extended alge-
bra. As a result of the orbifold compactification, one can decompose every N = 2
multiplet into two N = 1 4D multiplets, each with a definite transformation with re-
spect to the Z2 symmetry. In particular, (on-shell) vector multiplets in the bulk are
V = (VM ,⌃,�i) ⌘ (Vµ,�

1
L
)+ � (⌃ + iV5,�

2
L
)� where i = 1, 2 transforms as a doublet of

SU(2)R and the parities under Z2 for the two N = 1 multiplets are specified by the ±

3

superscripts. Similarly there are two bulk Higgs hypermultiplets H
a = (Ha

i
, a), where

the index a = 1, 2 transforms as a doublet of a global group SU(2)H , and  a are Dirac
spinors. The parity, Z2 ⌘ �3|SU(2)H

⌦ �5, decomposition is H2 ⌘ (H2
2 , 

2
L
)+ � (H2

1 , 
2
R
)�

and H
1 ⌘ (H1

1 , 
1
R
)+ � (H1

2 , 
1
L
)�. As such, the chiral multiplets H2 = (H2

2 , 
2
L
) and

H1 = (H1†
1 ,  ̄1

R
) have zero modes and play the role of the Higgs sector of the MSSM.

In Refs. [12–14] the Scherk-Schwarz mechanism [9–11] was used to break supersym-
metry by means of a U(1)R ⌦ U(1)H symmetry. The mass spectrum one gets from this
procedure depends on the charges (qR, qH). In fact, only qR breaks supersymmetry while
qH provides a Higgsino mass qH/R thus providing a solution to the µ problem of the
MSSM. More specifically, after SS supersymmetry breaking the mass eigenstates are:

• Two Majorana gauginos �(±n) = (�1(n)
L

± �
2(n)
L

)/
p
2, with masses |qR ± n|/R.

• Two Dirac Higgsinos H̃(±n) = ( 1(n) ± 2(n))/
p
2, with masses |qH ± n|/R.

• Two Higgses h(±n) =
h
H

1(n)
1 +H

2(n)
2 ⌥ (H1(n)

2 �H
2(n)
1

i
/2, with masses

|qR � qH ± n|/R.

• Two Higgses H(±n) =
h
H

1(n)
1 �H

2(n)
2 ⌥ (H1(n)

2 +H
2(n)
1

i
/2, with masses

|qR + qH ± n|/R.

where positive (+n) and negative (�n) modes combine into whole towers with n 2 Z.

The main di↵erence with respect to the scenario proposed in Refs. [12–14] 2 is that we
will consider all matter fields propagating in the bulk. As such, they must be represented
by hypermultiplets, e.g. QL = ( eQ, eQc

, q) ⌘ ( eQ, qL)+�( eQc
, qR)� for the SM left-handed top

quark, where only the even chiral multiplet QL = ( eQ, qL) admits a zero mode and ( eQ, eQc)T

transforms as a doublet of SU(2)R. The SS supersymmetry breaking gives squared masses,
equal to (qR ±n)2/R2, to the two complex scalars Q(±n) = ( eQ(n) ± eQc(n))/

p
2, which then

become a whole tower of complex scalars with n 2 Z. Moreover, the SS breaking does not
a↵ect the whole tower n 2 Z of (SU(2)R singlet) Dirac fermions q

(n). Their KK modes
instead have mass |n|/R, so that the (massless) zero mode is identified with the left-handed

SM top quark q
(0)
L

(without a Dirac partner). The same logic applies to every other SM

fermion, e.g. the SM right-handed quark, UR = (eU, eU c
, u) ⌘ (eU, uR)+ � (eU c

, uL)� with
mass eigenstates U (±n) = (eU (n) ± eU c(n))/

p
2. Since we want to recover a chiral theory at

the zero model level we are going to assume there are no masses in the bulk.

