αs from R(s) (+ R(s) tests of related τ-based analysis strategies)

KM, with D. Boito, M. Golterman, S. Peris, A. Keshavarzi, D. Nomura and T. Teubner

ICTP-SAIFR

Workshop on Determination of Fundamental QCD Parameters
Sao Paulo, Sep. 30-Oct. 4, 2019

• BGKMNPT: PRD98 (2018) 074030 [1805.08176]
τ and electroproduction FESRs

- $\Pi(Q^2)$: kinematic-singularity-free scalar polarization ($\Pi_{EM}^J \Pi_{ud;V/A}^{J=0+1}$)
- $\rho(s)$: corresponding spectral function
- $w(s)$: here, analytic inside and on $|s|=s_0$
- $\Pi(Q^2) \equiv \Pi_{OPE}(Q^2) + \Pi_{DV}(Q^2)$
 ($\approx \Pi_{OPE}(Q^2)$ for spacelike $Q^2 \gg \Lambda_{QCD}^2$, up to exponentially suppressed corrections)
- Oscillatory (resonance) DV contributions in $\rho(s)$ (+near timelike axis) for $s, |Q^2| \sim$ a few GeV
 \Rightarrow potential non-negligible RHS DV contributions (S. Peris talk)

FESR relation (Cauchy’s theorem)

$$\int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s)$$
- **OPE contributions**

 - D=0 (perturbative) known to 5-loop (O(\(\alpha_s^4\))) order

 - D=2 (mass-dependent perturbative): numerically negligible for I=1 \(\tau\) FESRs, small \(O(m_s^2)\), \(O(\alpha_{EM})\) contributions included for EM

 - higher D: \([\Pi(Q^2)]^{OPE}_{D\geq4}\) \(\equiv \sum_{D\geq4} [C_D/Q^D]\) with effective condensates \(C_D\)

 - for polynomial weights \(w(y) = w(s/s_0) = \sum_{k\geq0} b_k y^k\)

 \[
 \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \ w(y) \ [\Pi(Q^2)]^{OPE}_{D\geq4} = \sum_{k\geq1} (-1)^k b_k \ C_{2k+2}/s_0^k
 \]

 up to \(\alpha_s\)-suppressed log corrections

 - degree \(N\) \(w(y) \leftrightarrow\) unsuppressed OPE contributions to D=2N+2
Qualitative aspects of τ, EM FESR determinations

- Decreasing μ (with fixed precision at μ) \leftrightarrow increasing precision at M_Z
 \[
 \left[\frac{\delta \alpha_s(M_Z^2)}{\alpha_s(M_Z^2)} \right] \approx \left[\frac{\alpha_s(M_Z^2)}{\alpha_s(\mu^2)} \right] \left[\frac{\delta \alpha_s(\mu^2)}{\alpha_s(\mu^2)} \right]
 \]

- Advantage for low-scale τ, EM analyses $\left[\frac{\alpha_s(M_Z^2)}{\alpha_s(\mu^2)} \right] \approx 1/3$ for $\mu \approx m_\tau$

- BUT decreasing μ \leftrightarrow increasing NP contributions: how large for $\mu \approx m_\tau$?

- Large α_s-independent part of D=0 OPE integral, $c_w [1 + \alpha_s/\pi + w$-dependent h.o.],
 \Rightarrow requirement for control of NP more stringent than naively expected
 e.g. NP to $\sim 0.5\%$ of corresponding spectral integral for $\alpha_s(m_\tau^2)$ to $\sim 3\%$
More re DV contributions

- Poggio, Quinn, Weinberg: DVs localized near timelike axis for intermediate Q^2

- With $\rho_{DV}(s) \equiv \frac{1}{\pi} Im \Pi_{DV}(s)$, theory side \rightarrow
 $$\frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \, \Pi_{OPE}(Q^2) - \int_{s_0}^{\infty} ds \, w(s) \, \rho_{DV}(s)$$

