
Particle Decay 
in the Expanding Spacetime of
Post-Inflationary Cosmology

By Nathan Herring
In collaboration with Daniel Boyanovksy and Andrew Zentner
ICTP-SAIFR: Dark Universe Workshop Oct. 21-25, 2019

Based on PRD 98, 083503 (2018) and PRD 100, 023531 (2019)

1

https://arxiv.org/abs/1808.02539
https://arxiv.org/abs/1904.12343


Overview

● Why Particle Decay?

● FRW Spacetime

● Scalar and Fermion Fields in FRW

● The Wigner-Weisskopf Method

● Example 1: Decay of Massive Scalar to Massless Scalars in Radiation Domination

● Example 2: Decay of Massive Scalar to Massless Fermions in Radiation Domination

● Potential Implications

● Conclusions
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Particle Decay is a 
ubiquitous process 
in Cosmology.

Particle Decay is the 
simplest dynamical 
process in QFT.

Applications in the Early Universe

● Baryogenesis
○ Generation of Matter/Antimatter 

Asymmetry
○ Ex: S. Enomoto and N. Maekawa (2011)

● Leptogenesis
○ Generation Lepton/Antilepton Asymmetry
○ Ex: W. Buchmuller et al. (2012)   

● CP Violating Decays in Early Universe
○ Matter/Antimatter asymmetry
○ Ex: L. Covi et al. (1996)

● Big Bang Nucleosynthesis
○ Formation of the light elements

● Particle Dark Matter
○ How was it produced? Is it stable? Can it 

interact with the “visible” matter?
○ Constrained to have a long lifetime
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The Friedmann-Robertson-Walker Metric

● A Spatially Flat Expanding Universe is described by the 
FRW Metric:

                                                                       

● The scale factor must obey Friedmann’s Equation:

Values as determined by C.L. Bennett et al.  (2013)4



The Friedmann-Robertson-Walker Metric

● A Spatially Flat Expanding Universe is described by the 
FRW Metric:

                                                                       

● The scale factor must obey Friedmann’s Equation:

4 Important Consequences:

1. Homogeneous (Momentum Conservation)
2. Isotropic (Angular Momentum 

Conservation)
3. Time-Dependence (Energy is Not 

Conserved)
4. Conformal to Minkowski (dt = a dη)

Values as determined by C.L. Bennett et al.  (2013)5



Scalar and Fermion Fields in FRW Spacetime

Conformally Rescaled Equations of Motion

● Scalar Fields:
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Scalar and Fermion Fields in FRW Spacetime

Conformally Rescaled Equations of Motion

● Scalar Fields:

● Fermion Fields:
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Scalar and Fermion Fields in FRW Spacetime

Conformally Rescaled Equations of Motion

● Scalar Fields:

● Fermion Fields:

Adiabatic Approximation

● WKB Ansatz

● Adiabatic Expansion

● The  Physical Character of this Expansion
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The Wigner-Weisskopf Method

Features:
● Developed originally to calculate atomic 

line spectra

● Manifestly unitary and non-perturbative

● Exploits the interaction picture

● Allows for direct calculation of transition 
amplitudes and probabilities
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Massive Scalar -> Massless Scalars

Decay at Rest in Comoving Frame (k = 0)

● The result exactly approaches the Minkowski, 
S-Matrix value.

● Valid for parent particle “born” at rest in comoving 
frame.
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Massive Scalar -> Massless Scalars

Decay at Rest in Comoving Frame (k = 0)

● The result exactly approaches the Minkowski, 
S-Matrix value.

● Valid for parent particle “born” at rest in comoving 
frame.

Relativistic Case (k > m)

● For particles “born” with some comoving 
momentum

● Generically, smaller than the Minkowski rate:
○ Time Dilation
○ Cosmic Redshift
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Massive Scalar -> Massless Fermions (Yukawa 
Coupling)

Decay at Rest in Comoving Frame (k = 0)

● Distinctly not the Minkowski result unlike for 
scalar decay products

● Consequence of Renormalizability + Curved 
Spacetime

○ “Dressing” of the state on an associated 
time scale

○ Time dependent frequencies preserve the 
“anomalous dimension”
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Massive Scalar -> Massless Fermions (Yukawa 
Coupling)

Decay at Rest in Comoving Frame (k = 0)

● Distinctly not the Minkowski result unlike for 
scalar decay products

● Consequence of Renormalizability + Curved 
Spacetime

○ “Dressing” of the state on an associated 
time scale

○ Time dependent frequencies preserve the 
“anomalous dimension”

Relativistic Case (k > m)

● The UR case is nearly identical to scalar case
● In NR regime “anomalous dimension” term 

distinguishes fermionic from scalar case
○ Enhancement factor that preserves the 

short time-scale physics
○ Time dependent frequencies is the key!  13



Implications: Long-Lived Particles

Consider a massive scalar decaying to massless 
fermions with the following assumptions:

● Particle produced at T ≃ TGUT ≃ 1015 GeV
● anr ≃ 10-3 (Matter-Radiation Equality)
● Recall anr ≝ k/m
● Very small Yukawa coupling