As the theory has N = 1 supersymmetry on the branes, we will provide the zero mode
fermion masses after electroweak breaking by mean of superpotential terms defined on
the y = 0 brane, as

W =
⇣
bht QL H2 UR + bhb QL H1 DR + bh⌧LLH1ER

⌘
�(y) (2.1)

2
In Ref. [14] the third generation of quarks and leptons was localized in the y = 0 brane.
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Gauge bosons (V(n)) with mass n/R



•  Decomposition for matter hypermultiplets

superscripts. Similarly there are two bulk Higgs hypermultiplets H
a = (Ha

i
, a), where

the index a = 1, 2 transforms as a doublet of a global group SU(2)H , and  a are Dirac
spinors. The parity, Z2 ⌘ �3|SU(2)H

⌦ �5, decomposition is H2 ⌘ (H2
2 , 

2
L
)+ � (H2

1 , 
2
R
)�

and H
1 ⌘ (H1

1 , 
1
R
)+ � (H1

2 , 
1
L
)�. As such, the chiral multiplets H2 = (H2

2 , 
2
L
) and

H1 = (H1†
1 ,  ̄1

R
) have zero modes and play the role of the Higgs sector of the MSSM.

In Refs. [12–14] the Scherk-Schwarz mechanism [9–11] was used to break supersym-
metry by means of a U(1)R ⌦ U(1)H symmetry. The mass spectrum one gets from this
procedure depends on the charges (qR, qH). In fact, only qR breaks supersymmetry while
qH provides a Higgsino mass qH/R thus providing a solution to the µ problem of the
MSSM. More specifically, after SS supersymmetry breaking the mass eigenstates are:

• Two Majorana gauginos �(±n) = (�1(n)
L

± �
2(n)
L

)/
p
2, with masses |qR ± n|/R.

• Two Dirac Higgsinos H̃(±n) = ( 1(n) ± 2(n))/
p
2, with masses |qH ± n|/R.

• Two Higgses h(±n) =
h
H

1(n)
1 +H

2(n)
2 ⌥ (H1(n)

2 �H
2(n)
1

i
/2, with masses

|qR � qH ± n|/R.

• Two Higgses H(±n) =
h
H

1(n)
1 �H

2(n)
2 ⌥ (H1(n)

2 +H
2(n)
1

i
/2, with masses

|qR + qH ± n|/R.

where positive (+n) and negative (�n) modes combine into whole towers with n 2 Z.

The main di↵erence with respect to the scenario proposed in Refs. [12–14] 2 is that we
will consider all matter fields propagating in the bulk. As such, they must be represented
by hypermultiplets, e.g. QL = ( eQ, eQc

, q) ⌘ ( eQ, qL)+�( eQc
, qR)� for the SM left-handed top

quark, where only the even chiral multiplet QL = ( eQ, qL) admits a zero mode and ( eQ, eQc)T

transforms as a doublet of SU(2)R. The SS supersymmetry breaking gives squared masses,
equal to (qR ±n)2/R2, to the two complex scalars Q(±n) = ( eQ(n) ± eQc(n))/

p
2, which then

become a whole tower of complex scalars with n 2 Z. Moreover, the SS breaking does not
a↵ect the whole tower n 2 Z of (SU(2)R singlet) Dirac fermions q

(n). Their KK modes
instead have mass |n|/R, so that the (massless) zero mode is identified with the left-handed

SM top quark q
(0)
L

(without a Dirac partner). The same logic applies to every other SM

fermion, e.g. the SM right-handed quark, UR = (eU, eU c
, u) ⌘ (eU, uR)+ � (eU c

, uL)� with
mass eigenstates U (±n) = (eU (n) ± eU c(n))/

p
2. Since we want to recover a chiral theory at

the zero model level we are going to assume there are no masses in the bulk.

As the theory has N = 1 supersymmetry on the branes, we will provide the zero mode
fermion masses after electroweak breaking by mean of superpotential terms defined on
the y = 0 brane, as

W =
⇣
bht QL H2 UR + bhb QL H1 DR + bh⌧LLH1ER

⌘
�(y) (2.1)

2
In Ref. [14] the third generation of quarks and leptons was localized in the y = 0 brane.

4

superscripts. Similarly there are two bulk Higgs hypermultiplets H
a = (Ha

i
, a), where

the index a = 1, 2 transforms as a doublet of a global group SU(2)H , and  a are Dirac
spinors. The parity, Z2 ⌘ �3|SU(2)H

⌦ �5, decomposition is H2 ⌘ (H2
2 , 

2
L
)+ � (H2

1 , 
2
R
)�

and H
1 ⌘ (H1

1 , 
1
R
)+ � (H1

2 , 
1
L
)�. As such, the chiral multiplets H2 = (H2

2 , 
2
L
) and

H1 = (H1†
1 ,  ̄1

R
) have zero modes and play the role of the Higgs sector of the MSSM.

