α_s from R(s) (+ R(s) tests of related τ -based analysis strategies)

KM, with D. Boito, M. Golterman, S. Peris, A. Keshavarzi, D. Nomura and T. Teubner

ICTP-SAIFR

Workshop on Determination of Fundamental QCD Parameters Sao Paulo, Sep. 30-Oct. 4, 2019

- BGKMNPT: PRD98 (2018) 074030 [1805.08176]
- BGMP: Sci Post Phys Proc 1 (2019) 053 [1811.01591] and PRDXX(2019) [1907.03360]

τ and electroproduction FESRs

- $\Pi(Q^2)$: kinematic-singularity-free scalar polarization (Π_{EM} , $\Pi_{ud;V/A}^{J=0+1}$)
- $\rho(s)$: corresponding spectral function
- w(s): here, analytic inside and on |s|=s₀
- $\Pi(Q^2) \equiv \Pi_{OPE}(Q^2) + \Pi_{DV}(Q^2)$ ($\simeq \Pi_{OPE}(Q^2)$ for spacelike $Q^2 \gg \Lambda^2_{QCD}$, up to exponentially suppressed corrections)
- Oscillatory (resonance) DV contributions in ρ(s) (+near timelike axis) for s, |Q²| ~ a few GeV² ⇒ potential non-negligible RHS DV contributions (S. Peris talk)

FESR relation (Cauchy's theorem)

$$\int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s)$$

OPE contributions

> D=0 (perturbative) known to 5-loop (O(α_s^4)) order

> D=2 (mass-dependent perturbative): numerically negligible for I=1 τ FESRs, small O(m_s^2), O($\alpha_{\rm EM}$) contributions included for EM

→ higher D: $[\Pi(Q^2)]_{D \ge 4}^{OPE} \equiv \sum_{D \ge 4} [C_D/Q^D]$ with effective condensates C_D

For polynomial weights w(y) = w(s/s₀) = Σ_{k≥0} b_ky^k

$$\frac{-1}{2\pi i} \oint_{|s|=s_0} ds w(y) [\Pi(Q^2)]_{D≥4}^{OPE} = Σ_{k≥1} (-1)^k b_k C_{2k+2}/s_0^k$$
up to α_s-suppressed log corrections

 \succ degree N w(y) \leftrightarrow unsuppressed OPE contributions to D=2N+2

Qualitative aspects of τ , EM FESR determinations

- Decreasing μ (with fixed precision at μ) \leftrightarrow increasing precision at M_Z $[\delta \alpha_s(M_Z^2)/\alpha_s(M_Z^2)] \simeq [\alpha_s(M_Z^2)/\alpha_s(\mu^2)] [\delta \alpha_s(\mu^2)/\alpha_s(\mu^2)]$
- Advantage for low-scale τ , EM analyses $[\alpha_s(M_Z^2)/\alpha_s(\mu^2)] \simeq 1/3$ for $\mu \simeq m_{\tau}]$
- BUT decreasing $\mu \leftrightarrow$ increasing NP contributions: how large for $\mu \simeq m_{\tau}$?
- Large α_s -independent part of D=0 OPE integral, $c_w [1 + \alpha_s/\pi + w$ -dependent h.o.], \Rightarrow requirement for control of NP more stringent than naively expected e.g. NP to ~ 0.5% of corresponding spectral integral for $\alpha_s(m_\tau^2)$ to ~3%

More re DV contributions

Poggio, Quinn, Weinberg: DVs localized near timelike axis for intermediate Q²

→ With
$$\rho_{\text{DV}}(s) \equiv \frac{1}{\pi} Im \Pi_{\text{DV}}(s)$$
, theory side →
 $\frac{-1}{2\pi i} \oint_{|s|=s_0} ds$ w(s) $\Pi_{\text{OPE}}(Q^2) - \int_{s_0}^{\infty} ds$ w(s) $\rho_{\text{DV}}(s)$

