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Dark matter is
a likely solution to
various long-standing
puzzles in astronomy



[
in kmfsek™!

25000

20000 __ / 3

15000 //
10 000 // &
5000 / -
10 20 30 40 rin I;O‘Pars'ek

Fig. 2.



[
in kmfsek™!

25000

20000 __ / 3

15000 / pd
70 000 A
5000 . “/
10 20 30 40 rin I;O‘Pars'ek
Fig. 2. :

Gag bt :
Coma cluster
Die Rotverschiebung von extragalaktischen Nebeln e 5
von F. Zwicky.

(16. I1. 33.)

Inhaltsangabe. Diese Arbeit gibt eine Darstellung der wesentlichsten Merk-
male extragalaktischer Nebel, sowie der Methoden, welche zur Erforschung der-
selben gedient haben. Insbesondere wird die sog. Rotverschiebung extragalak-
tischer Nebel eingehend diskutiert. Verschiedene Theorien, welche zur Erklirung
dieses wichtigen Phiinomens aufgestellt worden sind, werden kurz besprochen.
Schliesslich wird angedeutet, inwiefern die Rotverschiebung fiir das- Studiaom
der durchdringenden Strahlung ven Wichtigkeit zun werden verspricht.
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1- Apply the virial theorem to determine the total mass of the Coma Cluster
For an 1solated self-gravitating system,
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2- Count the number of galaxies (~1000) and calculate the average mass

M > g X 10% gr = 4.5 X 10® Mg
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2- Count the number of galaxies (~1000) and calculate the average mass

Inasmuch as we have introduced at every step of our argument in- .
equalities which tend to depress the final value of the mass _#, the
foregoing value (36) should be considered as the lowest estimate for
the average mass of nebulae in the Coma cluster. This result is
somewhat unexpected, in view of the fact that the luminosity of an
average nebula is equal to that of about 8.5 X 107 suns. According
to (36), the conversion factor 4 from luminosity to mass for nebulae
in the Coma cluster would be of the order

Y = 500, (3?)



The modern technique: gravitational lensing

e
galaxy
¢ galaxy cluster
,! . _ lensed galaxy images
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Evidence from galaxies

ROTATION OF THE ANDROMEDA NEBULA FROM A SPECTROSCOPIC
SURVEY OF EMISSION REGIONS*

VErA C. RuBint anp W. KENT Forp, Jr.T

Department of Terrestrial Magnetism, Carnegie Institution of Washington and
Lowell Observatory, and Kitt Peak National Observatory]

Received 1969 Tuly 7; revised 1969 August 21

ABSTRACT

Spectra of sixty-seven H 11 regions from 3 to 24 kpe from the nucleus of M31 have been obtained with
the DTM image-tube spectrograph at a dispersion of 135 A mm~!, Radial velocities, principally from
Ha, have been determined with an accuracy of +10 km sec™! for most regions. Rotational velocities
haveé been calculated under the assumption of circular motions only,

For the region interior to 3 kpc where no emission regions have been identified, a narrow [N 1] M6583
emission line is observed. Velocities from this line indicate a rapid rotation in the nucleus, rising to a
mxil%'mm circular velocity of ¥V = 225 km sec™! at R = 400 pc, and falling to a deep minimum near
R = 2 kpc.

Frompthe rotation curve for R < 24 kpc, the following disk model of M31 results, There is a dense,
rapidly rotating nucleus of mass M = (6 + 1) X 10° M ©. Near R = 2 kpc, the density is very low and
the rotational motions are very small. In the region from 500 to 1.4 kpc (most notably on the southeast
minor axis), gas is observed leaving the nucleus, Beyond R = 4 kpc the total mass of the galaxy increases
approximately linearly to R = 14 kpc, and more slowlv thereafter, The total mass to B = 24 kpc is
M = (185 + 0.1) X 10" M©; one-half of it is located in the disk interior to R = 9 kpc. In many
respects this model resembles the model of the disk of our Galaxy. Outside the nuclear region, there is
no evidence for noncircular motions.

The optical velocities, R > 3 kpc, agree with the 21-cm observations, although the maximum rota-
tional velocity, V = 270 + 10 km sec™!, is slightly higher than that obtained from 21-cm observations.
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Fic. 3.—Rotational velocities for sixty-seven emission regions in M31, as a function of distance from
the center. Error bars indicate average error of rotational velocities.
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F1G. 9.—Rotational velocities for OB associations in M31, as a function of distance from the center.
Solid curve, adopted rotation curve based on the velocities shown in Fig. 4. For R < 12, curve is fifth-
order polynomial; for R > 12, curve is fourth-order polynomial required to remain approximately flat
near R = 120/, Dashed curve near R = 10’ is a second rotation curve with higher inner minimum,