In Refs. [12–14] the Scherk-Schwarz mechanism [9–11] was used to break supersym-
metry by means of a U(1)R ⌦ U(1)H symmetry. The mass spectrum one gets from this
procedure depends on the charges (qR, qH). In fact, only qR breaks supersymmetry while
qH provides a Higgsino mass qH/R thus providing a solution to the µ problem of the
MSSM. More specifically, after SS supersymmetry breaking the mass eigenstates are:

• Two Majorana gauginos �(±n) = (�1(n)
L

± �
2(n)
L

)/
p
2, with masses |qR ± n|/R.

• Two Dirac Higgsinos H̃(±n) = ( 1(n) ± 2(n))/
p
2, with masses |qH ± n|/R.

• Two Higgses h(±n) =
h
H

1(n)
1 +H

2(n)
2 ⌥ (H1(n)

2 �H
2(n)
1

i
/2, with masses

|qR � qH ± n|/R.

• Two Higgses H(±n) =
h
H

1(n)
1 �H

2(n)
2 ⌥ (H1(n)

2 +H
2(n)
1

i
/2, with masses

|qR + qH ± n|/R.

where positive (+n) and negative (�n) modes combine into whole towers with n 2 Z.

The main di↵erence with respect to the scenario proposed in Refs. [12–14] 2 is that we
will consider all matter fields propagating in the bulk. As such, they must be represented
by hypermultiplets, e.g. QL = ( eQ, eQc

, q) ⌘ ( eQ, qL)+�( eQc
, qR)� for the SM left-handed top

quark, where only the even chiral multiplet QL = ( eQ, qL) admits a zero mode and ( eQ, eQc)T

transforms as a doublet of SU(2)R. The SS supersymmetry breaking gives squared masses,
equal to (qR ±n)2/R2, to the two complex scalars Q(±n) = ( eQ(n) ± eQc(n))/

p
2, which then

become a whole tower of complex scalars with n 2 Z. Moreover, the SS breaking does not
a↵ect the whole tower n 2 Z of (SU(2)R singlet) Dirac fermions q

(n). Their KK modes
instead have mass |n|/R, so that the (massless) zero mode is identified with the left-handed

SM top quark q
(0)
L

(without a Dirac partner). The same logic applies to every other SM

fermion, e.g. the SM right-handed quark, UR = (eU, eU c
, u) ⌘ (eU, uR)+ � (eU c

, uL)� with
mass eigenstates U (±n) = (eU (n) ± eU c(n))/

p
2. Since we want to recover a chiral theory at

the zero model level we are going to assume there are no masses in the bulk.

As the theory has N = 1 supersymmetry on the branes, we will provide the zero mode
fermion masses after electroweak breaking by mean of superpotential terms defined on
the y = 0 brane, as

W =
⇣
bht QL H2 UR + bhb QL H1 DR + bh⌧LLH1ER

⌘
�(y) (2.1)

2
In Ref. [14] the third generation of quarks and leptons was localized in the y = 0 brane.

4

superscripts. Similarly there are two bulk Higgs hypermultiplets H
a = (Ha

i
, a), where

the index a = 1, 2 transforms as a doublet of a global group SU(2)H , and  a are Dirac
spinors. The parity, Z2 ⌘ �3|SU(2)H

⌦ �5, decomposition is H2 ⌘ (H2
2 , 

2
L
)+ � (H2

1 , 
2
R
)�

and H
1 ⌘ (H1

1 , 
1
R
)+ � (H1

2 , 
1
L
)�. As such, the chiral multiplets H2 = (H2

2 , 
2
L
) and

H1 = (H1†
1 ,  ̄1

R
) have zero modes and play the role of the Higgs sector of the MSSM.