- (Channel-dependent) asymptotic form [2005 ansatz, Boito et al. PRD97 054007 [1711.10316] for theoretical basis]
 $$\rho_{DV}(s) = \kappa \, e^{-\gamma s} \sin(\alpha + \beta s)$$

- $s_0 \leq m_{\tau}^2$ kinematic restriction for τ FESRs, no such restriction for EM FESRs

- Exponential damping of $\rho_{DV}(s) \Rightarrow$ significant residual integrated DV reduction from modest s_0 increase (important advantage of EM c.f. τ-based FESRs)
DV contributions in the τ and $e^+e^- \rightarrow$ hadrons spectra

- The τ, $I=1$ V+A spectral function, showing “reduced” DVs above $s \sim 1.5$-2 GeV2 (reduced c.f. those for V or A alone)

- In the literature: often used to argue for the neglect of DVs in this region

- However: assessment of relative roles of DV and α_s-dependent perturbative contributions complicated by presence of α_s-independent contribution (e.g. same figure with different (larger) α_s-independent contribution)
DV contributions in the τ and $e^+e^- \rightarrow$ hadrons spectra

- The τ, $I=1$ V+A spectral function, showing “reduced” DVs above $s \sim 1.5-2$ GeV2 (reduced c.f. those for V or A alone)

- In the literature: often used to argue for the neglect of DVs in this region

- However: assessment of relative roles of DV and α_s-dependent perturbative contributions complicated by presence of α_s-independent contribution (e.g. same figure with different (larger) α_s-independent contribution)
DV contributions in the τ and e^+e^- → hadrons spectra

- The τ, I=1 V+A spectral function, showing “reduced” DVs above s ~1.5-2 GeV^2 (reduced c.f. those for V or A alone)

- In the literature: often used to argue for the neglect of DVs in this region

- C.f. the τ, I=1 V+A figure, now with the non-dynamical, α_s-independent parton model contribution removed
Evidence for the oscillatory, exponentially damped asymptotic DV behavior in the G-parity separated $I=1$ part of $R(s)$
\(\alpha_s \) from FESRs with KNT 2018 R(s) data

- \(\rho_{EM}(s) = \frac{1}{12\pi^2} R(s) \)
- Start with analyses neglecting DVs, \(s_0 \sim m_\tau^2 \) and above: fit parameters \(\alpha_s \) and relevant OPE condensates \(C_D \)
- Test stability of OPE parameters to inclusion of DVs (extended fits with \(I=1 \) DV parameters constrained from \(\tau \), new \(I=0 \) DV parameters \(\kappa_0, \alpha_0 \) fit with \(\beta_0 \approx \beta_1, \gamma_0 \approx \gamma_1 \) assumed)
More on the pure-OPE, no-DV fits

• OPE treatment
 - D=0 to 5 loops (O(\(\alpha_s^4\))), including O(\(\alpha_{EM}^\cdot\)) contributions
 - O(\(m_s^2\)) \(D = 2\) to \(3\) loops
 - avoid weights with term linear in \(s\) (convergence issues from Beneke, Boito, Jamin renormalon model studies [JHEP 1301 (2013) 125 [1210.8038]]

• Weight choices, \(w(y) = w(s/s_0)\)
 - \(w_0(y) = 1\) (no DV suppression near timelike point \(s=s_0\), fit parameter \(\alpha_s\))
 - \(w_2(y) = 1-y^2\) (single “pinch” DV suppression near \(s=s_0\), fit parameters \(\alpha_s, C_6\))
 - \(w_3(y) = 1 – 3y^2 + 2y^3\) (double “pinch” near \(s=s_0\), fit parameters \(\alpha_s, C_6, C_8\))
 - \(w_4(y) = 1 – 2y^2 + y^4\) (double “pinch” near \(s=s_0\), fit parameters \(\alpha_s, C_6, C_{10}\))
D=0 FOPT, no-DV fit results, \(w_3, w_4 \) FESRs, fit windows \(s_0^{\text{min}} \leq s_0 \leq 4 \, \text{GeV}^2 \)

