

Jens Erler JGU & Helmholtz Institute Mainz (on leave from IF-UNAM)

Fundamental Parameters from Electroweak Fits

Workshop on **Determination of Fundamental QCD Parameters** ICTP-SAIFR, São Paulo, September 30-October 4, 2019

Cluster of Excellence PRîSMA⁺

Precision Physics, Fundamental Interactions and Structure of Matter

low-energy precision

Global electroweak fits

- * Various groups, programs, approaches, renormalization schemes:
 - * GAPP (MS scheme, FORTRAN, options for BSM fits, used for <u>PDG</u>) JE, hep-ph/0005084
 - * Gfitter (on-shell scheme, C++) Flächer et al., arXiv:0811.0009
 - * HEPfit (on-shell scheme, allows fit to Wilson coefficients) de Blas et al., arXiv:1608.01509
 - * ZFITTER (on-shell scheme, FORTRAN, used for <u>LEPEWWG</u>) Bardin et al., hep-ph/9412201

* $sin^2\theta_W$

- * news on A_{FB}(b) and APV
- * Tevatron and LHC
- * Qweak
- * heavy weights
 - * M_W
 - ***** m_t
 - * M_H

Outline

- *** (X**_S
 - * LEP luminosity $\rightarrow \sigma_{had} \& \Gamma_Z$
 - * T decays
- * outlook
 - * parity violating electron scattering ***** FCC-ee

Weak mixing angle measurements

2-loop QCD correction with $m_b \neq 0$

Bernreuther et al. arXiv:1611.07942

new measured transition vector polarizability

> Tho et al. arXiv:1905.02768

Weak mixing angle measurements

 $A_{FB}(e)$ $A_{FB}(\mu)$ $A_{FB}(\tau)$ $A_{FB}(b)$ $A_{FB}(c)$ $A_{FB}(s)$ $A_{FB}(q)$ $P(\tau)$ $P_{FB}(\tau)$ $A_{LR}(had)$ $A_{LR}(lep)$ $A_{LR,FB}(\mu)$ $A_{LR,FB}(\tau)$ CDF (e) CDF (µ) D0 (e) **D0 (**μ) ATLAS (e) ATLAS (µ) CMS (e) CMS (µ) LHCb (µ) Q_W(e) Q_W(p) Q_W(Cs) 0.235

LEP & SLC: 0.23153 ± 0.00016 Tevatron: 0.23148 ± 0.00033 LHC: $0.23|3| \pm 0.00033$ <u>average direct</u> $0.23|49 \pm 0.000|3$ <u>global fit</u> 0.23153 ± 0.00004

Parity Violating e⁻ Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1149 \text{ MeV}$
- |Q| = 158 MeV
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{\rm PV} = \pm 4.1\%$
- $\Delta Q_{W}(p) = \pm 6.25\%$
- $sin^2\theta_W = 0.2383 \pm 0.0011$
- FFs from fit to ep asymmetries

arXiv:1905.08283

heavy weights

W boson mass measurements

10

JGL

	central	statistical	systematic	total error	arXiv
Tevatron	174.30	0.35	0.54	0.64	1608.0188
ATLAS Run I	172.69	0.25	0.41	0.48	1810.01772
CMS Run I	172.43	0.13	0.46	0.48	1509.04044
CMS Run 2	172.26	0.07	0.61	0.61	1812.10534
average	172.8	0.11	0.29	0.31	

- * for stat.-syst. total error separation, see **JE**, arXiv: **J507.08210**
- * 2.8 σ discrepancy between lepton + jet channels from DØ and CMS Run 2

- * for a review, see G. Corcella, arXiv:1903.06574

* $m_t^{pole} = 172.80 \pm 0.25_{uncorr.} \pm 0.17_{corr.} \pm 0.32_{QCD} \text{ GeV} + \Delta_{MC} = 172.80 \pm 0.44 \text{ GeV} + \Delta_{MC}$

* Δ_{MC} : uncertainty & non-universal shift (?) of order $\alpha_s(Q_0) Q_0; Q_0 \simeq \Gamma_t \Rightarrow \Delta_{MC} \sim 0.54$ GeV

	X-section	m _t pole (GeV)	$\alpha_s(M_z)$	corr.	arXiv
CMS Run 2	tī	170.5 ± 0.8	0.1135 +0.0021_0.0017	ρ _{α,m} = 0.3	1904.05237
ATLAS Run I	tt + I-jet	 7 . + .2_ .	0.119 ± 0.001		1905.02302

- * these are <u>differential</u> cross-section at NLO
- * total cross-sections currently give larger errors $\ge 2 \text{ GeV}$