In Refs. [12–14] the Scherk-Schwarz mechanism [9–11] was used to break supersym-
metry by means of a U(1)R ⌦ U(1)H symmetry. The mass spectrum one gets from this
procedure depends on the charges (qR, qH). In fact, only qR breaks supersymmetry while
qH provides a Higgsino mass qH/R thus providing a solution to the µ problem of the
MSSM. More specifically, after SS supersymmetry breaking the mass eigenstates are:

• Two Majorana gauginos �(±n) = (�1(n)
L

± �
2(n)
L

)/
p
2, with masses |qR ± n|/R.

• Two Dirac Higgsinos H̃(±n) = ( 1(n) ± 2(n))/
p
2, with masses |qH ± n|/R.

• Two Higgses h(±n) =
h
H

1(n)
1 +H

2(n)
2 ⌥ (H1(n)

2 �H
2(n)
1

i
/2, with masses

|qR � qH ± n|/R.

• Two Higgses H(±n) =
h
H

1(n)
1 �H

2(n)
2 ⌥ (H1(n)

2 +H
2(n)
1

i
/2, with masses

|qR + qH ± n|/R.

where positive (+n) and negative (�n) modes combine into whole towers with n 2 Z.

The main di↵erence with respect to the scenario proposed in Refs. [12–14] 2 is that we
will consider all matter fields propagating in the bulk. As such, they must be represented
by hypermultiplets, e.g. QL = ( eQ, eQc

, q) ⌘ ( eQ, qL)+�( eQc
, qR)� for the SM left-handed top

quark, where only the even chiral multiplet QL = ( eQ, qL) admits a zero mode and ( eQ, eQc)T

transforms as a doublet of SU(2)R. The SS supersymmetry breaking gives squared masses,
equal to (qR ±n)2/R2, to the two complex scalars Q(±n) = ( eQ(n) ± eQc(n))/

p
2, which then

become a whole tower of complex scalars with n 2 Z. Moreover, the SS breaking does not
a↵ect the whole tower n 2 Z of (SU(2)R singlet) Dirac fermions q

(n). Their KK modes
instead have mass |n|/R, so that the (massless) zero mode is identified with the left-handed

SM top quark q
(0)
L

(without a Dirac partner). The same logic applies to every other SM

fermion, e.g. the SM right-handed quark, UR = (eU, eU c
, u) ⌘ (eU, uR)+ � (eU c

, uL)� with
mass eigenstates U (±n) = (eU (n) ± eU c(n))/

p
2. Since we want to recover a chiral theory at

the zero model level we are going to assume there are no masses in the bulk.

As the theory has N = 1 supersymmetry on the branes, we will provide the zero mode
fermion masses after electroweak breaking by mean of superpotential terms defined on
the y = 0 brane, as

W =
⇣
bht QL H2 UR + bhb QL H1 DR + bh⌧LLH1ER

⌘
�(y) (2.1)

2
In Ref. [14] the third generation of quarks and leptons was localized in the y = 0 brane.

4

Chiral fermions (qL(n)) with mass n/R



•  Decomposition of Higgs hypermultiplets
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• In order to give masses to chiral fermions we need a N=1 
superpotential in one of the branes.
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• We are going to identify the physical Higgs with h(0) whose 
mass is (qR-qH)/R


• We have to make sure that there is no other scalar that 
could potentially get a vev. This is to make sure we are in 
the alignment limit. 


• Since there is a periodicity we are going to assume that 
qR,qH<1/2



• We are going to fix qH so that the mass of the Higgsino is 
equal to 1.1-1.2 TeV to reproduce the relic abundance.


• The other two free parameters qR and R will be fixed by 
requiring correct EWSB and mass for the Higgs.


• In order to impose those conditions we have to calculate 
the one loop corrections to the Higgs potencial.

• Gauginos, sfermions and the gravitino are degenerate at the mass qR/R, although
their masses show some splitting due to their electroweak breaking contributions,
and radiative corrections in the 4D theory, below the compactification scale 1/R.
Therefore in the scales range between qR/R and 1/R the theory resembles the
MSSM.

• Finally for scales above 1/R the theory becomes 5D and all KK modes start to
propagate.

