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There is evidence for dark matter
in a wide range of distance scales
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If the DM is made up of WIMPs,
the DM population inside the
Solar System could be detected



Searching for WIMP DM inside the Solar System
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Searching for WIMP DM inside the Solar System

WIMP Wind
P
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Searching for WIMP DM inside the Solar System
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Theoretical interpretation of the experimental results

e Differential rate of DM-induced scatterings
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Theoretical interpretation of the experimental results

e Differential rate of DM-induced scatterings
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Uncertainties from particle/nuclear physics and from astrophysics

e The neutrino flux from annihilations inside the Sun 1s, under plausible
assumptions, determined by the capture rate inside the Sun:
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Theoretical interpretation of the experimental results

Uncertainties from particle/nuclear physics.

e Dark matter mass?

For thermally produced dark matter, mp,; = few MeV — 100 TeV

e Differential cross section?

do B
dEp

Spin-independent and Nuclear form factors

spin-dependent cross sections
at zero momentum transfer

(In some DM frameworks, other operators may also arise )



Theoretical interpretation of the experimental results

Uncertainties from astrophysics

e [Local dark matter density?

= =
= —
o =
|
II;;E'E
g+ ysunu) seaaeddiy
G+ 3503
L]
¥ g
|
Lo

= “local measurements’:
From vertical kinematics

Pem [Msun pe?]
o)
[
%
|
-_ 1 B .
4 yzunu| s

of stars near (~1 kpc) the Sun 0.02 5 (leco et . 2011)
S E
194 . 0.00 —* ek - .
= “global measurements’:
-0.02 L . .
. 1920 1940 1960 1980
From extrapolations of s year
p(r) determined from rotation I
0.02F
curves at large r, to the position  # . los
A | 2w TR
of the Solar System. A : 5 s
-0.01F - si2
c}: BT12 zizg 179°
-0.02 0 '

1990 1895 2000 2005 2010 2015 2020 2025

T Read'14



Theoretical interpretation of the experimental results

Uncertainties from astrophysics

e [ocal dark matter velocity distribution?
Completely unknown. Rely on theoretical considerations

* |fthe density distribution follows a singular isothermal sphere profile, the
velocity distribution has a Maxwell-Boltzmann form.

1

p(r) ~ =5 — [(0) ~ exp(—v?/})



Theoretical interpretation of the experimental results

Uncertainties from astrophysics

e [ocal dark matter velocity distribution?
Completely unknown. Rely on theoretical considerations

* |f the density distribution follows a singular isothermal sphere profile, the
velocity distribution has a Maxwell-Boltzmann form.

* Dark matter-only simulations. Show deviations from Maxwell-Boltzmann
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Theoretical interpretation of the experimental results

Uncertainties from astrophysics

e [ocal dark matter velocity distribution?
Completely unknown. Rely on theoretical considerations

* |f the density distribution follows a singular isothermal sphere profile, the
velocity distribution has a Maxwell-Boltzmann form.

* Dark matter-only simulations. Show deviations from Maxwell-Boltzmann

* Hydrodynamical simulations (DM+baryons). Inconclusive at the moment.
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Theoretical interpretation of the experimental results

Common approach: assume SI or SD interaction only, assume p, = 0.3 GeV/cm?

and assume a Maxwell-Boltzmann velocity distribution
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Theoretical interpretation of the experimental results

Common approach: assume SI or SD interaction only, assume p, = 0.3 GeV/cm?
and assume a Maxwell-Boltzmann velocity distribution
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Theoretical interpretation of the experimental results

Common approach: assume SI or SD interaction only, assume p, = 0.3 GeV/cm?
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Theoretical interpretation of the experimental results

Common approach: assume SI or SD interaction only, assume p, = 0.3 GeV/cm’

and assume a Maxwell-Boltzmann velocity distribution
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Theoretical interpretation of the experimental results

Common approach: assume SI or SD interaction only, assume p, = 0.3 GeV/cm’
and assume a Maxwell-Boltzmann velocity distribution
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Theoretical interpretation of the experimental results

Common approach: assume SI or SD interaction only, assume p, = 0.3 GeV/cm’
and assume a Maxwell-Boltzmann velocity distribution
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Addressing astrophysical
uncertainties in

dark matter detection



Halo-independent approach for DM frameworks

e (0, mpy ) is ruled out regardless of the velocity distribution if

min { R(o, mDM)}‘ > Ry
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Halo-independent approach for DM frameworks

e (0, mpy ) is ruled out regardless of the velocity distribution if
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Note: one single direct detection experiment is not sufficient to probe

a dark matter model in a totally halo-independent manner
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Halo-independent approach for DM frameworks

e (0, mpy ) is ruled out regardless of the velocity distribution if

min { R(c, mpm) } ‘ > Ry,

f(0) [f=1

Note: one single direct detection experiment is not sufficient to probe

a dark matter model in a totally halo-independent manner

Velocity threshold
of the experiment

Some velocity distributions will
escape detection in the experiment



Halo-independent approach for DM frameworks

e (0, mpy ) is ruled out regardless of the velocity distribution if

min { R(c, mpm) } ‘ > Ry..
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Note: one single direct detection experiment is not sufficient to probe

a dark matter model in a totally halo-independent manner
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Possibility 1: consider “distortions” of the Maxwell-Boltzmann distribution