M_H fits

m _t (GeV)	M _н (GeV)	χ ² /d.o.f.
174.3 +6.8_5.6	102 ⁺⁸³ _43	37.2/39
172.8 ± 0.44	89 +18_15	37.3/40
172.8 ± 0.7	89 +19_16	37.3/40
173.4 ± 0.7	94 +19_17	37.2/40
171.0 ± 0.6	79 +17_14	43.7/42
171.8 ± 0.47	85 +17_15	47.2/43
172.1 ± 0.47	87 +17_16	49.7/43

in the last fit: $\alpha_s(M_Z) = 0.1175 \pm 0.0011$

$M_H - m_t$

indirect m_t 176.4 ± 1.9 GeV (1.9 σ high)

including correlated theory errors

α_s from the Z pole

for massless quarks

$$R_V^q = R_A^q = 1 + \frac{\alpha_s(M_Z)}{\pi} + 1.409 \frac{\alpha_s^2}{\pi^2} - 12.77 \frac{\alpha_s^3}{\pi^3} - 80.0 \frac{\alpha_s^4}{\pi^4} + Q_q^2 \left[\frac{3}{4} - \frac{\alpha_s}{4\pi} - \left(1.106 + \frac{3}{32}Q_q^2\right)\frac{\alpha}{\pi}\right] \frac{\alpha(M_Z)}{\pi} + \frac{\alpha_s(M_Z)}{\pi^2} +$$

after large (top quark driven) singlet corrections (Z boson only) starting at order α_s

$$\Gamma_Z^{\text{had}} \propto \rho \left(1 + \frac{\alpha_s(M_Z)}{\pi} + 0.79 \frac{\alpha_s^2}{\pi^2} - 15.52 \frac{\alpha_s^3}{\pi^3} - 69.3 \frac{\alpha_s^4}{\pi^4} \right)$$
$$\delta_{\text{PQCD}} \approx \pm \frac{\alpha_s^5}{\pi^5} \frac{(80.0)^2}{12.77\pi - 80.0\alpha_s} = \pm 6 \times 10^{-5} \Longrightarrow \delta_{\text{PQCD}} \alpha_s$$
$$\mathcal{O}(\alpha_s^5) + \mathcal{O}(\alpha \alpha_s^5) + \mathcal{O}(\alpha^2 \alpha_s) \Longrightarrow \delta_{\text{PQCD}+\text{mixed}} \alpha_s \approx \pm 0.0004$$

 $_{s} \approx \pm 0.0002$

04 (**negligible**) $2 \cup D \perp$

Schott & JE, arXiv:1902.05142

α_s from the Z pole

observable	α _s (M _z)	change	χ ² /d.o.f.
Γ _Z = 2495.5 ± 2.3 MeV	0.1215 ± 0.0047	+0.0006	
σ _{had} = 41.501 ± 0.037 nb	0.1148 ± 0.0073	+0.0078	
$R_e = 20.804 \pm 0.050$	0.1295 ± 0.0082		
$R_{\mu} = 20.785 \pm 0.033$	0.1264 ± 0.0054		
$R_{\tau} = 20.764 \pm 0.045$	0.1157 ± 0.0072		
combination	0.1221 ± 0.0028	+0.0014	3.3/4
Z-pole + M _H	0.1219 ± 0.0027	+0.0012	19.1/23
global fit ex. T decays	0.1207 ± 0.0026	+0.0012	40.4/40

change: $\Delta \sigma_{had} = -40 \text{ pb}, \Delta \Gamma_Z = +0.3 \text{ MeV}$ Voutsinas et al., arXiv:1908.01704

α_s from T decays

$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^s}{\Gamma_{\tau}^e + \Gamma_{\tau}^\mu + \Gamma_{\tau}^{ud}} = 290.7$$

* charm, bottom and strange mass effects not shown but included Larin, van Ritbergen & Vermaseren, hep-ph/9411260

* $\mathscr{B}_{\tau^s} = 0.0292 \pm 0.0004 (\Delta S = -1) PDG 2018$

* $S(m_{\tau}, M_Z) = 1.01907 \pm 0.0003$ JE, hep-ph/0211345

 5 ± 0.36 fs (includes leptonic BRs)