3 Electroweak breaking

As explained earlier, in our 5D SS model the SM Higgs fieldH is identified with h
(0). While

the spectrum potentially contains a second “heavy” Higgs H0, identified with the mode
H

(�1), the large hierarchy between the SM Higgs and the heavy Higgs sector (including the
KK modes) means we should immediately integrate out the heavy Higgses. The resulting
low energy Higgs potential contains only one Higgs doublet H, as in the SM

V = m
2|H|2 + �|H|4 (3.1)

This potential yields m
2
H

= 2�v2, where v = 246 GeV, mH ' 125 GeV. These inputs
fix the numerical value of m2 for correct EWSB to m

2 = �(mH/
p
2)2 ' �(88.4 GeV)2.

Therefore, the condition of electroweak breaking boils down to imposing this number on
the model and thereby selecting out viable values of the inputs qR and 1/R.

As we have seen in the previous section, m2 receives a tree level contribution m
2
0, as

m
2
0 = (qR � qH)

2
/R

2 (3.2)

This mass (squared) is positive definite so that a negative value of m2 must be induced ra-
diatively. Radiative contributions coming from gauge interactions, computed in Ref. [14],
are positive and cannot trigger electroweak breaking. They are given by

�gm
2 =

3g2 + g
2
Y

192⇡4

⇥
9�m

2(0) + 3�m
2(qR ± qH)� 6�m

2(qR)� 6�m
2(qH)

⇤
(3.3)

where the plus sign corresponds to the h
(0) square mass, and the minus sign to that of

H
(�1), and

�m
2(q) =

1

2R2
[Li3(e

2⇡iq) + h.c.], (3.4)

where Lin(x) =
P

1

k=1 x
k
/k

n are polylogarithm functions.

On the other hand, radiative corrections from the Yukawa coupling in Eq. (2.1), are
negative and originate from the diagrams in Fig. 1. The result is a finite, negative definite
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•  Gauge corrections

This expansion is only valid if r is not close to 1, for r = 1, the expansion is

V (r = 1, φ) = 6ζ(5)− ζ(3)x2 +

(
3

16
−

1

4
log x

)
x4 +

1

15
x5 + O(x6) , (3.7)

where ζ(x) is the Riemann-zeta function. Notice that the only odd-term in the x-power
expansion of the potential, x5, cancels (see also Appendix B) in (3.3). This means that
a cosmological phase transition in the 5D theory at temperatures T > 1/R, that can be
described by means of a genuine 5D field theory at finite temperature, is always second
order. A similar observation has been recently done in Ref. [17].

From Eqs. (3.3) and (3.6), we can obtain the mass of φ at the one-loop:

m2
φ =

1

32π4
Tr
[
∆m2(qB)−∆m2(qF )

] dM2(φ)

d|φ|2

∣∣∣∣
φ=0

, (3.8)

where

∆m2(q) =
1

2R2

[
Li3(e

i2πq) + Li3(e
−i2πq)

]
. (3.9)

This coincides with the result in Ref. [31], and can be interpreted diagrammatically in
terms of the diagrams of Fig. 1. In particular, we can calculate the one-loop mass of h(0)

h(0) h(0)

Vµ
(n)

h(0) h(0)
λ(n)

H(n)

h(0) h(0)
Σ(n)

h(0) h(0)
h(n),H(n)

Figure 1: Diagrams that contribute to the squared-mass of the Higgs field h(0).

for the model described in the previous section in the case qR = qH = ω. Considering
only the SU(2)L interactions, Eq. (3.8) yields

m2
φ =

g2
2

64π4

[
9∆m2(0) + 3∆m2(2ω)− 12∆m2(ω)

]
. (3.10)

The Higgs squared-mass at the origin, defined by Eq. (3.10), is positive definite and
therefore radiative corrections on the boundary will be required to trigger EWSB, as
we will see in the next sections. This procedure is a common one in theories where
supersymmetry breaking is gauge-mediated to the sector of squarks and sleptons. The
value of mφ defined by Eq. (3.10) is a monotonically increasing function of ω and takes
values in the range 0 < mφ < 4 × 10−2/R for 0 < ω < 1/2. Thus the scalar remains
around two orders of magnitude lighter than the compactification scale.
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the model and thereby selecting out viable values of the inputs qR and 1/R.