Expectations from Newtonian theory
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Something else around M31?
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Something else around M31?
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ROTATIONAL PROPERTIES OF 21 5S¢ GALAXIES WITH A LARGE RANGE OF
LUMINOSITIES AND RADII, FROM NGC 4605 (R =4kpe) TO
UGC 28BS (R =122 kpe)

Vira C. Rupin,™? W, Kent Forp, Jr..! anp NorperT THONNARD
Department of Terrestrial Magnetism, Carnegie Institution of Washmglon
Reveived 197% October 11 accepred 1979 Novenher 29

ABSTRACT

For 21 Sc galaxies whose properties encompass a wide range of radii, masses, and luminosities,
we have obtained major axis spectra extending to the faint outer regions, and have deduced
rotation curves, The galaxies are of high inclination, so uncertainties in the angle of inclination to
the line of sight and in the PﬂSiLiDn angle of the major axis are minimized. Their radii range from 4
o122 kpe(H = 50 km s~ ! Mpe ™ '); in general, the rotation curves extend to 837, of R,."®. When
plotied on a linear scale with no scaling, the rotation curves for the smallest galaxies fall upon the
initial parts of the rotation curves for the larger galaxies, All curves show a fairly rapid velocity rise
to V'~ 125kms™" at R ~ 5kpe, and a slower rise thereafter. Most rotation curves are rising
slowly even at the farthest measured point. Neither high nor low luminosity Sc galaxies have
falling rotation curves. Sc galaxies of all luminosities must have significant mass located beyond
the optical image, A linear relation between log V., and log R follows from the shape of the
commaon rotation curve for all S¢'s, and the tendency ol smaller galaxies, at any R, to have lower
velocities than the large galaxies at that R. The significantly shallower slope discovered lor this
relation by Tully and Fisher is attributed to their use of galaxies of various Hubhle types and the
known correlation of V,,,, with Hubble type.

The galaxies with very large central velocity gradients tend to be large, of high luminosity, with
massive, dense nuclei. Often their nuclear specira show a strong stellar continuum in the red, with
emission lines of [N u] stronger than He. These galaxies also tend to be 13 ¢m radio continuum
SOUTCES.

Because of the form of the rotation curves, small galaxies undergo many short-period, very
differential, rotations, Large galaxies undergo (in their outer parts) few, only slightly differential,
rotations. This suggests a relation between morphology. rotational properties, and the van den
Bergh luminosity classification, which is discussed. UGC 2885, the largest Sc in the sample, has
undergone fewer than 10 rotations in its outer parts since the origin of the universe but has a
regular two-armed spiral pattern and no significant velocity asymmetries. This observation puts
constraints on models of galaxy formation and evolution,
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F1G. 6.—Superposition of all 21 Sc rotation curves. General form of rotation curves for small galaxies is similar to initial part of rotation
curve for large galaxies, except that small galaxies often have shallower nuclear velocity gradient and tend to cover the low velocity range within
the scatter at any R.

VI,  DISCUSSION AND CONCLUSIONS

We have obtained spectra and determined rotation
curves to the faint outer limits of 21 Sc galaxies of high
inclination. The galaxies span a range in luminosity
from 3 x 10Y to 2 x 10'' L, a range in mass from
10'%to 2 x 10'* M, and a range in radius from 4 to
122 kpc. In general, velocities are obtained over 837
of the optical image (defined by 25 mag arcsec™ ?), a
greater distance than previously observed. The major
conclusions are intended to apply only to Sc galaxies.

1. Most galaxies exhibit rising rotational velocities
at the last measured velocity ; only for the very largest
galaxies are the rotation curves flat. Thus the smallest
Sc’s (i.e., lowest luminosity) exhibit the same lack of a
Keplerian velocity decrease at large R as do the high-
luminosity spirals. This form for the rotation curves
implies that the mass is not centrally condensed, but
that significant mass is located at large R. The integral
mass is increasing at least as fast as R. The mass is not
converging to a limiting mass at the edge of the optical
image. The conclusion s inescapable that non-

luminous matter exists bevond the optical galaxv



Evidence from the Universe at large scale

Cosmic microwave background temperature anisotropies

Planck Collaboration



CMB angular power spectrum
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There is evidence for dark matter
in a wide range of distance scales

Clusters

Galaxies of galaxies Observable

Solar system Universe

pC kpc Mpc Gpc distance
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There is evidence for dark matter
in a wide range of distance scales
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There is evidence for dark matter
in a wide range of distance scales

Clusters

Galaxies of galaxies Observable

Solar system Universe

distance

What do we know
about the dark matter?



