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Brane Worlds and Problems 
of Particle Physics

• Extra dimensions large and small have proven to be rich 
troves for model building and phenomenology


• many interesting ways to address 


• hierarchy problem


• flavor


• SUSY breaking


• New viewpoints on cosmological constant problem

Additionally, many intriguing cosmological behaviors in presence of instability



Examples: Matter/Radiation 
Cosmologies from Pure Tension
• The motion of branes in systems with no static or stable 

solution can have interesting consequences for localized 
observers


• RS 2 brane model - mistuned tensions


• solutions include 4D  cosmologies


• Sen’s “Tachyon condensation”:  brane collapse/
annihilation


• rolling tachyon stress-energy approaches matter 
domination from 

ρr, ρΛ

D − D̄

E.g. Csáki, Graesser, Kolda, Terning hep-ph/9906513 
Kaloper hep-th/9905210

e.g. Sen hep-th/0203265



Darkness from Brane-worlds: 
Matter without Matter

• In the early 2000’s, Sen showed systems of unstable D-
branes annihilate, while falling are described by an EFT: 




• Tachyon rolls, square root sets speed limit (c for branes)


• In epoch when near limit, stress tensor is that of pressure-
less fluid…non-relativistic matter

STachyon = ∫ ddxV(Φ) det(ημν + ∂μΦ∂νΦ)



Annihilating at c:



Stress-Tensor

T00 ∝
V(Φ)

1 − ·Φ2
Tij ∝ − V(Φ) 1 − ·Φ2δij

Consider time-dependent brane separation

Tachyon rolls, picks up speed, asymptotically approaching ·Φ ≈ 1

T00  remains constant (energy conserved) 
Pressure drops to zero

Add weak gravity - cosmology tends from inflationary to  
being dominated by non-relativistic matter

(Eventually branes annihilate - not captured in this EFT)





Relaxing the tensions
The dynamics of this model have been well-studied, here we repeat

1 Metric Solution - Jay Hubisz

We can start with the following ansatz, where the UV brane embedding is flat, and the
metric is Gaussian Normal with respect to an extra dimensional coordinate (y) which is
perpendicular to the UV brane:
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I’ve assumed flat 3D slices. In a 5D space with only cosmological constant (no scalar
matter), the action is
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G
0,1
ab are the pullback metrics for the UV and IR brane, respectively. The coordinates are

chosen such that the embedding of the UV brane is trivial: G
0
ab = g(y = 0)µ⌫�µa�

⌫
b . The

same cannot be done for the IR brane while maintaining the metric ansatz above, thus non-
trivial motion of the IR brane is encoded in the functions relating the brane coordinates ⇠1
to the bulk coordinates x.

The t � y component of the Einstein equations give an equation that relates the
functions n and a:
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Multiplying by a/ȧ, the equation is integrable:
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where the 0 subscript implies evaluation at y = 0 (the location of the UV brane). We make
the choice that the cosmology on the UV brane is in proper time coordinates: n0 = 1. The
metric now depends only on a and its derivatives:

ds
2 =

✓
ȧ
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The tt Einstein equation can be put in the following form:
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Using EE’s, can simplify metric 
 depends only on one function, :a(y, t)

 is the scale factor observed on the UV brane, a0(t) a(y = 0,t)

The equation has general solution:

a
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The di↵erence of the tt and yy equations yields:
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We can plug the general solution above into this dynamical equation, which yields a relation
for only the time-dependent pieces:
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which can be integrated:
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where � is an integration constant. This integration constant is important, and was ne-
glected in some of the papers in the literature (but not Csába’s!). It encodes (from the UV
brane perspective) the amount of radiation in the universe, as we will see below.

We might now apply the boundary conditions. We have a boundary condition relating
a
0 to the UV brane tension: �a

0
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It turns out that (on the solution) the argument in the square root is always positive. The
metric is now completely specified in terms of what is so far an arbitrary function of time,
a0(t), and its derivative.