As we have seen in the previous section, m2 receives a tree level contribution m
2
0, as

m
2
0 = (qR � qH)

2
/R

2 (3.2)

This mass (squared) is positive definite so that a negative value of m2 must be induced ra-
diatively. Radiative contributions coming from gauge interactions, computed in Ref. [14],
are positive and cannot trigger electroweak breaking. They are given by

�gm
2 =

3g2 + g
2
Y

192⇡4

⇥
9�m

2(0) + 3�m
2(qR ± qH)� 6�m

2(qR)� 6�m
2(qH)

⇤
(3.3)

where the plus sign corresponds to the h
(0) square mass, and the minus sign to that of

H
(�1), and

�m
2(q) =

1

2R2
[Li3(e

2⇡iq) + h.c.], (3.4)

where Lin(x) =
P

1

k=1 x
k
/k

n are polylogarithm functions.

On the other hand, radiative corrections from the Yukawa coupling in Eq. (2.1), are
negative and originate from the diagrams in Fig. 1. The result is a finite, negative definite

7



•  Corrections from the Yukawa interaction

Figure 1: Diagrams proportional to h2t contributing to �tm2
H
. Note that in the loops full towers

of bosons, Q, U , bQ, bU , and fermions qL and uR, are exchanged.

threshold correction that can be thought of as the result of integrating out the squark
and quark KK modes. The correction is common for both Higgses, and is given by:

�tm
2 =

3h2
t
(µ)

32⇡4R2

⇥
3Li3(e

2⇡iqR)� 3i cot(2⇡qR)Li4(e
2⇡iqR)� 2⇣(3) + h.c.

⇤
(3.5)

To fix qR and 1/R, we first match the high-energy and low-energy theories at the scale
µ0 = qR/R, the scale at which we are integrating out the stop zero mode. In principle,
the net e↵ect of the matching is that the coupling in Eq. (3.5) should be the top-Yukawa,
evaluated with SM field content only, at qR/R. In practice, the SM running of m2(µ)
between mt and qR/R has only a small e↵ect on m

2 so we neglect it (this will not be the
case when we examine the Higgs quartic �(µ)). With µ fixed to qR/R by the matching
condition and qH/R fixed to the values 1.1 and 1.2 TeV, the net tree-plus-loop Higgs mass
is a function of qR and 1/R alone.

Setting now m
2(qR, 1/R) = �(88.4 GeV)2, we can solve for the regions where EWSB

is correctly achieved. The result, plotted in the (qR, qR/R) plane, is shown in Fig. 2
below (red solid lines). Our fixing of qH/R, equal to 1.1 and 1.2 TeV, translates into
the electroweak breaking condition along the band between the corresponding red solid
lines (upper lines along the bands correspond to qH/R = 1.2 TeV and lower lines along
the bands correspond to qH/R = 1.1 TeV). For every case we have to impose that the
heavy Higgs H0 is not tachyonic and heavy enough (decoupling limit) 3. Thus we have
imposed that the square mass of H0 = H

(�1) (including the one-loop radiative corrections)
is positive, which corresponds to the white region.

Before moving on, there is one subtlety in the �m
2 calculations that we would like

to mention. The diagrams in Fig. 1 exist between any two Higgs external states in the
KK tower – n = 0 in and n = 0 out, as well as for n = 1 in and n = 0 out, n = 2

3
The potential for the heavy Higgs is very steep. Therefore, we use the condition m2

H0 > 0 to

approximate where the heavy Higgs is in the decoupling limit

8



•  Contribution to the quartic (analytical formula horrible!!!)

where as before Q, U , bQ, bU , qL and uR correspond to whole KK towers of states. The

Figure 3: Diagrams proportional to h4t contributing to ��.

final expression is given by the integral, in Euclidean momentum,

�� =
3h4

t
(µ)

8⇡2

Z
1

0

p
7
⇥
s
4(p, 0)� s

4(p, qR)
⇤
dp (4.1)

where we will fix µ to the matching scale and the function s(p, q) is defined as

s(p, q) =
⇡R sinh(2p⇡R)

p[cosh(2p⇡R)� cos(2⇡q)]
(4.2)

Notice that, for consistency, we have not introduced any e↵ect from the mixing among
the heavy KK modes as this would correspond to a (small) two-loop e↵ect.