(Channel-dependent) asymptotic form [2005 ansatz, Boito et al. PRD97 054007
 [1711.10316] for theoretical basis]

 $\rho_{\rm DV}(s) = \kappa e^{-\gamma s} \sin(\alpha + \beta s)$

 $> s_0 \le m_{\tau}^2$ kinematic restriction for τ FESRs, no such restriction for EM FESRs

> Exponential damping of $\rho_{DV}(s) \Rightarrow$ significant residual integrated DV reduction from modest s₀ increase (important advantage of EM c.f. τ -based FESRs)

DV contributions in the τ and $e^+e^ \rightarrow$ hadrons spectra

- The τ, I=1 V+A spectral function, showing "reduced" DVs above s ~1.5-2 GeV ² (reduced c.f. those for V or A alone)
- In the literature: often used to argue for the neglect of DVs in this region
- However: assessment of relative roles of DV and α_s-dependent perturbative contributions complicated by presence of α_s-independent contribution (e.g. same figure with different (larger) α_s-independent contribution)

DV contributions in the τ and $e^+e^- \rightarrow$ hadrons spectra

- The τ, I=1 V+A spectral function, showing "reduced" DVs above s ~1.5-2 GeV² (reduced c.f. those for V or A alone)
- In the literature: often used to argue for the neglect of DVs in this region
- However: assessment of relative roles of DV and α_s -dependent perturbative contributions complicated by presence of α_s -independent contribution (e.g. same figure with different (larger) α_s -independent contribution)

DV contributions in the τ and $e^+e^- \rightarrow$ hadrons spectra

- The τ, I=1 V+A spectral function, showing "reduced" DVs above s ~1.5-2 GeV² (reduced c.f. those for V or A alone)
- In the literature: often used to argue for the neglect of DVs in this region

C.f. the τ, I=1 V+A figure, now with the non-dynamical, α_s-independent parton model contribution removed

Evidence for the oscillatory, exponentially damped asymptotic DV behavior in the G-parity separated I=1 part of R(s)

Dynamical (non-parton-model) part of $\rho_{ud;V}^{I=1}(s)$

α_{s} from FESRs with KNT 2018 R(s) data

$$\mathbf{\bullet} \ \rho_{\rm EM}(s) = \frac{1}{12\pi^2} \, \mathsf{R}(s)$$

- ✤ Start with analyses neglecting DVs, s₀ ~ m_τ² and above: fit parameters α_s and relevant OPE condensates C_D
- test stability of OPE parameters to inclusion of DVs (extended fits with I=1 DV parameters constrained from τ, new I=0 DV parameters κ₀, α₀ fit with β₀~β₁, γ₀~γ₁ assumed)

KNT 2018 R(s) compilation

KNT: PRD97 (2018) 114025 [1810.02995]

More on the pure-OPE, no-DV fits

• OPE treatment

> D=0 to 5 loops (O(α_s^4)), including O(α_{EM}) contributions

 $\succ O(m_s^2) D = 2$ to 3 loops

avoid weights with term linear in s (convergence issues from Beneke, Boito, Jamin renormalon model studies [JHEP 1301 (2013) 125 [1210.8038]]

Weight choices, w(y) = w(s/s₀)

> w₀(y) = 1 (no DV suppression near timelike point s=s₀, fit parameter α_s)
 > w₂(y) = 1-y² (single "pinch" DV suppression near s=s₀, fit parameters α_s, C₆)
 > w₃(y) = 1 − 3y² + 2y³ (double "pinch" near s=s₀, fit parameters α_s, C₆, C₈)
 > w₄(y) = 1 − 2y² + y⁴ (double "pinch" near s=s₀, fit parameters α_s, C₆, C₁₀)