1) It is (maybe?) not made of compact objects
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1) It is (maybe?) not made of compact objects
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Lots of discussions about the robustness and applicability of these limits...



fDM, max

1) It is (maybe?) not made of compact objects
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2) It is dark. It hardly interacts with visible matter.

e [f it has positive charge, it can form a bound state X ¢", an
“anomalously heavy hydrogen atom”.
e If 1t has negative charge, it can bind to nuclei, forming
“anomalously heavy isotopes”.
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Millicharged dark matter?
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3) It was “slow” at the time of the formation of the
first structures.

White'86

HDM CDM

Hot Dark Matter Cold Dark Matter
Relativistic Non-relativistic



3) It was “slow” at the time of the formation of the
first structures.

White'86

HDM Observed Galaxy Distribution CDM

Hot Dark Matter Cold Dark Matter
Relativistic Non-relativistic



4) It exists today.

Dark Energy
Accelerated Expansion
Afterglow Light ~

Pattern Dark Ages Development of
380,000 yrs. [ Galaxies, Planets, etc.
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Quantum
Fluctuations
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Big Bang Expansion
13.7 billion years




Current observations are consistent with dark matter
being constituted by particles which have:

e No electric charge or color (or very small).

e Low velocity at the time of structure formation.

e Lifetime longer than the age of the Universe.
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Current observations are consistent with dark matter
being constituted by particles which have:

e No electric charge or color (or very small).

e Low velocity at the time of structure formation.

e Lifetime longer than the age of the Universe.
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What do we know
about dark matter,
from the particle physics
point of view?
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The freeze-out mechanism

production

-

DM

DM

° ° ° >
annihilation

>

scattering



The freeze-out mechanism

production The probability of interaction controlled
- by the cross-section
A

DM SM 2h O Small interaction rate
5
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The freeze-out mechanism

production

-

DM

DM

° ° ° >
annihilation

SM

SM

>

scattering

At very high temperatures,
dark matter particles are annihilated
and regenerated at the same rate.

However, at low temperatures,

the Standard Model particles do not
have enough kinetic energy to
regenerate DM particles, and DM
particles can only annihilate.

The subsequent evolution of the dark
matter number density depends
crucially on the fact that our Universe
1s expanding.



Dark matter population 1n a static Universe




Dark matter population 1n a static Universe




Dark matter population 1n a static Universe




Dark matter population 1n a static Universe




Dark matter population 1n a static Universe




Dark matter population 1n a static Universe




Dark matter population 1n a static Universe

No DM particles at present times!




Dark matter population in an expanding Universe













Dark matter particles can no longer annihilate.
The number of dark matter particles “freezes-out™




The “relic abundance™ of dark matter particles depends on
their annihilation cross section and on their relative velocity
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The “relic abundance™ of dark matter particles depends on
their annihilation cross section and on their relative velocity

r D
Large annihilation cross section — Small relic abundance

Small annihilation cross section — Large relic abundance
Q J




The “relic abundance™ of dark matter particles depends on
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The “relic abundance™ of dark matter particles depends on
their annihilation cross section and on their relative velocity




The “relic abundance™ of dark matter particles depends on
their annihilation cross section and on their relative velocity

4 D
Small velocity — Large relic abundance

N Large velocity — Small relic abundance
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Fraction of the total 6 x 10727 em3

L1 S_

energy of the Universe =~
in the form of DM (ov)

Correct DM abundance (25% of the total energy of the Universe), 1f

The dark matter 1s a Weakly Interacting
Massive Particle (WIMP)

DM SM More numerology:

(0.1)*  coupling’
(100 GeV)?2  mass?

1 pb ~

bM SM The freeze-out mechanism suggests that the

WIMP has mass ~ a few GeV —a few TeV and
a coupling with ordinary matter ~ 0.1 — 0.01
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Indirect dark matter searches

o< @

ZiN

<

DM \

DM /
The dark matter annihilates into ordinary particles, such as electrons and
positrons, antiprotons, neutrinos, photons...



Indirect dark wwatter searches
DM O

™
P

< o< ©

DM

Neutral particles propagate in straight lines practically without losing
energy. Charged particles, on the other hand, propagate in a complicated
way through the tangled magnetic field of our Galaxy.




Indirect dark matter searches
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The fluxes at Earth can be calculated and depend on:

e The dark matter mass (mp,,)

e The annihilation cross section times the velocity (cv)



Indirect dark matter searches

ZiN

< o< ©

DM /\
DM //
The fluxes at Earth can be calculated and depend on:

e The dark matter mass (mp,,)

e The annihilation cross section times the velocity (cv)

Which (o v)? A well motivated choice:
(ov) ~3 x 10" cm?s™!

“Canonical” annihilation cross section for WIMP dark matter

First milestone for experimental searches.