The integral (4.1) is UV convergent. However, it has a logarithmic IR divergence
originating from the contribution of the (massless) top quark zero mode in the loop. This
divergence should be regularized by introducing an IR cuto↵ at the scale mt. Moreover
�� in Eq. (4.1) does depend on the renormalization scale µ which we will fix at the
matching scale µ0 = qR/R, where both the high and the low energy theories coincide. A
careful inspection reveals that ��, can be decomposed as

��(µ0) = ��log(µ0) +��th(µ0) (4.3)
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• The contributions to the mass are finite


• The quartic coupling has an IR divergence related to the 
top quark


• We perform the matching of the SM to the new physics at 
qR/R which is the mass of the squarks.


•  There are two conditions, one on the mass to get EWSB 
and one on the quartic to reproduce the mass of the 
Higgs.
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• Range of values for masses of the LSP between 1.1-1.2 
TeV

Note that our procedure is conservative. Had we fixed the matching scale at the top
quark mass, we would have considered the renormalization group running of the quartic
coupling between the scales 1/R and mt in the one-loop approximation. As shown in
MSSM Higgs studies [24–26], one-loop running from the cut-o↵ to mt overshoots the
Higgs mass, yielding a larger value than the result if all large logarithms are resummed
by renormalization group techniques.

Finally the matching condition is then given by 4

��(µ0) = �
SM =

m
2
H

2v2
(4.5)

and fixing the Higgs mass to its experimental value, using the matching condition (4.5)
sets qR and 1/R. The allowed values in the (qR, qR/R) plane are shown in Fig. 2. The
almost verticality of solid lines reflects the 1/R independence of ��/h

4
t
. As we can see for

fixed value of qH/R (either 1.1 or 1.2 TeV) there are two points that satisfy the electroweak
breaking condition and the Higgs mass value. However if we further impose the relation
that the Higgsino be the LSP there is a single for every value of qH/R.

5 The spectrum and phenomenology

As we can see from Fig. 2 the (qR, qR/R) points that satisfy both the EWSB and mH =
125GeV conditions correspond to where the solid (red and blue) lines intersect for a fixed
value of qH/R. There are two intersections in each case but only one of them remains if
we impose that the Higgsino be the LSP. The parameter values for the remaining points,
which we name A and B, as well as some details of the spectra, are listed in Tab. 1.

Point qR qH 1/R (TeV) qR/R (TeV) qH/R (TeV) Mg̃ (TeV) mH0 (TeV)
A 0.31 0.2 5.5 1.7 1.1 2.0 2.7
B 0.31 0.2 5.9 1.9 1.2 2.1 2.9

Table 1: Points from Fig. 2 that satisfy the conditions of correct electroweak breaking for a single

Higgs field, the correct value of the Higgs mass at 125 GeV, and the Higgsino with a mass at

1.1 and 1.2 TeV being the LSP. The supersymmetric parameters for points A and B should be

considered as the limits for the allowed ranges.

Some comments about the spectrum:

4
As we have already integrated out the top quark in the contribution of the corresponding tower to

Eq. (4.2), and in the approximation we are considering where we are neglecting the contribution from

the gauge g and gY , and quartic �, couplings, �SM
is given by its value at the scale mt.

12



• Experimental constrains from the LHC
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Figure 14: The 95% CL upper limits on the production cross sections of the (upper left) T1tttt,
(upper right) T1bbbb, (lower left) T1qqqq, and (lower right) T5qqqqVV signal models as a
function of the gluino and LSP masses meg and mec0

1
. The thick solid (black) curves show the

observed exclusion limits assuming the approximate-NNLO+NNLL cross sections [70–74]. The
thin solid (black) curves show the changes in these limits as the signal cross sections are varied
by their theoretical uncertainties [92]. The thick dashed (red) curves present the expected limits
under the background-only hypothesis, while the two sets of thin dotted (red) curves indicate
the region containing 68 and 95% of the distribution of limits expected under this hypothesis.

the results should only one of these eight states (“Single eq”) be accessible at the LHC. In this
case, the upper limit on the squark mass is reduced to 1130 GeV.