Halo-independent approach for DM frameworks

e (0, mpy ) is ruled out regardless of the velocity distribution if

min { R(o, m ‘ > Ryl
i 1R o)y > B

Note: one single direct detection experiment is not sufficient to probe

a dark matter model in a totally halo-independent manner

f(v)

Zero velocity threshold

v
Possibility 9! Design an experiment with zero veioci’ty threshold




Halo-independent approach for DM frameworks

e (0, mpy ) is ruled out regardless of the velocity distribution if

min { R(o, m ‘ > Ry
i 1R o)y > B

Note: one single direct detection experiment is not sufficient to probe

a dark matter model in a totally halo-independent manner

f(v)

velocity threshold for
capture in the Sun

Neutrino telescopes probe low dark matter velocities. In combination with
direct detection experiments, one can probe the whole velocity space
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Distorting the Maxwell-Boltzmann distribution

Calculate for a given A the minimum of the scattering rate among all the
velocity distributions within the band. A point in parameter space 1s excluded if:

min RB(mpwm, 0)| - > Ry,

1(@) £ within band

Dependence of the XenonlT limits on A at 90% C.L.
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Distorting the Maxwell-Boltzmann distribution

Calculate for a given A the minimum of the scattering rate among all the
velocity distributions within the band. A point in parameter space 1s excluded if:

min RB(mpwm, 0)| - > Ry,

1(@) £ within band

Dependence of the XenonlT limits on A at 90% C.L.
10-4

Ruled out by XENONIT assuming
the SHM, and ruled out unless one
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Distorting the Maxwell-Boltzmann distribution

Calculate for a given A the minimum of the scattering rate among all the
velocity distributions within the band. A point in parameter space 1s excluded if:

min RB(mpwm, 0)| - > Ry,

1 (@) f within band

Dependence of the XenonlT limits on A at 90% C.L.
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from

neutrino telescopes. A point in parameter space is excluded if:




Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from
neutrino telescopes. A point in parameter space is excluded if:
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from
neutrino telescopes. A point in parameter space is excluded if:
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from
neutrino telescopes. A point in parameter space is excluded if:
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from
neutrino telescopes. A point in parameter space is excluded if:
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from
neutrino telescopes. A point in parameter space is excluded if:
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK.

Calculate the minimum of the scattering rate among all the velocity
distributions giving a capture rate in agreement with the constraints from
neutrino telescopes. A point in parameter space is excluded if:
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK: extension

Calculate the minimum of the scattering rate among all the velocity distributions

within the band of width A giving a capture rate in agreement with the
constraints from neutrino telescopes. A point in parameter space is excluded if:

min R(mDM, O') [f=1 > Ru.l.

(o) f within band
C'<C1u.1.

Dependence of the XENON1T+IceCube limits on A at 90% C.L.
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK: extension

Calculate the minimum of the scattering rate among all the velocity distributions

within the band of width A giving a capture rate in agreement with the
constraints from neutrino telescopes. A point in parameter space is excluded if:

min R(mDM, O') [f=1 > Ru.l.

(o) f within band
C'<C’u.1.

Dependence of the PICO-+IceCube limits on A at 90% C.L.
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Upper limit on the scattering cross section from
combining PandaX and IceCube/SK: extension

Calculate the minimum of the scattering rate among all the velocity distributions

within the band of width A giving a capture rate in agreement with the
constraints from neutrino telescopes. A point in parameter space is excluded if:

min R(mDM, O') [f=1 > Ru.l.

(o) f within band
C'<C1u.1.

Dependence of the PICO-+IceCube limits on A at 90% C.L.
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A concrete case:

Milky Way sub-halos












Time dependent DM flux
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Implications for
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Time dependent DM flux
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Time dependent DM flux
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mpact of sub-halos in local DM searches

Assume:
e Sub-halos spatially distributed following an Einasto profile.

e Velocity distribution of sub-halos following Maxwell-Boltzmann.
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e Internal density profile described by a truncated NFW profile.

e Concentration parameter following a log-normal distribution

o [kam /s

e Internal velocity distribution
described by a MB distribution

Velocity dispersion,

Sub-halo mass, M [Mg)



mpact of sub-halos in direct detection experiments
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mpact of sub-halos in direct detection experiments

> &i L do;
R = Z/O dER €; (ER) ,U>,U(ER) dSUF(U -+ UEarth t()) dER

ma

v — “min,1

Increment 1n the rate with respect to the SHM.:

XENONITT

(U, ER) .

103
Fle——— mpy =5 GeV
=== mpy = 1000 GeV

1025‘ —= mnpy = 10000 GeV

el
0 100 200 300 400 500
|7] [Km/s]



mpact of sub-halos in direct detection experiments
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Conclusions

e The mterpretation of any experiment probing the dark matter distribution inside
the Solar System 1s subject to our 1ignorance of the local dark matter density
and velocity distribution.

e We have developed a method to bracket the uncertainties in the velocity
distribution when interpreting the results from direct searches, due to distortions
in the Maxwell-Boltzmann distribution and/or by exploiting the synergy
with dark matter searches in the Sun.

e Sub-halos in our Galaxy may induce a time-dependent DM flux at the Solar
System. There 1s a probability of ~1 per mil of changing by an O(1) factor the
signal rate at a direct detection experiment or at a neutrino telescope.
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