Natural Higgsino DM

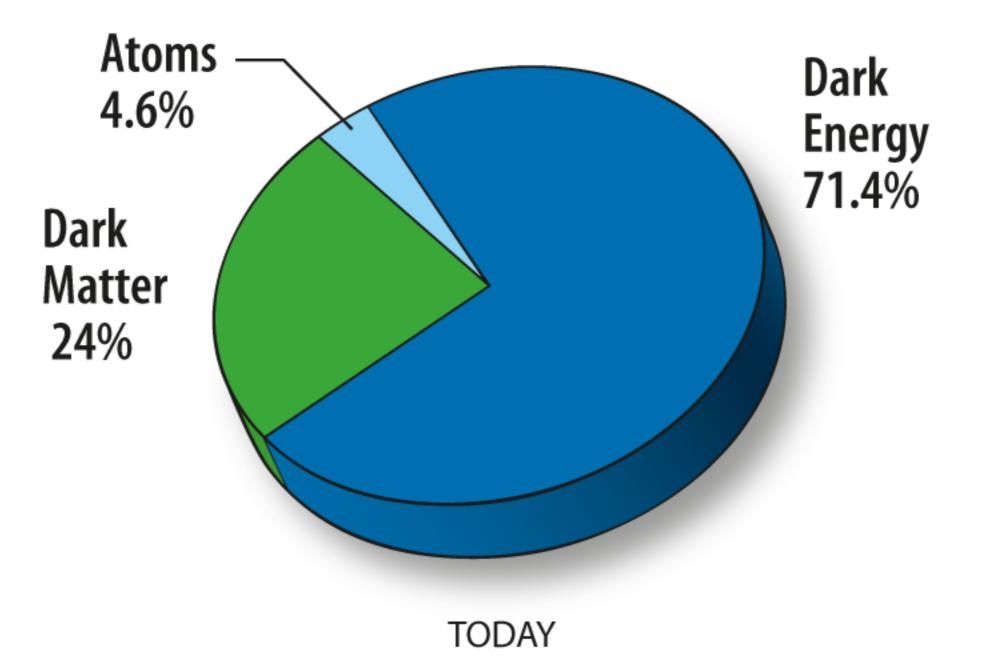
Antonio Delgado University of Notre Dame

- Introduction: Higgsino DM
- The model: 5D with Scherk-Schwarz supersymmetry breaking.
- EWSB and Higgs mass condition
- Conclusion

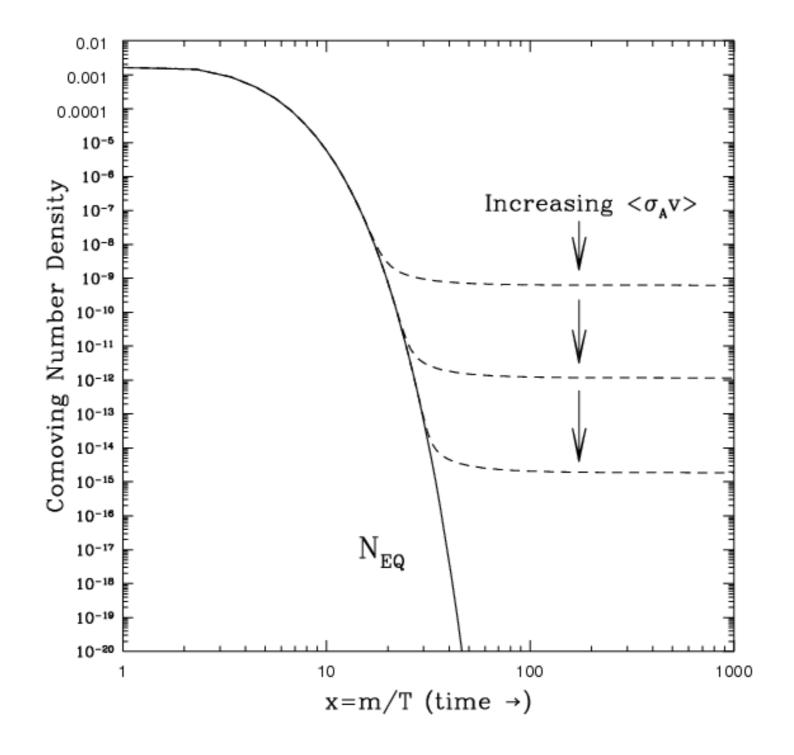
Based on arXiv: 1812.08019 with A. Martin and M. Quirós

In memoriam Eduardo Pontón (1971-2019)

Introduction



• DM may be the most stablished reason for physics BSM

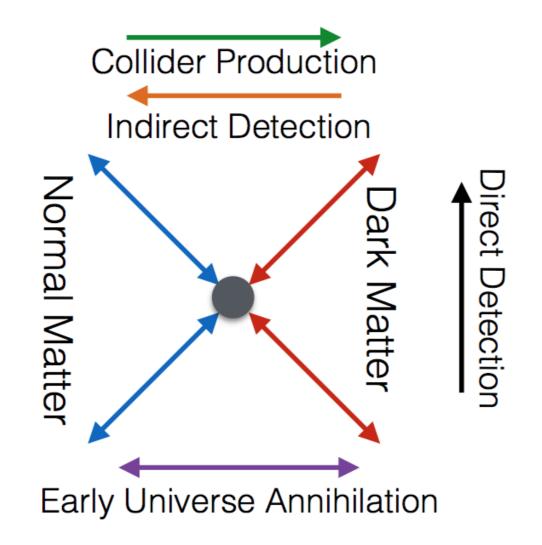


• The solution as a thermal relic it is very elegant as it depends very little on the details of the model.