Now note that there is a consistency relation. We must have a2(y = 0, t) = a
2
0. The left

hand side is purely a function of time derivatives of a0(t), so this relation gives a di↵erential
equation for a0. The equation can be solved analytically to get ȧ0 in terms of a0:
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ȧ0

a0

◆2

=
4�

a
4
0

+ �0(2 + �0) (1.13)

This is the Friedman equation for a universe that includes vacuum energy and radiation.

We should not be too surprised by this result.1 If we have performed the UV brane
tuning (corresponding to vanishing bare CC), and the bulk stress tensor is pure CC (no

1I am mildly surprised that there is no matter component. I would have thought that the cosmological
constant could stabilize the radion - Kaloper has solutions like this - and that its oscillations could look
like matter.

2

Can solve y-dependence: And relate ’sΛ

The equation has general solution:
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ȧ
4
0 (1.10)

which can be integrated:

⇤+ =

"✓
ȧ0
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Integration constant

t is proper time for UV 
brane observer

Impose UV brane metric junction condition and consistency relation



Radiation as an  
integration constant

κ2

6k
T0 ≡ 1 + δ0
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Interesting result - Hubble on the UV brane:

Without adding “stuff” beyond cosmological constants/tensions, 
system of branes has a big-bang

So far, we have ignored the IR brane  
its motion determined by IR brane metric junction conditions

Now the brane stress energy tensor is rather simple in the case of a pure tension:

SMN = �T1hMN (1.23)

and in terms of the tensor ŜMN = SMN � 1/3ShMN = 1/3T1hMN , we can find the first
order equation from the i� j components of the jump conditions
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where the brane tensor Xµ⌫ = e
M
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N
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parametrizing the brane.

The i � j condition then gives our equation solving the motion of the brane in our
metric background:
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metric factors are evaluated at R� (just to the left of the brane). There is another equation
you could write down, from the other junction conditions. However, it is just the derivative
of this equation, and contains less information (i.e. not all solutions will satisfy the i � j

junction condition).

Unfortunately, expanding this out on the solution leads to a BCE (big crappy equa-
tion), even on the simpler pure radiation scenario, �0 = 0. Ideally we would like to under-
stand whether we can toss the IR brane in such a way that it passes through the Rindler
horizon, otherwise the UV observer never gets any information about it at all.

Let us persist, anyhow. First, let us see what boundary conditions we are allowed.
Simplify for now to the case of pure radiation, where the UV brane tuning is performed
(�0 = 0). Taking the limit of the LHS as t ! 0, we find that (for 2

/6 T1 ⌘ �1 + �1), the
junction condition imposes a constraint on R(t = 0):

tanhR|t=0 =
1

�1 � 1
(1.26)

This can’t be right, since the RHS is negative for small-ish mistune, and that would put R
on the wrong side of the UV brane - it is telling us that at the big bang, Ṙ must diverge
(in deriving the above expression, we have assumed regular behavior of R and Ṙ at the BB
singularity t = 0.

Expanding instead in terms of t, we can extract the leading behavior of R for small t:
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Solving this, and then expanding in small t again, we get:
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5

 and metric functions evaluated at 
y=R(t)

n = ·a / ·a0

Big bang singularity = overlap of the branes, IR brane moving near the speed of light

sqrt factor crucial - sets speed limit



Example behavior
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IR brane “comes into view” for our UV brane observer

Radiation a classical Unruh effect?



Darkness from Brane-worlds: 
Radiation without Radiation

• Dark Radiation From RS brane world:


• Mis-tuning the UV or IR brane tensions can require big-bang 
cosmology without addition of matter (only cosmological 
constants)


• radiation term in Hubble evolution appears as integration constant


• Observer on UV brane (for example) sees Hubble law for radiation


• Radiation seems Unruh-like - Rindler style horizon in bulk recedes 
from UV brane with cosmological evolution


• however it appears classically from bulk gravity



Instabilities of branes: 
Have we classified all phenomena?
• DGP gravity - interesting infrared modification of GR


• plagued by ghosts (e.g. radion instability)


• Unstabilized (or unstabilizable) configurations


• e.g. “Self-organized Higgs Criticality” JH, Rigo, Eröncel 2018


• What are the resolutions of generic brane-world 
instabilities?