D=0 FOPT, no-DV fit results, w₃, w₄ FESRs, fit windows $s_0^{min} \le s_0 \le 4 \text{ GeV}^2$

s ^{min} [GeV ²]	χ ² /dof [w ₃]	p-value [w ₃]	$lpha_{ m s}(m_{ au}^2)$ [w ₃]	C ₆ [GeV ⁶] [w ₃]	χ ² /dof [w ₄]	p-value [w ₄]	$lpha_{ m s}(m_{ au}^2)$ [w ₄]	C ₆ [GeV ⁶] [w ₄]
3.15	44.8/15	0.00008	0.276(15)	0.0027(20)	45.0/15	0.00008	0.275(15)	0.0027(20)
3.25	31.9/13	0.003	0.292(15)	0.0059(23)	32.0/13	0.002	0.292(15)	0.0060(24)
3.35	26.0/11	0.006	0.296(15)	0.0068(25)	26.0/11	0.006	0.296(15)	0.0069(25)
3.15*	9.8/6	0.13	0.293(15)	0.0055(22)	9.8/6	0.14	0.292(15)	0.0056(22)
3.25*	7.6/5	0.18	0.299(15)	0.0070(25)	7.5/5	0.18	0.299(15)	0.0071(25)
3.35*	5.6/4	0.23	0.305(15)	0.0084(27)	5.6/4	0.23	0.303(15)	0.0086(27)
3.45	12.9/9	0.17	0.303(16)	0.0085(27)	23.9/9	0.17	0.302(16)	0.0087(28)
3.55	11.6/7	0.11	0.301(16)	0.0081(29)	11.6/7	0.11	0.300(16)	0.0082(30)
3.60	11.1/6	0.09	0.298(17)	0.0071(32)	11.0/6	0.09	0.297(17)	0.0072(32)
3.70	5.7/4	0.22	0.292(18)	0.0049(35)	5.7/4	0.22	0.292(18)	0.0050(35)
3.80	2.3/2	0.32	0.289(19)	0.0036(39)	2.3/2	0.32	0.288(19)	0.0037(39)

Theory vs experiment matches, s_0^{min} =3.25 GeV², no-DV fits

0.0130

$\alpha_{s}(m_{\tau}^{2})$ vs s_{0}^{min} , various weights, with and without DVs

- Blue: w₀ FESR, no DVs
- Red: w₂ FESR, no DVs
- Green: w₃ FESR, no DVs
- **Black:** w₀ FESR, with DVs

Addition of DVs stabilizes fits at lower s₀

Final averaged EM results for α_s

FOPT: $\alpha_s^{(3)}(m_\tau^2) = 0.298(17) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1158(22)$ CIPT: $\alpha_s^{(3)}(m_\tau^2) = 0.304(19) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1166(25)$

- c.f. analogous ALEPH 2013 I=1, τ -data-based analysis, including DVs [D. Boito et al., Phys. Rev. D91 (2015) 034003 [1410.3528]] FOPT: $\alpha_s^{(3)}(m_{\tau}^2) = 0.296(10) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1155(14)$ CIPT: $\alpha_s^{(3)}(m_{\tau}^2) = 0.310(14) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1174(17)$
- EM errors currently data dominated
- Note 0.014 \rightarrow 0.006 reduction in FOPT-CIPT $\alpha_s(m_{\tau}^2)$ difference in higher-scale EM vs τ analysis (hence reduced theory uncertainty)

PART II: R(s)-based tests of the "truncated OPE" (tOPE) approach (used for most results included in the PDG assessment of α_s from τ)

- [E.g., Pich-Lediberder PLBB289, 165; ALEPH; OPAL; Pich, Rodriguez-Sanchez PRD94, 034027 [1605.06830]]
- τ, I=1 V, A, V+A channel analyses using (at least) doubly pinched weights, neglecting
 DVs (with V+A argued safest)
- > Final results from $s_0 = m_{\tau}^2$ only (minimizes residual DV contributions)
- ➢ Kinematic weight case w_τ(y)=1-3y²+2y³ (spectral integral from inclusive BFs) insufficient as theory side involves 3 OPE parameters α_s , C₆, C₈
- > Additional (higher-degree-weight) FESRs to fit C_6 , C_8
- → Complication: new degree 4 w(y) brings in the new OPE parameter C₁₀, new degree 5 w(y) the new OPE parameter C₁₂, etc. ⇒ # of OPE parameters always exceeds # s₀= m_{τ}^2 spectral integrals without further assumptions/OPE truncation