 It turns out that a WIMP: a stable massive object with weak interactions and a mass around the EW scale reproduces the observed relic abundance.

 $\Omega h^2 \simeq 0.118$

• It has interesting experimental consequences.

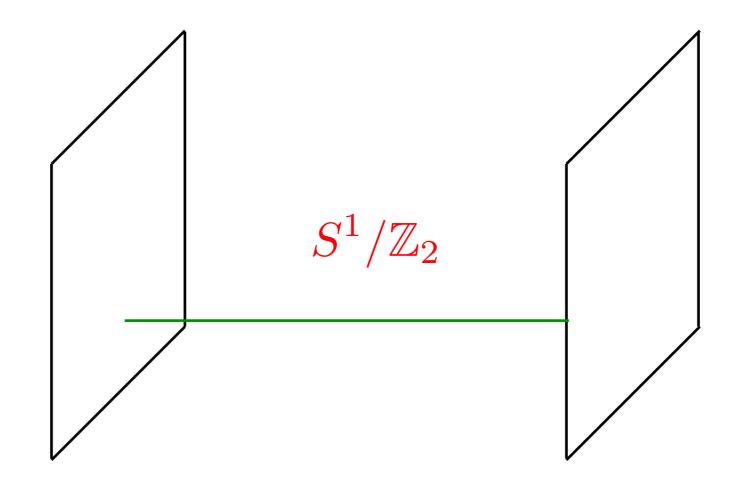


- On the other hand, the hierarchy problem, can be addressed with supersymmetry.
- Merging both ideas, SUSY & DM, is possible and quite exciting.
- Among the usual candidates for DM in the MSSM (neutralinos) the one with less constrains (specially from direct detections) is a pure Higgsino with mass ~1.1-1.2 TeV.

- In this talk I will build a model with just there free parameters that achieves the following:
 - Correct relic abundance with a (mostly pure) Higgsino
 - Correct EWSB
 - Correct mass of the Higgs
 - In agreement with all experimental bounds.

The model

- The model is 5D extension of the MSSM.
- The extra dimension of size πR is compactified on an orbifold S^{1}/Z_{2}
- The minimal supersymmetric content in 5D is equivalent to N=2
- The discrete symmetry Z₂ breaks half of the super symmetries making all fields either even/odd



- All fields live in the bulk and from N=2 representations
- Fields are decomposed in modes and ∂_5 terms become masses

- The theory in the bulk has a SU(2)_R symmetry under which the gauginos in vector multiplets and scalars in hypermultiplets transforms non trivially.
- Like in the MSSM, there are 2 Higgs hypermultiplets which are related by a global SU(2)H symmetry
- By relating the boundary conditions in both end points of the orbifold using SU(2)_R and SU(2)_H one can generate masses for the, otherwise massless, zero mode that we will identify as the usual MSSM fields.
- This amounts for a non-trivial twist related to phases (QR,QH)

$$\mathbb{V} = (V_M, \Sigma, \lambda^i) \equiv (V_\mu, \lambda_L^1)^+ \oplus (\Sigma + iV_5, \lambda_L^2)^-$$

• Two Majorana gauginos $\lambda^{(\pm n)} = (\lambda_L^{1(n)} \pm \lambda_L^{2(n)})/\sqrt{2}$, with masses $|q_R \pm n|/R$.

Gauge bosons (V⁽ⁿ⁾) with mass n/R

• Decomposition of Gauge multiplets

$$\mathbb{Q}_L = (\widetilde{Q}, \widetilde{Q}^c, q) \equiv (\widetilde{Q}, q_L)^+ \oplus (\widetilde{Q}^c, q_R)^-$$

two complex scalars
$$Q^{(\pm n)} = (\tilde{Q}^{(n)} \pm \tilde{Q}^{c(n)})/\sqrt{2}$$
 $(q_R \pm n)^2/R^2$

Chiral fermions (q_L⁽ⁿ⁾) with mass n/R

• Decomposition for matter hypermultiplets

$\mathbb{H}^{1} \equiv (H_{1}^{1}, \Psi_{R}^{1})^{+} \oplus (H_{2}^{1}, \Psi_{L}^{1})^{-}$

$\mathbb{H}^2 \equiv (H_2^2, \Psi_L^2)^+ \oplus (H_1^2, \Psi_R^2)^-$

- Two Dirac Higgsinos $\tilde{H}^{(\pm n)} = (\Psi^{1(n)} \pm \Psi^{2(n)})/\sqrt{2}$, with masses $|q_H \pm n|/R$.
- Two Higgses $h^{(\pm n)} = \left[H_1^{1(n)} + H_2^{2(n)} \mp (H_2^{1(n)} H_1^{2(n)}) \right] / 2$, with masses $|q_R q_H \pm n| / R$.
- Two Higgses $H^{(\pm n)} = \left[H_1^{1(n)} H_2^{2(n)} \mp (H_2^{1(n)} + H_1^{2(n)}) \right] / 2$, with masses $|q_R + q_H \pm n| / R$.

Decomposition of Higgs hypermultiplets

$$W = \left(\widehat{h}_t \, \mathcal{Q}_L \, \mathcal{H}_2 \, \mathcal{U}_R + \widehat{h}_b \, \mathcal{Q}_L \, \mathcal{H}_1 \, \mathcal{D}_R + \widehat{h}_\tau \mathcal{L}_L \mathcal{H}_1 \mathcal{E}_R\right) \, \delta(y)$$

 In order to give masses to chiral fermions we need a N=1 superpotential in one of the branes.