Lessons learned from examples:  
relativistic motion of branes is crucial ingredient 

resulting phenomenology intriguing



The RS Radion
• Dynamics of the RS radion are well understood at the level of linear 

perturbation theory


• expand RS metric to first order in perturbations, solve EE’s and 
identify spectrum


• 4D massless graviton, massless scalar  
(gains mass if radius is stabilized), massive tower of KK gravitons


• Ill-suited to macroscopic motion of branes


• Linearized metric expansion does not capture full physics of EFT


• curvatures are small, full EFT can describe large scale motion (tilted 
branes)



Nambu-Goto Brane Action
• Action of a thin co-dim 1 brane in a spacetime 

parametrized by embedding functions , where  
are coordinates on world-volume of brane: 

XM(ξμ) ξ

Sbrane = ∫ ddξT − det gind

gind
μν = ηMN

∂XM

∂ξμ

∂XN

∂ξν

Choose coordinates,  where  captures motion of branegind
μν ≈ ηMN + ∂Mϕ∂Nϕ ϕ

Sqrt enforces causality limit on classical motion of brane

Radion action should be similar - IR brane can’t move faster than c!

Single massless degree of freedom living on the brane - Goldstone!

(Saw this in the dark radiation analysis)



Simplest Dilaton Theory
AdS/CFT relates the 5D radion to the dilaton of a spontaneously broken 4D CFT

4D conformally invariant actions:
gμν = e2τ(x)ημν

flat space rescaled by coordinate  
dependent conformal factor 

Build actions consistent with general covariance:

E.g.  + higher derivativesS = − ∫ d4x g (Λ +
1
12

R)
Expanding, performing a field redefinition, get:

S = ∫ d4x
1
2

(∂ϕ)2 − λϕ4 no higher derivatives 
= no “speed limit”

Radion is NOT a simple realization of the dilaton - 5D causality requires specific pattern 
of higher derivative operators (constraints on interacting CFTs) 

Baumann, Green, and Hartman 1906.10226



Nambu-Goto From 
Symmetry Principles

• Embedding of a (d-1) dimensional brane into d-
dimensional space endowed with Poincaré algebra, 
ISO(d-1,1)


• brane spontaneously breaks subset of translations and 
rotations/boosts: ISO(d-1,1)  ISO(d-2,1)


• low energy action should be described by coset 
construction, Goldstone bosons parametrize coset G/H

→



dĂůŬ�ŝŶ�^ĂŽ�WĂƵůŽ
dŚƵƌƐĚĂǇ͕�KĐƚŽďĞƌ�ϭϳ͕�ϮϬϭϵ ϭϬ͗ϭϲ�WD

Usual counting rules don’t  
apply in same way:

d-1  
brane 

The Counting of  
The Goldstones

d dim 
Minkowski 

Naively expect multiple  
Goldstone modes



Making brane bumps:

dĂůŬ�ŝŶ�^ĂŽ�WĂƵůŽ
dŚƵƌƐĚĂǇ͕�KĐƚŽďĞƌ�ϭϳ͕�ϮϬϭϵ ϭϬ͗ϭϲ�WD

Aside:  Not always a redundancy - brane can carry spin quantum numbers 
Hikaka, Noumi, Shiu 1412.5601



CCWZ
Callan, Coleman, Wess, Zumino taught us how to build phenomenological lagrangians:

Low energy theory non-linearly realizes the broken symmetries via Goldstones

Formalism to build G-invariant Lagrangians: 
 find objects that transform nicely under , and make invariantsg0 ∈ G

Maurer-Cartan form:

Ωμ ≡ g−1∂μg = Ω ̂a
μT ̂a + Ωa

μTa

Takes values on the algebra, break into components along broken/unbroken directions 

Broken part transforms linearly, trace/contract 

unbroken part transforms non-linearly, like gauge field: 
invariant couplings of NGB’s to light matter fields in reps of H

g = eiΠ ̂aT ̂a



CCWZ and the brane
A general (but with redundancies) representative of the coset 

g = eiYM(x)PMeiΦN(x)M ̂AN

broken AND unbroken translations

Expand out the MC form:  Ωμ = i∂μYAΛB
APB +

i
2

(Λ−1)A
C∂μΛCBMAB

 dep. local lorentz transformΦ

Ωμ = ieN
μ [P̄N + ∇Nξ ̂P + ∇NΦMM ̂AM] + iAMN

μ MMN

Can express MC form in manner where geometric interpretation clear: 

Set to zero - removes redundancy  
(relates ’s and derivatives of - “Inverse Higgs Constraints)Φ ξ

Can create invariant action using the “vielbein” e ∼ ∂Y

Delacrétaz, Endlich, Monin, Penco, Riva 1405.7384



Simplest Brane Action
S = − T∫ ddx det e = − T∫ ddx − det ∂μYM∂νYM

Purely from symmetry considerations, have built up the action for a brane 
that automatically includes bulk symmetry constraints (Causality)

Would like to see this applied to realistic brane-worlds, RS type models 
know radion must be analog of this

Reproduces full Nambu-Goto action:

Also: gives a formalism for adding higher derivative interactions (extrinsic curvature), 
couplings to matter fields on the brane, all with corresponding geometric structures

Relativistic constraints arose from structure of Maurer-Cartan form: 
vielbein and the Goldstone dependent volume element



Strategy/Prospects
Radion arises from two branes coupled to dynamical gravity 

Formalism must give not just the brane, but also its mixing with bulk metric fluctuations 
(Radion interaction with both IR brane and UV brane degrees of freedom)

Gravity from cosets:
e.g. Goon, Hinterbichler, Joyce, Trodden 1412.6098

Gauge bosons and gravitons can be viewed as NGB’s of infinite number of  
non-linearly realized space-time global symmetries

5D Kaluza Klein Theory:
as always; 5D coordinates in the orthonormal tetrad basis will be denoted by uppercase (A,B, . . . ) Latin
indices. We will need the following generators, which generate a local Poincaré symmetry:
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We also have the usual translation generators Pµ, Py. Latin indices are raised and lowered with ⌘AB . The
algebra is given by
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with similar commutators for the nonperiodic generators. There’s a small nuance when taking the commuta-
tor of two nonperiodic generators. These go as y2, which must then be expanded on y 2 [0, 2⇡R) in Fourier
modes (and the linear generator):
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C). In particular note that cq = 2⇡R and c0 = 1
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We are interested in the case in which the Jn

AB are the only unbroken generators. We parametrize an
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where terms up to two Greek indices have been included. We resolve the Maurer-Cartan form into compo-
nents
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Suppose we are interested only in the massless particles, ignoring the non-zero graviton modes. Then
we ignore all fields with an n index not equal to zero (i.e. ignoring all generators with a nontrivial periodic
dependence on y). Calculating the Maurer-Cartan form components, we find

⌦A
Q = d⇣A � dxµ ⇣Aµ + (d�B � dxµ �B

µ )⌧
A
B + (d⇣B � dxµ ⇣Bµ )⌧AB cq � dy ⇣B⌧AB (38)

⌦A
Qµ = d⇣Aµ � 2 dx⌫ ⇣Aµ⌫ + (d�B

µ � 2 dx⌫ �B
µ⌫)⌧

A
B + (d�B � dxµ �B

µ )⌧
A
Bµ + (d⇣B � dxµ ⇣Bµ )✓ABµ

+ (d⇣Bµ � 2 dx⌫ ⇣Bµ⌫)⌧
A
B cq + (d⇣B � dxµ ⇣Bµ )⌧ABµcq � dy (⇣B⌧ABµ + ⇣Bµ ⌧AB )