9 Summary
Using essentially the full CMS Run 2 data sample of proton-proton collisions at

p
s = 13 TeV,

corresponding to an integrated luminosity of 137 fb�1 collected in 2016–2018, a search for su-
persymmetry has been performed based on events containing multiple jets and large missing
transverse momentum. The event yields are measured in 174 nonoverlapping search bins de-
fined in a four-dimensional space of missing transverse momentum (Hmiss

T ), the scalar sum of
jet transverse momenta (HT), the number of jets, and the number of tagged bottom quark jets.
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case, the upper limit on the squark mass is reduced to 1130 GeV.

9 Summary
Using essentially the full CMS Run 2 data sample of proton-proton collisions at
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corresponding to an integrated luminosity of 137 fb�1 collected in 2016–2018, a search for su-
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transverse momentum. The event yields are measured in 174 nonoverlapping search bins de-
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•  The LSP is 99% Higgsino and has a cross section of 
10-10 pb
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Figure 3: The neutralino-proton spin-independent cross section, �SI
p
, for a typical case of

predominantly higgsino-like neutralino DM with m� = 1.0TeV as a function of higgsino
purity fhiggsino (⌘ fh).

papers, for example [92–95]. By simple inspection of Eq. (1), however, one can infer a rough
approximation for the higgsino fraction in the limit of nearly pure higgsinos, |µ| ⌧ M2 ⇡ M1:

1� fh ⇡
m

2
W

(M1,2 � |µ|)2
. (5)

Equation (5) becomes quite accurate for fh ⇠
> 0.999.

The spin-independent cross section of the neutralino with protons (nucleons), �
SI
p

=

(4µ2
red/⇡) |Ap|

2, can be parameterized for moderate-to-large tan� simply as [3]

Ap(fh) ⇡ ae↵
fTG

9

mp

v

g

p
fh (1� fh)

m
2
h

, (6)

in terms of the gluon fractional content of the proton, fTG (we use the default value for
micrOMEGAs v4.3.1 [96], fTG = 0.92), and a phenomenological fudge factor, ae↵ ⇡ 0.9� 1,
which takes into account the dependence of Ap on twist-two operators [97] and higher-order
loop corrections [98].

We show in Fig. 3 a plot of �SI
p

as a function of purity fh for a m� = 1TeV neutralino (to
a first approximation the DM mass a↵ects the cross section only through the reduced mass
leading to µred ⇡ mp). One can see that, for admixtures dominated by the higgsino fraction,
the most recent XENON-1T 90% C.L. upper bound [99] on �

SI
p

enforces fh > 98%, so that
viable DM candidates ought to be very close to a pure higgsino state.

Since the purity of well-tempered higgsino-dominated neutralinos stays well below 90%
in those models attempting to provide a satisfactory solution to the hierarchy problem while
saturating the relic abundance [35], we conclude that, barring increasingly narrow corners of
the parameter space [91], these scenarios have become very hard to rescue or justify in light
of the most recent direct detection bounds.

To conclude this subsection, we finally recall that in cases where |M1| < |µ| . 1 �

2TeV, one obtains scenarios where the mixed neutralino is predominantly bino-like, but also
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•  A 2 TeV gluino may need HL (~1 ab-1) LHC


• The best chance to discover the Higgsino is in direct 
detection experiments like XENON-nT or LZ


•  Fine tuning in this model is smaller than normal due to:


• Low supersymmetry breaking scale


• The electroweak scale depends linearly and not 
quadratically on the parameters 



Conclusions
• In this talk we have built a 5D supersymmetric model with SS 

supersymmetry breaking (boundary conditions)


• The model is very predictive with just three free parameters 
(qR,qH,R)


•  They are fixed by:


•  DM


• EWSB


• Higgs mass



• It is quite remarkable that one can find consistent 
solutions since it was not guaranteed.


• For a range of LSP between 1.1-1.2 TeV we find that the 
mass of the gluino is above 2 TeV, above the current 
experimental bounds from the LHC.


• The spectrum can be probed at the HL-LHC and in the 
next generation of direct detection experiments.