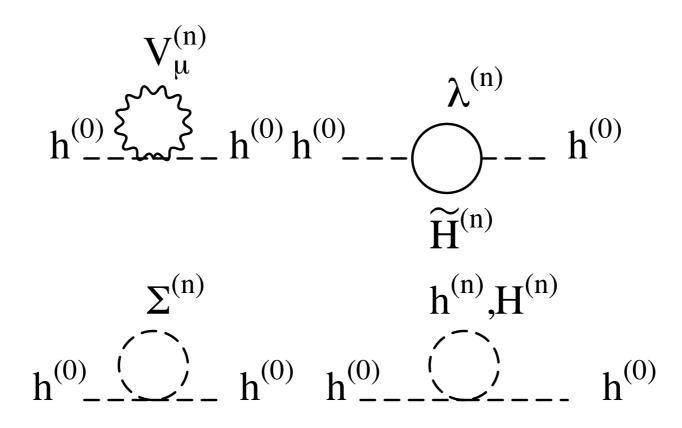
We are going to identify the physical Higgs with h⁽⁰⁾ whose mass is (q_R-q_H)/R

- We have to make sure that there is no other scalar that could potentially get a vev. This is to make sure we are in the alignment limit.
- Since there is a periodicity we are going to assume that $q_{R,QH} < 1/2$

- We are going to fix q_H so that the mass of the Higgsino is equal to 1.1-1.2 TeV to reproduce the relic abundance.
- The other two free parameters q_R and R will be fixed by requiring correct EWSB and mass for the Higgs.
- In order to impose those conditions we have to calculate the one loop corrections to the Higgs potencial.

$$V = m^2 |\mathcal{H}|^2 + \lambda |\mathcal{H}|^4$$

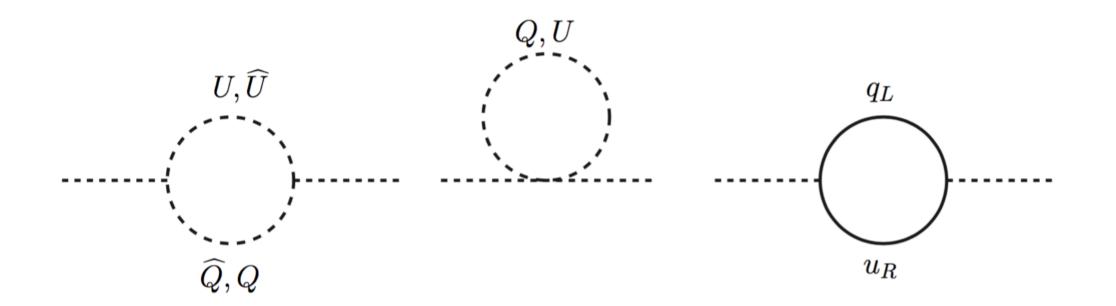
$$m_0^2 = (q_R - q_H)^2 / R^2$$



$$\Delta_g m^2 = \frac{3g^2 + g_Y^2}{192\pi^4} \left[9\Delta m^2(0) + 3\Delta m^2(q_R \pm q_H) - 6\Delta m^2(q_R) - 6\Delta m^2(q_H) \right]$$

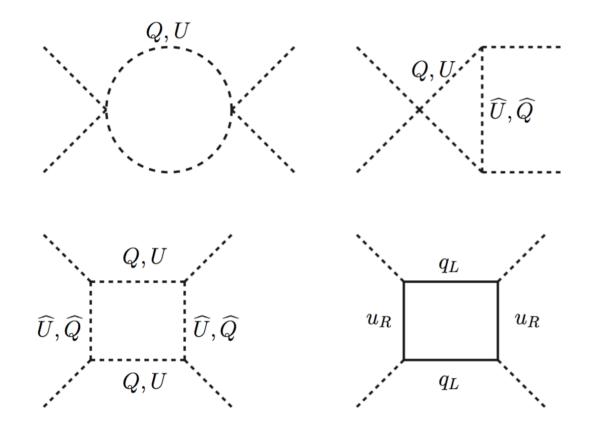
$$\Delta m^2(q) = \frac{1}{2R^2} [Li_3(e^{2\pi i q}) + h.c.]$$

• Gauge corrections



$$\Delta_t m^2 = \frac{3h_t^2(\mu)}{32\pi^4 R^2} \left[3Li_3(e^{2\pi i q_R}) - 3i\cot(2\pi q_R)Li_4(e^{2\pi i q_R}) - 2\zeta(3) + h.c. \right]$$