• With conventional Pich-Le Diberder spectral weights w_{km}(y)=y^m(1-y)^{2+k}(1+2y)

D≥4 OPE contributions (dimensionless)

Weight	D=4	D=6	D=8	D=10	D=12	D=14	D=16
$w_{00} = w_{\tau}$		$-3C_{6}/s_{0}^{3}$	-2C ₈ /s ₀ ⁴				
w ₁₀	C_4/s_0^2	$-3C_{6}/s_{0}^{3}$	-5C ₈ /s ₀ ⁴	-2C ₁₀ /s ₀ ⁵			
w ₁₁	$-C_4/s_0^2$	- C_6/s_0^3	3C ₈ /s ₀ ⁴	5C ₁₀ /s ₀ ⁵	C ₁₂ /s ₀ ⁶		
w ₁₂		C_{6}/s_{0}^{3}	C_8/s_0^4	-3C ₁₀ /s ₀ ⁵	- 5C ₁₂ /s ₀ ⁶	- C ₁₄ /s ₀ ⁷	
w ₁₃			- C_8/s_0^4	- C ₁₀ /s ₀ ⁵	3C ₁₂ /s ₀ ⁶	5C ₁₄ /s ₀ ⁷	C ₁₆ /s ₀ ⁸

> 5 s₀=m²_τ spectral integrals; 4 OPE fit parameters: α_s, C₄, C₆, C₈
 > D=10, 12, 14, 16 contributions dropped (the tOPE assumption) on grounds of assumed scaling with additional factors of ~ (Λ²_{QCD}/m²_τ)

• With Pich, Rodriguez-Sanchez "optimal" weights w_{2k}(y)=1–(k+2)y^{k+1}+(k+1)y^{k+2}

D≥4 OPE contributions (dimensionless)

Weight	D=4	D=6	D=8	D=10	D=12	D=14	D=16
$w_{21} = w_{\tau}$		$-3C_{6}/s_{0}^{3}$	-2C ₈ /s ₀ ⁴				
W ₂₂			$4C_8/s_0^4$	3C ₁₀ /s ₀ ⁵			
W ₂₃				-5C ₁₀ /s ₀ ⁵	$-4C_{12}/s_0^6$		
W ₂₄					6C ₁₂ /s ₀ ⁶	5C ₁₄ /s ₀ ⁷	
W ₂₅						-7C ₁₄ /s ₀ ⁷	$-6C_{16}/s_0^8$

> 5 s₀=m²_τ spectral integrals; 4 OPE fit parameters: α_s, C₆, C₈, C₁₀
 > D=12, 14, 16 contributions dropped (the tOPE assumption) on grounds of assumed scaling with additional factors of ~ (Λ²_{QCD}/m²_τ)

tOPE assumptions, potential issues, and possible tests

• Basic tOPE assumptions

- \succ s₀=m²_τ large enough that residual integrated DVs negligible (at least for doubly pinched w(y))
- > integrated OPE series behaves as if (rapidly) converging with D for $s_0 = m_{\tau}^2$, out to at least D=16

• Potential tOPE issues

> s₀=m²_t only: precludes variable-s₀ tests of validity of assumed neglect of residual DVs
 > Even if residual DVs negligible, OPE asymptotic (at best) ⇒ assumed scaling with increasing
 D (and related tOPE neglect of unsuppressed higher D terms) certainly incorrect in general