(39)

⌦A = d�A � dxµ �A
µ + (d⇣B � dxµ ⇣Bµ )⌧AB c0 � dy ⇣A (40)

⌦A
µ = d�A

µ � 2 dx⌫ �A
µ⌫ + (d�B � dxµ �B

µ )✓
A
Bµ + (d⇣Bµ � 2 dx⌫ ⇣Bµ⌫)⌧

A
B c0

+ (d⇣B � dxµ ⇣Bµ )⌧ABµc0 � dy ⇣Aµ
(41)

⌦AB
K = d⌧AB � dxµ ⌧AB

µ � dxµ ✓[A|C
µ ⌧ |B]

C + d⌧ [A|C ⌧ |B]
C cq � dy ⌧ [A|C⌧ |B]

C (42)

⌦AB
Kµ = d⌧AB

µ � 2 dx⌫ ⌧AB
µ⌫ + (d✓[A|C
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as always; 5D coordinates in the orthonormal tetrad basis will be denoted by uppercase (A,B, . . . ) Latin
indices. We will need the following generators, which generate a local Poincaré symmetry:

Pnµ1...µk

A = einy/Rxµ1 . . . xµkPA (29)

Qµ1...µk

A = yxµ1 . . . xµkPA (30)

Jnµ1...µk

AB = einy/Rxµ1 . . . xµkJAB (31)

Kµ1...µk

AB = yxµ1 . . . xµkJAB . (32)

We also have the usual translation generators Pµ, Py. Latin indices are raised and lowered with ⌘AB . The
algebra is given by

[Pmµ1...µk

A , Jn⌫1...⌫`
BC ] = 2⌘A[BP

(m+n)µ1...µk⌫1...⌫`

C] (33)

[Jmµ1...µk

AB , Jn⌫1...⌫`
CD ] = 2⌘A[CJ

(m+n)µ1...µk⌫1...⌫`

D]B � (A $ B) (34)

with similar commutators for the nonperiodic generators. There’s a small nuance when taking the commuta-
tor of two nonperiodic generators. These go as y2, which must then be expanded on y 2 [0, 2⇡R) in Fourier
modes (and the linear generator):

y2 = cqy +
X

n

cne
iny/R. (35)

For example, we find [QA,KBC ] = 2⌘A[B(cqQC+cnPn
C). In particular note that cq = 2⇡R and c0 = 1

6 (2⇡R)2.
We are interested in the case in which the Jn

AB are the only unbroken generators. We parametrize an
element of the coset space as follows:
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(36)

where terms up to two Greek indices have been included. We resolve the Maurer-Cartan form into compo-
nents
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K KAB+⌦AB
QµK

µ
AB). (37)

Suppose we are interested only in the massless particles, ignoring the non-zero graviton modes. Then
we ignore all fields with an n index not equal to zero (i.e. ignoring all generators with a nontrivial periodic
dependence on y). Calculating the Maurer-Cartan form components, we find

⌦A
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⌦AB
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⌫ )⌧ |B]
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µ . (45)
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Infinite goldstones before removing redundancies 
(inverse Higgs constraints)

Dilatations of S1

Try on KK theory (extra dimension compactified on S1) - Graviton, Gauge Field, Dilaton

KK modes



Maurer-Cartan:

as always; 5D coordinates in the orthonormal tetrad basis will be denoted by uppercase (A,B, . . . ) Latin
indices. We will need the following generators, which generate a local Poincaré symmetry:

Pnµ1...µk

A = einy/Rxµ1 . . . xµkPA (29)

Qµ1...µk

A = yxµ1 . . . xµkPA (30)

Jnµ1...µk

AB = einy/Rxµ1 . . . xµkJAB (31)