• Corrections from the Yukawa interaction

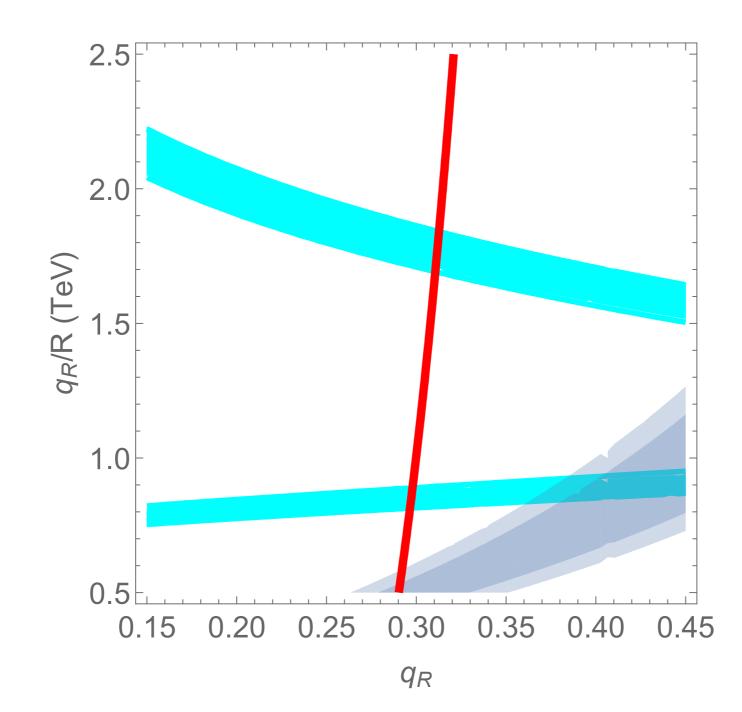


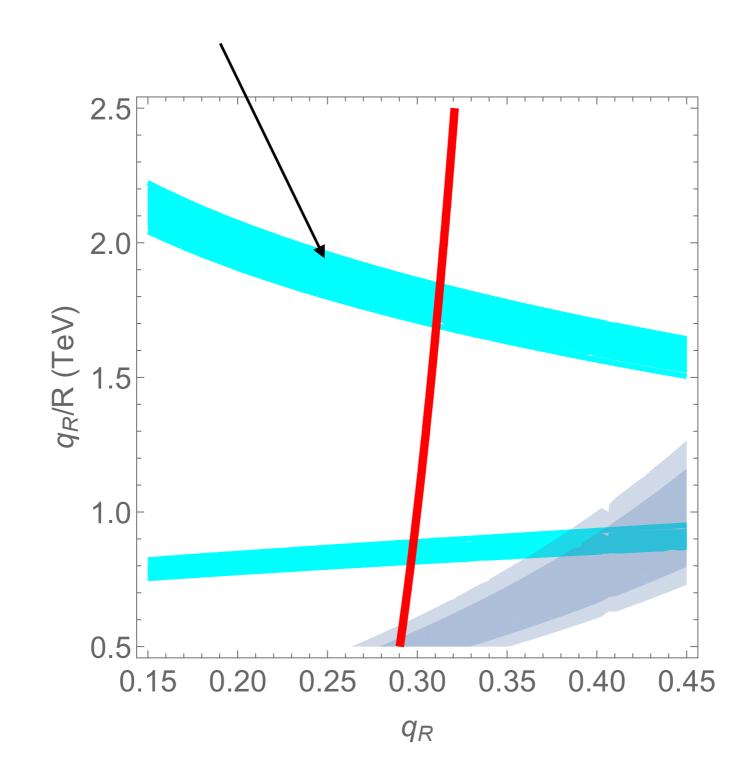
$$\Delta \lambda = \frac{3h_t^4(\mu)}{8\pi^2} \int_0^\infty p^7 \left[s^4(p,0) - s^4(p,q_R) \right] dp$$

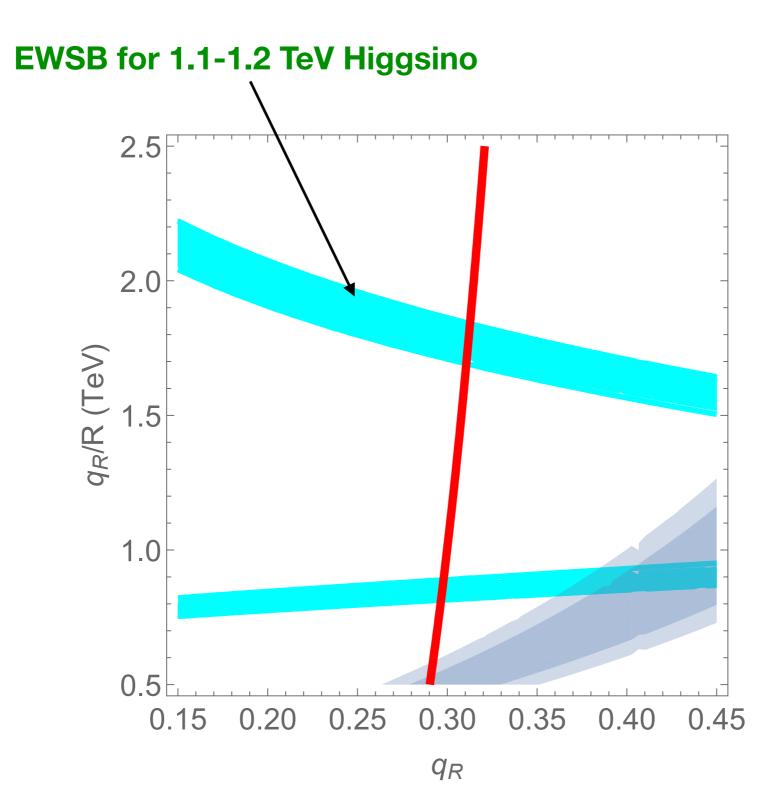
$$s(p,q) = \frac{\pi R \sinh(2p\pi R)}{p[\cosh(2p\pi R) - \cos(2\pi q)]}$$