• Potential tests of tOPE assumptions

- ➤ exponential damping of ρ_{DV}(s), decrease of higher D non-perturbative contributions with increasing s₀ ⇒ if assumptions good for some s₀^{*}, should be even better for s₀>s₀^{*}
- \blacktriangleright Kinematic constraint s₀ $\leq m_{\tau}^2$ precludes test with s₀ $> m_{\tau}^2$ in τ , but not EM case

An R(s)-based strategy for testing tOPE assumptions

- If residual integrated DVs not negligible, tOPE assumptions incorrect and tOPE ruled out, so assume DVs negligible for $s_0 \sim m_{\tau}^2$ and above and test OPE truncation assumption
- Find $s_0^* \gtrsim m_{\tau}^2$ admitting a successful $s_0 = s_0^*$ tOPE optimal weight or w_{km} spectral weight fit
- With resulting tOPE fit parameters, test theory predictions for the $s_0 > s_0^*$ spectral integrals
- Because of strong correlations between (i) spectral integrals for different s₀, (ii) theory integrals for different s₀, (iii) fitted OPE parameters and $\rho_{\rm EM}(s)$ data (hence theory and spectral integrals) form single difference combinations

$$\Delta I_w^{th/exp}(s_0; s_0^*) \equiv I_w^{th/exp}(s_0) - I_w^{th/exp}(s_0^*)$$

and display test results in double difference theory-minus-experiment form

$$\Delta^{(2)}(s_0; s_0^*) \equiv \Delta I_w^{th}(s_0; s_0^*) - \Delta I_w^{exp}(s_0; s_0^*)$$

tOPE test results

- $s_0^* = m_{\tau}^2$: very low correlated-fit p-values, incompatible correlated, diagonal fit $\alpha_s(m_{\tau}^2)$, incompatible w_{km}, optimal weight fit $\alpha_s(m_{\tau}^2)$
- s₀^{*}>m_τ² for acceptable correlated EM fit

 (correlated, diagonal α_s(m_τ²) then compatible,
 but correlated w_{km}, optimal weight not)

Weight type	<i>s</i> ₀ * [GeV ²]	p-value [corr fit]	$lpha_{ m s}(m_{ au}^2)$ [corrd]	$lpha_{ m s}(m_{ au}^2)$ [diag]	
w _{km}	$m_{ au}^2$	7x10 ⁻²¹	0.322(3)	0.281(6)	Х
Optimal	$m_{ au}^2$	2x10 ⁻¹⁵	0.308(4)	0.245(10)	Х
w _{km}	3.7	0.16	0.277(5)	0.268(9)	
Optimal	3.6	0.41	0.264(5)	0.256(12)	

Correlated s_0^* =3.6 GeV² optimal weight fit theory-experiment matches

Correlated s_0^* =3.7 GeV² w_{km} fit theory-experiment matches

$\Delta^{(2)}(s_0; s_0^*)$ correlated $s_0^*=3.6$ GeV² optimal weight fit results

$\Delta^{(2)}(s_0; s_0^*)$ correlated $s_0^*=3.7 \text{ GeV}^2 \text{ w}_{\text{km}}$ fit results

Conclusions of the R(s)-based tOPE strategy tests

- Good χ^2 from single-s₀ tOPE fit demonstrably insufficient to ensure reliability of neglect of DVs and/or prematurely truncated OPE theory representation
- \Rightarrow even if integrated DVs negligible for conventional τ analyses (doubtful: see e.g. S. Peris talk), α_s results from tOPE implementations unreliable
- Strong correlations between different-s₀ spectral integrals, different-s₀ OPE integrals, and fitted OPE and spectral integrals make it easy to be misled re level of theory-experiment agreement: double-difference-type tests crucial

BACKUP SLIDES

$s_0^* = m_{\tau}^2$ diagonal tOPE optimal weight fit theory-experiment matches

$\Delta^{(2)}(s_0; s_0^* = m_{\tau}^2)$ diagonal optimal weight fit results