1. Plotted is Minkowski Rate/FRW Rate error as 
a function of redshift.

2. The error is large when zobs ⪎ 1/anr
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Implications: Early Universe Quantum Kinetics 

Standard Quantum Kinetic Treatment

● Quantum Kinetic Master Equation for 𝜒 ↔ 𝜑𝜑
● Assume 𝜑 particles are already thermalized
● Energy conserving delta functions lead to 

detailed balance.
● Solution is thermal distribution for 𝜒 particle 

asymptotically.
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Implications: Early Universe Quantum Kinetics 

Standard Quantum Kinetic Treatment

● Quantum Kinetic Master Equation for 𝜒 ↔ 𝜑𝜑
● Assume 𝜑 particles are already thermalized
● Energy conserving delta functions lead to 

detailed balance.
● Solution is thermal distribution for 𝜒 particle 

asymptotically.

Modifications from Cosmic Expansion

● Energy conservation is not manifest
● Gain/Loss terms are essentially decay rates 

which deviate from Minkowski results in FRW.
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Conclusions

● We can obtain the decay law, analytically, in the expanding FRW spacetime using adiabatic 
expansion (zeroth order) and Wigner-Weisskopf method.

● We can obtain an effective time-dependent decay rate which is smaller than the analogous 
Minkowski result.

○ Local time dilation
○ Cosmic Redshift

● For fermions (w/ Yukawa couplings), the expanding spacetime encodes the memory of transient 
dynamics associated with short-scale physics into the decay function.

○ Renormalizable theory
○ Time dependent frequencies

● S-Matrix inspired results are, at best, approximations, but they miss crucial non-equilibrium 
dynamics and other modifications to the decay law! 17



Extra Slides
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The S-Matrix

● The unitary time-evolution matrix constructed from the interacting Hamiltonian

● These states are asymptotically free particle states (infinite time limit)

● Terms in the S-Matrix correspond to Feynman Diagrams 

● Transition probability is given by the square of the term integrated over phase space

● The S-matrix implicitly assumes energy conservation in order to extract a decay rate (Audretsch, Spangehl [1986])

● No energy conservation in FRW indicates the need for a different technique!
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The Interaction Picture

The Schrodinger Picture

● Operators are 
time-independent

● States evolve with full 
Hamiltonian

The Heisenberg Picture

● Operators evolve with full 
Hamiltonian

● States are time-independent

The Interaction Picture

● Operators evolve with the 
free field Hamiltonian

● States evolve with interacting 
Hamiltonian
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The Wigner-Weisskopf Method (in Detail)

Features:
● Developed originally to calculate atomic 

line spectra
● Manifestly unitary and non-perturbative
● Exploits the interaction picture
● Allows for direct calculation of transition 

amplitudes and probabilities

Implementation:
● Expand State Evolution in Fock Basis
● Set initial conditions
● Close hierarchy of equations
● Define the self-energy
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Wigner-Weisskopf Method Cont.

● Formally solve the coupled ODEs
●  Markovian Approximation

○ Integrate by parts
○ Weak Coupling Argument

● The result is manifestly non-perturbative
● We formally obtain the decay law and decay 

rate
● Calculation of the self-energy is the key step

Then one defines a time-dependent decay rate:
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Scalar Field 
Theory in FRW 

Spacetime

1. Classical Action
2. Conformal Rescaling
3. Free Field Equations of Motion
4. Spatial Fourier Transform
5. Mode Function Differential 

Equation
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The WKB Solution

● In radiation domination, the mode function differential equation simplifies

● The mode functions must be quantized

● The WKB ansatz can then be implemented
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Decay of Massive Scalar to Massless 
Scalars
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 The Self-Energy

● First the self-energy must be obtained for massive particle decaying to two massless particles

● Input the mode functions:

●  For m2 = 0 the self-energy takes the form:

26



Time Dependent 
Decay Rate

1. Integrate in small conformal 
time interval

2. Decay Law requires further 
integration

3. The result is a locally time 
dilated Minkowski decay law.
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Limiting Cases

Simple Non-relativistic Case

● The result exactly approaches the 
Minkowski, S-Matrix value.

● However, few particles are “born” with k=0 
in early cosmology.

Ultra-relativistic Case

● The UR Result is markedly distinct from 
Minkowski result.

● Time-dilation
● Cosmic Redshift
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General Non-Relativistic Case

● For particles “born” with some comoving 
momentum

● Time Dilation
● Cosmic Redshift
● Always smaller than the Minkowski rate
● The “G” function interpolates between the 

UR and NR regimes
● For General NR case take t >> tnr
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Decay of Massive Scalar to Massive 
Scalars
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Time Dependent 
Decay Rate

1. Much harder calculation 
(momentum integral is difficult)

2. Integrate in conformal time first
3. Use spectral density of states
4. Discover Cosmological Fermi’s 

Golden Rule
5. Cosmic Expansion introduces a 

new “uncertainty timescale”
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Threshold Relaxation
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