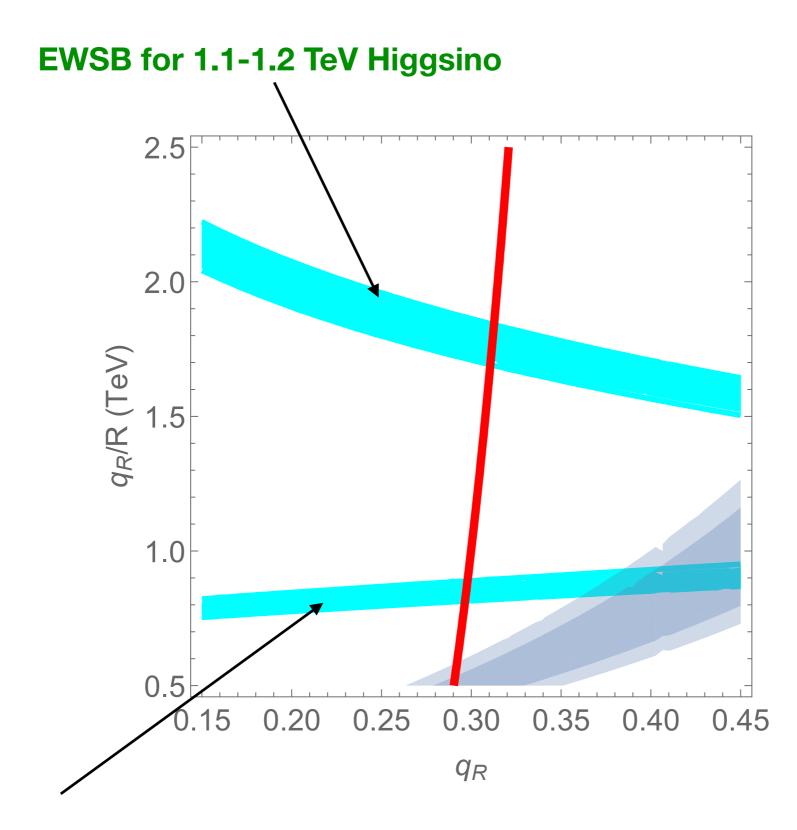
• Contribution to the quartic (analytical formula horrible!!!)

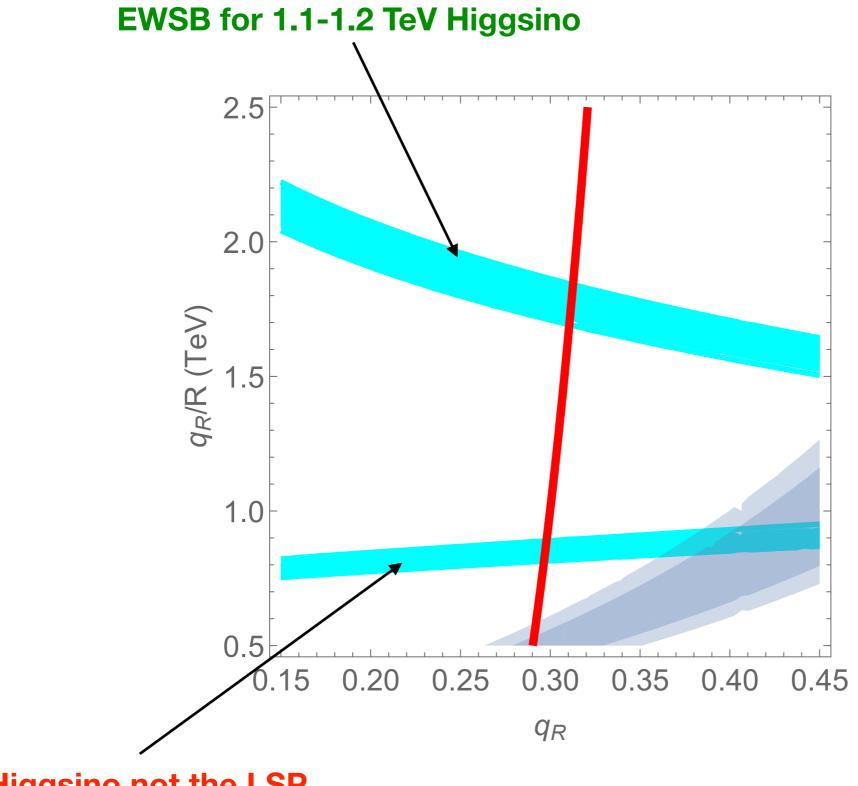
- The contributions to the mass are finite
- The quartic coupling has an IR divergence related to the top quark
- We perform the matching of the SM to the new physics at q_R/R which is the mass of the squarks.
- There are two conditions, one on the mass to get EWSB and one on the quartic to reproduce the mass of the Higgs.