Kµ1...µk

AB = yxµ1 . . . xµkJAB . (32)

We also have the usual translation generators Pµ, Py. Latin indices are raised and lowered with ⌘AB . The
algebra is given by

[Pmµ1...µk

A , Jn⌫1...⌫`
BC ] = 2⌘A[BP

(m+n)µ1...µk⌫1...⌫`

C] (33)
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AB , Jn⌫1...⌫`
CD ] = 2⌘A[CJ

(m+n)µ1...µk⌫1...⌫`

D]B � (A $ B) (34)

with similar commutators for the nonperiodic generators. There’s a small nuance when taking the commuta-
tor of two nonperiodic generators. These go as y2, which must then be expanded on y 2 [0, 2⇡R) in Fourier
modes (and the linear generator):

y2 = cqy +
X

n

cne
iny/R. (35)

For example, we find [QA,KBC ] = 2⌘A[B(cqQC+cnPn
C). In particular note that cq = 2⇡R and c0 = 1

6 (2⇡R)2.
We are interested in the case in which the Jn

AB are the only unbroken generators. We parametrize an
element of the coset space as follows:
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where terms up to two Greek indices have been included. We resolve the Maurer-Cartan form into compo-
nents

⌦ = ⌦µPµ+⌦yPy+⌦A
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Suppose we are interested only in the massless particles, ignoring the non-zero graviton modes. Then
we ignore all fields with an n index not equal to zero (i.e. ignoring all generators with a nontrivial periodic
dependence on y). Calculating the Maurer-Cartan form components, we find

⌦A
Q = d⇣A � dxµ ⇣Aµ + (d�B � dxµ �B

µ )⌧
A
B + (d⇣B � dxµ ⇣Bµ )⌧AB cq � dy ⇣B⌧AB (38)
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Qµ = d⇣Aµ � 2 dx⌫ ⇣Aµ⌫ + (d�B

µ � 2 dx⌫ �B
µ⌫)⌧

A
B + (d�B � dxµ �B
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A
Bµ + (d⇣B � dxµ ⇣Bµ )✓ABµ

+ (d⇣Bµ � 2 dx⌫ ⇣Bµ⌫)⌧
A
B cq + (d⇣B � dxµ ⇣Bµ )⌧ABµcq � dy (⇣B⌧ABµ + ⇣Bµ ⌧AB )

(39)

⌦A = d�A � dxµ �A
µ + (d⇣B � dxµ ⇣Bµ )⌧AB c0 � dy ⇣A (40)

⌦A
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µ )✓
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+ (d⇣B � dxµ ⇣Bµ )⌧ABµc0 � dy ⇣Aµ
(41)

⌦AB
K = d⌧AB � dxµ ⌧AB

µ � dxµ ✓[A|C
µ ⌧ |B]

C + d⌧ [A|C ⌧ |B]
C cq � dy ⌧ [A|C⌧ |B]
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Cµ c0 � dy ⌧AB
µ . (45)

4

Lots of components - lots of redundancies, but easy to spot terms of interest:

Will be the vielbein:

Messy - but much of it can be ignored (e.g. gravitons, KK modes) 

The gauge field

When the dust settles, will be surprised if the answer isn’t analog of 
 Dirac-Born-Infeld Action

det e makes the sqrt

The dilatation



Next..the radion
but not in this talk



Conclusions
• Brane worlds are fascinating models for cosmology


• Extra dimensional brane dynamics can give matter/radiation cosmologies “for free”


• to see it, require an EFT encoding relativistic constraints on the moduli (a la 
Nambu-Goto)


• Radion action to all orders (highly non-trivial dilaton action encoding relativistic 
bulk causality constraints)


• Moduli are Goldstone bosons - bring the tools of CCWZ to go beyond linearized order


• Future:  application to models with kinetic or tachyon instabilities


• condense the tachyons and ghosts


• Our Dark Universe as one animal in the zoo of braneworlds?