α_s from τ decays

- * $\delta_{NP} = 0.003 \pm 0.009$ (both within OPE & OPE breaking) based on (FOPT)
 - * $\delta_{NP} = -0.004 \pm 0.012$ (OPAL data) Boito et al., arXiv:1203.3146
 - * $\delta_{NP} = 0.020 \pm 0.009$ (ALEPH data) Boito et al., arXiv:1410.3528
 - * $\delta_{NP} = -0.0064 \pm 0.0013$ (ALEPH data) Davier et al., arXiv:1312.1501
 - * $\delta_{NP} = -0.006 \pm 0.009$ (ALEPH data) Pich & Rodríguez-Sánchez, arXiv:1605.06830
- * dominant error from PQCD truncation (FOPT vs. CIPT vs. geometric continuation)
 - * $\alpha_{s}^{(3)}(m_{\tau}) = 0.317^{+0.013}_{-0.011} (PQCD) \pm 0.009 = 0.317^{+0.016}_{-0.014}$
 - * $\alpha_{s}^{(4)}(m_{\tau}) = 0.323^{+0.014}_{-0.011} (PQCD) \pm 0.009 = 0.323^{+0.017}_{-0.014}$
 - * $\alpha_{s}^{(5)}(M_{z}) = 0.1184^{+0.0017}_{-0.0014}$ (PQCD) ± 0.0011 = 0.1184^{+0.0020}_{-0.0018}
 - * updated from Luo & JE, hep-ph/0207114 in Freitas & JE, PDG 2018
 - * global electroweak fit: $\alpha_s(5)(M_z) = 0.1192^{+0.0017}_{-0.0015}$ (m^{MC} only)

	from Ohad	global fit	development
2006		2.986 ± 0.007	CIPT for T_{T}
2010	LEPEWWG	2.991 ± 0.007	FOPT for τ_{τ}
2014	nep-ex/0509008	2.990 ± 0.007	Higgs discovery
2019	2.992 ± 0.008	2.998 ± 0.007	luminosity update
	Voutsinas et al. arXiv:1908.01704	3.001 ± 0.007	precise tt X-sections

Global electroweak fit (incl. mtpole from X-sections)

	MH	125.14 ± 0.15 GeV		
Mz		91.1884 ± 0.0020 GeV		
$\overline{m}_{b}(\overline{m}_{b})$		4.180 ± 0.021 GeV		
$\Delta \alpha_{had}^{(3)}$ (2 GeV)		(59.0 ± 0.5)×10-4		
m _t (m _t)	162.53 ± 0.43 GeV	I.00 –0.04 –0.10		
m _c (m _c)	1.272 ± 0.009 GeV	-0.04 I.00 0.35		0.35
$\alpha_s(M_Z)$	0.1173 ± 0.0011	-0.10	0.35	I.00

	M _H	125.14 ± 0.15 GeV		
Mz		91.1884 ± 0.0020 GeV		
$\overline{m}_{b}(\overline{m}_{b})$		4.180 ± 0.021 GeV		
$\Delta \alpha_{had}^{(3)}$ (2 GeV)		(59.0 ± 0.5)×10-4		
m̄ _t (m̄ _t)	162.53 ± 0.43 GeV	I.00 –0.04 –0.10		
m _c (m _c)	1.272 ± 0.009 GeV	0.04 I.00 0.35		0.35
$\alpha_s(M_Z)$	0.1173 ± 0.0011	-0.10	0.35	I.00

 $\chi^2/d.o.f. = 51.9/44$

outlook

Parity Violating e⁻ Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1149 \text{ MeV}$
- |Q| = 158 MeV
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{\rm PV} = \pm 4.1\%$
- $\Delta Q_{W}(p) = \pm 6.25\%$
- $sin^2\theta_W = 0.2383 \pm 0.0011$

FFs from fit to ep asymmetries arXiv:1905.08283

P2@MESA (JGU Mainz)

- hydrogen (CDR)
- $E_e = 155 \text{ MeV}$
- |Q| = 68 MeV
- $A_{PV} = 4 \times 10^{-8}$
- $\Delta A_{PV} = \pm 1.4\%$
- $\Delta Q_{W}(p) = \pm 1.83\%$

$\Delta sin^2 \theta_W = \pm 0.00033$

FFs from backward angle data arXiv:1802.04759

Parity Violating e⁻ Scattering (PVES) — Møller

EI58 @ SLC (SLAC)

- hydrogen (completed)
- E_e = 45 & 48 GeV
- |Q| = 161 MeV
- $A_{PV} = 1.31 \times 10^{-7}$
- $\Delta A_{PV} = \pm 13\%$
- $\Delta Q_W(e) = \pm 13\%$

$sin^2\theta_W = 0.2397 \pm 0.0013$

hep-ex/0504049

MOLLER @ CEBAF (JLab)

- hydrogen (proposal)
- $E_e = 11.0 \text{ GeV}$
- |Q| = 76 MeV
- $A_{PV} = 3.3 \times 10^{-8}$
- $\Delta A_{PV} = \pm 2.4\%$
- $\Delta Q_W(e) = \pm 2.4\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00027$

M_H at the FCC–ee

- * new developments:
 - * changes in $A_{FB}(b)$ from LEP and $Q_W(Cs)$ from APV
 - * high precision PVES
 - * LEP luminosity update
 - * precise m_t from $t\bar{t}$ production X-sections
- * future developments:
 - * ultra-high precision PVES (MOLLER and P2)
 - * a leap in precision is to be expected from future lepton colliders