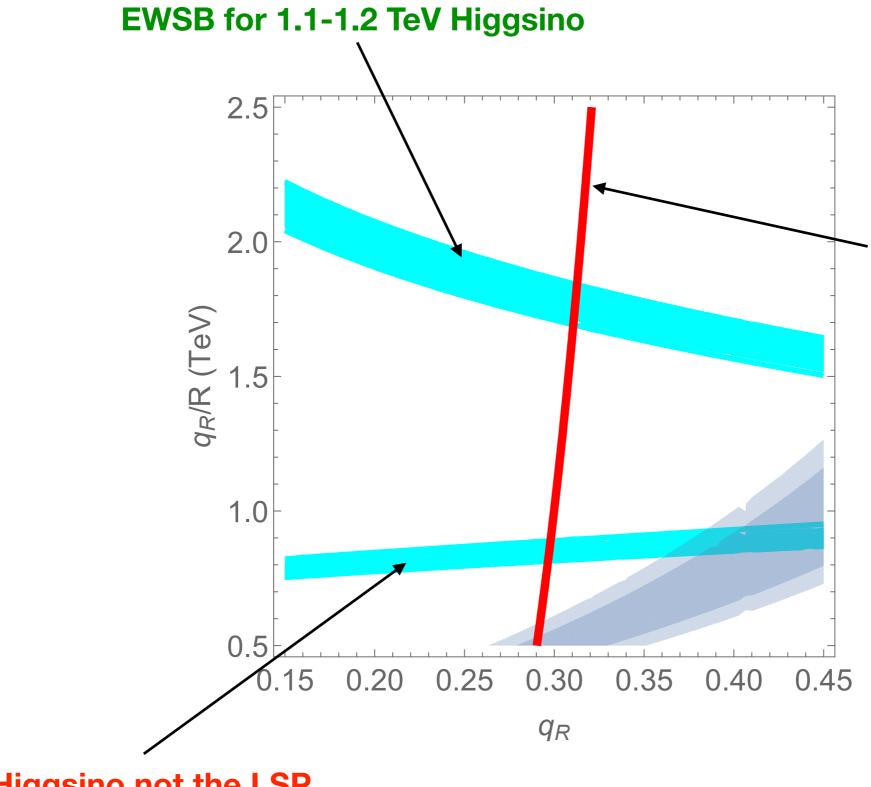




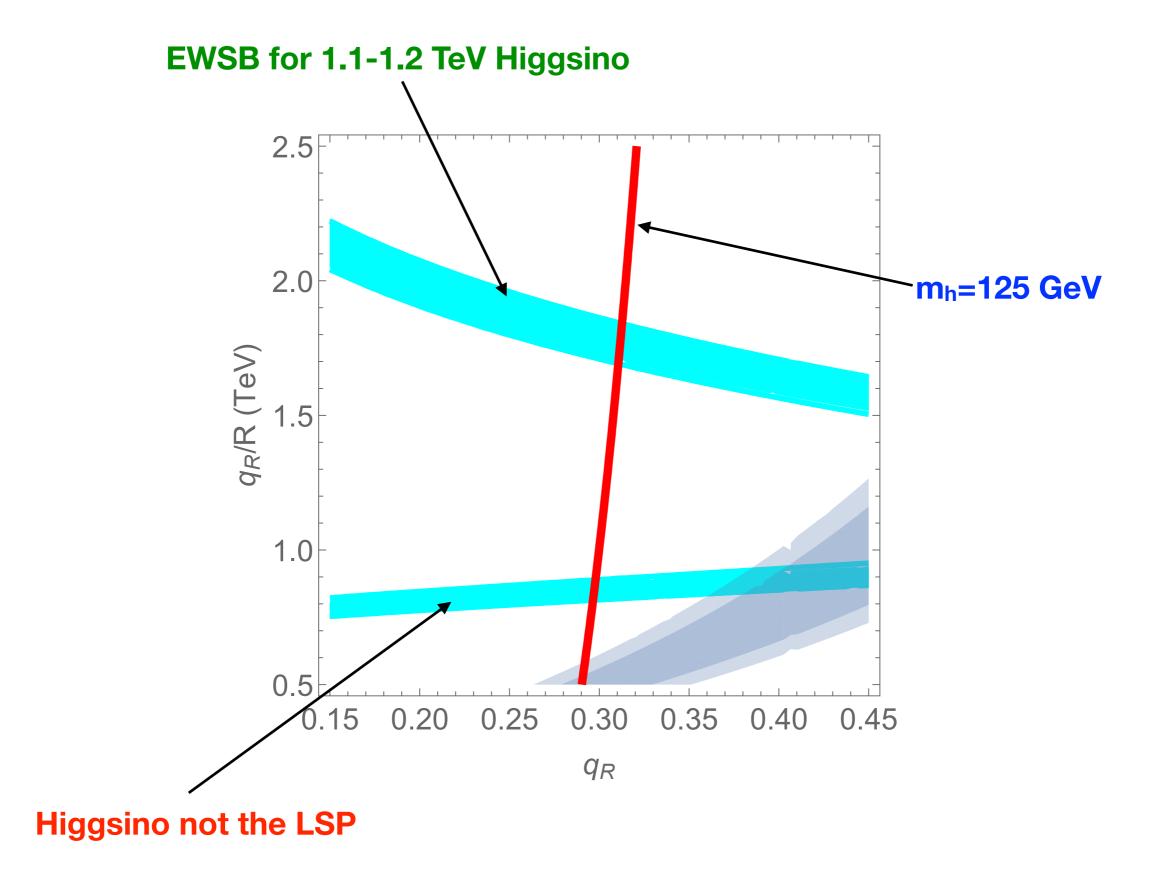


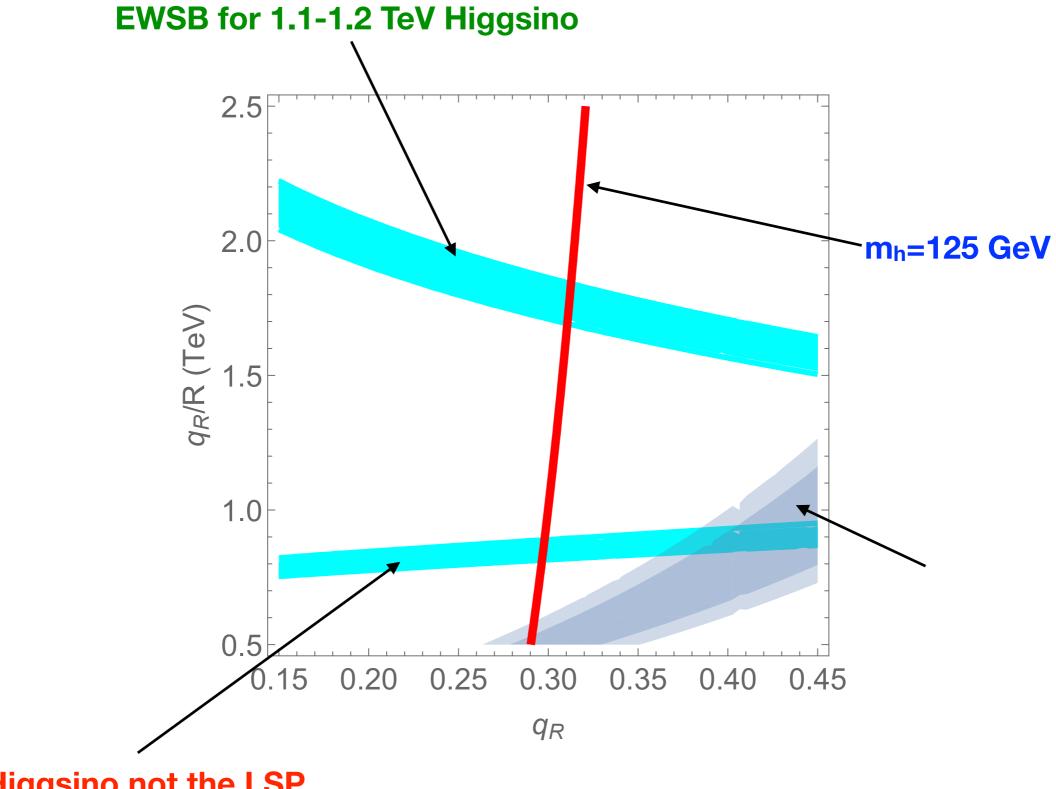


Higgsino not the LSP

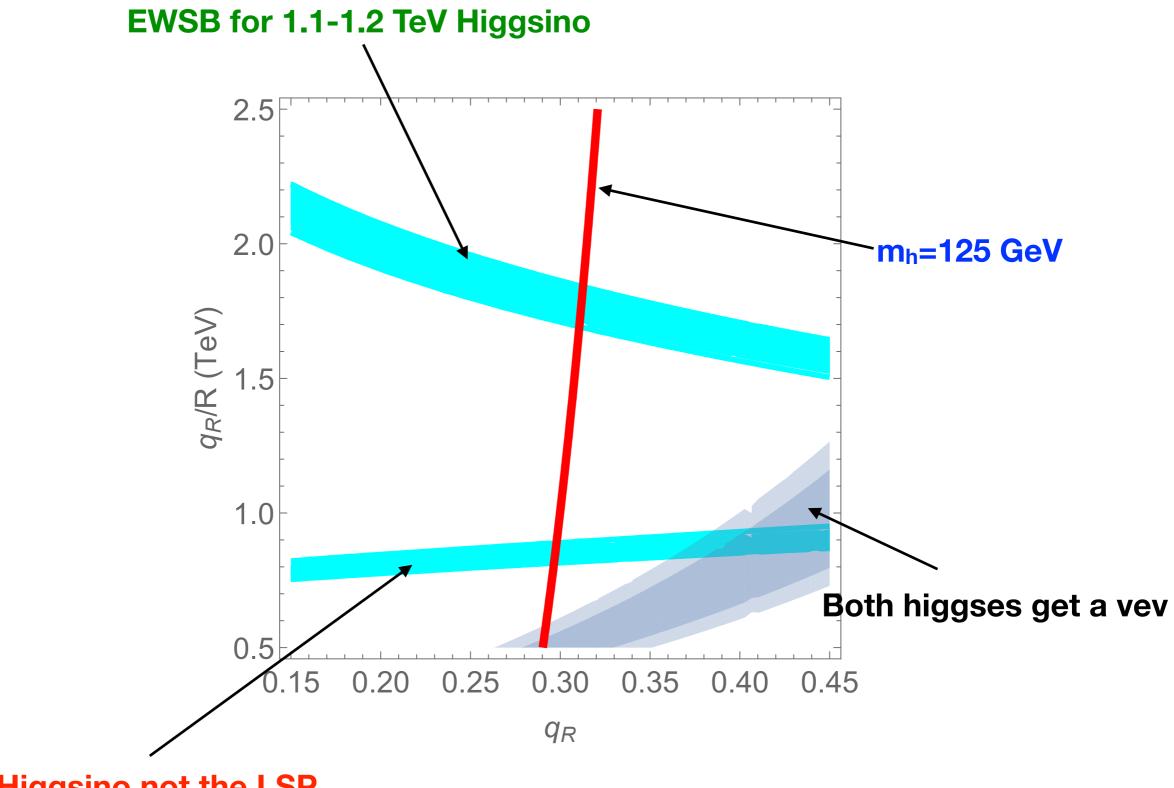


Higgsino not the LSP





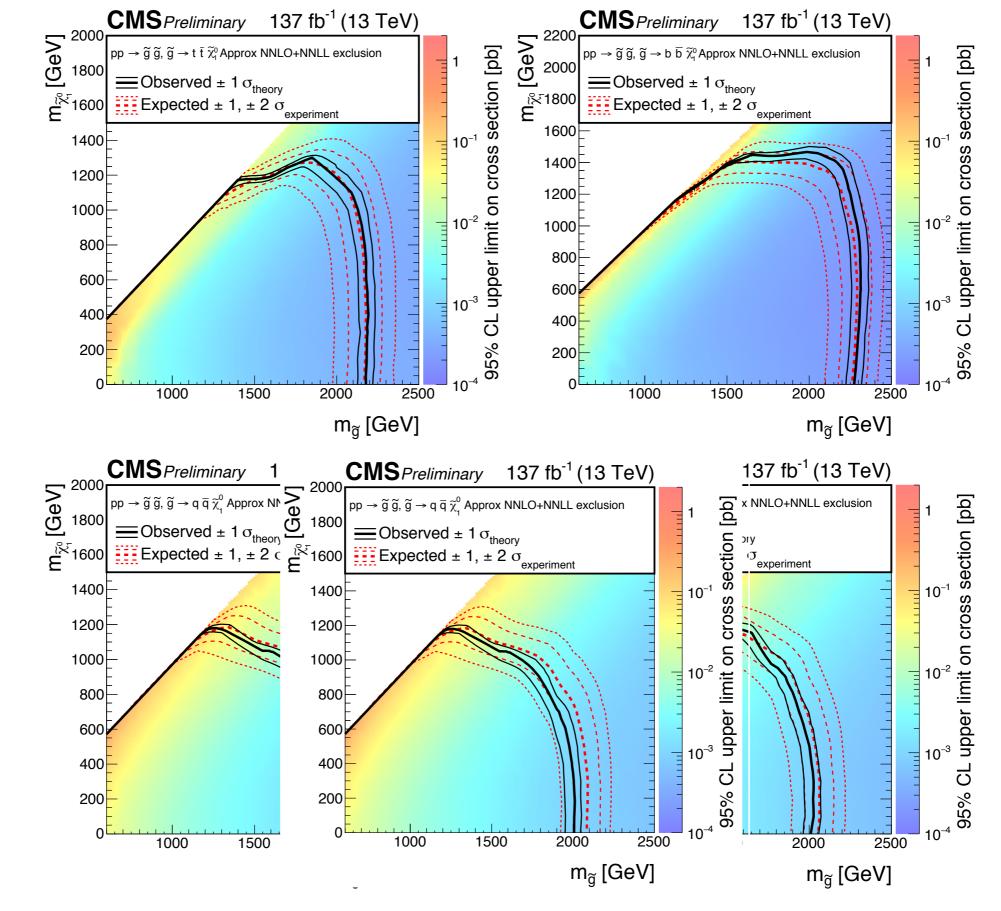
Higgsino not the LSP



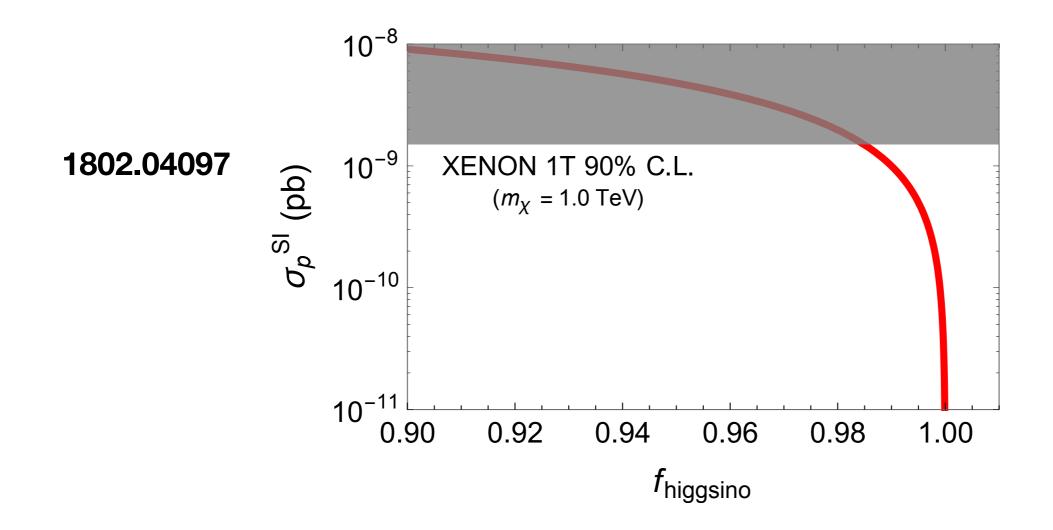
Higgsino not the LSP

Point	q_R	q_H	1/R (TeV)	q_R/R (TeV)	q_H/R (TeV)	$M_{\tilde{g}}$ (TeV)	$m_{\mathcal{H}'}$ (TeV)
A	0.31	0.2	5.5	1.7	1.1	2.0	2.7
В	0.31	0.2	5.9	1.9	1.2	2.1	2.9

 Range of values for masses of the LSP between 1.1-1.2 TeV



Experimental constrains from the LHC



 The LSP is 99% Higgsino and has a cross section of 10⁻¹⁰ pb

- A 2 TeV gluino may need HL (~1 ab⁻¹) LHC
- The best chance to discover the Higgsino is in direct detection experiments like XENON-nT or LZ
- Fine tuning in this model is smaller than normal due to:
 - Low supersymmetry breaking scale
 - The electroweak scale depends linearly and not quadratically on the parameters

Conclusions

- In this talk we have built a 5D supersymmetric model with SS supersymmetry breaking (boundary conditions)
- The model is very predictive with just three free parameters (q_R,q_H,R)
- They are fixed by:
 - DM
 - EWSB
 - Higgs mass

• It is quite remarkable that one can find consistent solutions since it was not guaranteed.

- For a range of LSP between 1.1-1.2 TeV we find that the mass of the gluino is above 2 TeV, above the current experimental bounds from the LHC.
- The spectrum can be probed at the HL-LHC and in the next generation of direct detection experiments.