Indirect dark matter searches
DM
NG
XY

WARNING]

The annihilatlon products arrive to Earth, along with gamma-rays
and cosmic rays produced 1n astrophysical processes.
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Where to look for dark matter annihilations
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Where to look for dark matter annihilations

Extragalactic
background



Where to look for dark matter annihilations




Where to look for dark matter annihilations

Features in the
energy spectrum




A promising target for detection: dwart galaxies

Segue 1: Optical image
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A promising target for detection: dwart galaxies

Mass-to-light ratio
~3400 M_ /L.,

Most DM-dominated
object known so far!

Segue 1: Optical image



A promising target for detection: dwart galaxies

Segue 1: Gamma-ray image

(simulated!)



A promising target for detection: dwart galaxies
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Gamma-ray 1image taken with the MAGIC telescopes



A promising target for detection: dwarf galaxies
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A promising target for detection: dwart galaxies
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A promising target for detection: dwart galaxies

(ov) (em®s™1)

(ev) (em?s™1)

Tt 12 1010t 102
DM Mass (GeV/c?)

100
DM Mass (GeV/c?)

Fermi coll.
arXiv:1503.02641



Various experiments are currently sensitive to WIMPsS
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Bright future for dark wmatter searches using gamma-rays!

H.E.S.S. Il — in operation

CTA — Construction starting in 2020

HAWC
in operation

GAMMA 400
Launch in 2021
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Direct dark matter searches

The Sun (and the Earth) is moving through a “gas” of dark matter
particles. Or, from our point of view, there 1s a flux of dark matter particles

going through the Earth.

YYvvyyvy

WIMPs
v ~ 200 km/s

v ~ 200 km/s



Direct dark matter searches

The Sun (and the Earth) is moving through a “gas” of dark matter
particles. Or, from our point of view, there 1s a flux of dark matter particles

going through the Earth.

YYvvyyvy

WIMPs
v ~ 200 km/s

v ~ 200 km/s

Once 1n a while a dark matter particle will interact with a nucleus. The
nucleus then recoils, producing vibrations, 1onizations or scintillation light

1n the detector.
N DM

gD,

N 4

ar recoil




Direct dark matter searches

~DM‘ & DM
N 4

ar recoil

The rate of scatterings can be calculated and depend on:

e The dark matter mass (mp,,)

e The interaction cross section with protons/neutrons (o)



Direct dark matter searches
) ¥ DM

clear recoil

The rate of scatterings can be calculated and depend on:

e The dark matter mass (mp,,)
e The interaction cross section with protons/neutrons (o)

Which interaction cross section?

Simplest WIMP framework: the dark matter interacts DM DM
with the quarks via a (tree-level) Z-boson interaction

G BT G

Fifteen orders of magnitude smaller than for the proton-proton
interaction, and ten orders of magnitude smaller than for the

electron-proton interaction . q q



Direct dark matter searches

Backgrounds are very large: similar experimental signals can be
induced by interactions of electrons, photons, neutrons...

Current strategy:

1) Take experiments 2) Shield the detector against natural
deep underground radioactivity in the laboratory.

3) Devise techniques to further reduce
residual backgrounds

CUORE
Scintillation Decay CRESST |

Modulation TeO;, Al O3, LiF

—COUPP

CRi.C

A |

CaWO4, BGO EDEI?#I:«’qESISS 3 0
ZnWO4, AlLO;s ...

Ge, Si

NAIAD ] ‘ ’

ANAIS  \ oo . . CoGeNT
DAMA/LIBRA ~_ —~  ZEPLIN 11, 1ll DRIFT

ZEPLIN | XENON DM-TPC

XMASS LUX IGEX

DEAP WArP COSME

CLEAN ArDM Ge, CS;, C3Fs

Nal(TI), Xe,Ar, Ne, CF4

SIGN
Xe,Ar, Ne



Direct dark matter searches
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Direct dark matter searches

Tree-level Z-exchange
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Direct dark matter searches

Tree-level Z-exchange K

g~ 107¥ cm
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Direct dark watter searches
DM DM DM DM DM DM

I
q q q q q q
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Collider Searches



-:ﬁﬂ — i | : - The Large Hadron Collider



(c) Copyright CERN, 2010. For the benefit of the CMS Collaborati




Collider searches

Monojet + missing E




Collider searches

Monojet + missing E
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Collider searches

Monojet + missing E
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Collider searches

Monojet + missing E
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Zwicky's observations of 1933
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If 1t 1s a Weakly Interacting Massive Particle, we might see signals
in experiments 1n the next few years.
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... but 1t might not be a WIMP.

... or 1t might be the result of new phenomena.



Concluding remarks

Zwicky's observations of 1933
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| 86 years later, we still don't know

| | V what is producing this.

iy
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Fig. 2.

If 1t 1s a Weakly Interacting Massive Particle, we might see signals
in experiments in the next few years.

... but 1t might not be a WIMP.

... or 1t might be the result of new phenomena.

The quest for the dark matter particle continues
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