<table>
<thead>
<tr>
<th>(s_0^{\text{min}}) [GeV(^2)]</th>
<th>(\chi^2/\text{dof}) ([w_3])</th>
<th>p-value ([w_3])</th>
<th>(\alpha_s(m_t^2)) ([w_3])</th>
<th>(C_6) [GeV(^6)] ([w_3])</th>
<th>(\chi^2/\text{dof}) ([w_4])</th>
<th>p-value ([w_4])</th>
<th>(\alpha_s(m_t^2)) ([w_4])</th>
<th>(C_6) [GeV(^6)] ([w_4])</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15</td>
<td>44.8/15</td>
<td>0.00008</td>
<td>0.276(15)</td>
<td>0.0027(20)</td>
<td>45.0/15</td>
<td>0.00008</td>
<td>0.275(15)</td>
<td>0.0027(20)</td>
</tr>
<tr>
<td>3.25</td>
<td>31.9/13</td>
<td>0.003</td>
<td>0.292(15)</td>
<td>0.0059(23)</td>
<td>32.0/13</td>
<td>0.002</td>
<td>0.292(15)</td>
<td>0.0060(24)</td>
</tr>
<tr>
<td>3.35</td>
<td>26.0/11</td>
<td>0.006</td>
<td>0.296(15)</td>
<td>0.0068(25)</td>
<td>26.0/11</td>
<td>0.006</td>
<td>0.296(15)</td>
<td>0.0069(25)</td>
</tr>
<tr>
<td>3.15*</td>
<td>9.8/6</td>
<td>0.13</td>
<td>0.293(15)</td>
<td>0.0055(22)</td>
<td>9.8/6</td>
<td>0.14</td>
<td>0.292(15)</td>
<td>0.0056(22)</td>
</tr>
<tr>
<td>3.25*</td>
<td>7.6/5</td>
<td>0.18</td>
<td>0.299(15)</td>
<td>0.0070(25)</td>
<td>7.5/5</td>
<td>0.18</td>
<td>0.299(15)</td>
<td>0.0071(25)</td>
</tr>
<tr>
<td>3.35*</td>
<td>5.6/4</td>
<td>0.23</td>
<td>0.305(15)</td>
<td>0.0084(27)</td>
<td>5.6/4</td>
<td>0.23</td>
<td>0.303(15)</td>
<td>0.0086(27)</td>
</tr>
<tr>
<td>3.45</td>
<td>12.9/9</td>
<td>0.17</td>
<td>0.303(16)</td>
<td>0.0085(27)</td>
<td>23.9/9</td>
<td>0.17</td>
<td>0.302(16)</td>
<td>0.0087(28)</td>
</tr>
<tr>
<td>3.55</td>
<td>11.6/7</td>
<td>0.11</td>
<td>0.301(16)</td>
<td>0.0081(29)</td>
<td>11.6/7</td>
<td>0.11</td>
<td>0.300(16)</td>
<td>0.0082(30)</td>
</tr>
<tr>
<td>3.60</td>
<td>11.1/6</td>
<td>0.09</td>
<td>0.298(17)</td>
<td>0.0071(32)</td>
<td>11.0/6</td>
<td>0.09</td>
<td>0.297(17)</td>
<td>0.0072(32)</td>
</tr>
<tr>
<td>3.70</td>
<td>5.7/4</td>
<td>0.22</td>
<td>0.292(18)</td>
<td>0.0049(35)</td>
<td>5.7/4</td>
<td>0.22</td>
<td>0.292(18)</td>
<td>0.0050(35)</td>
</tr>
<tr>
<td>3.80</td>
<td>2.3/2</td>
<td>0.32</td>
<td>0.289(19)</td>
<td>0.0036(39)</td>
<td>2.3/2</td>
<td>0.32</td>
<td>0.288(19)</td>
<td>0.0037(39)</td>
</tr>
</tbody>
</table>
Theory vs experiment matches, $s_0^{\text{min}} = 3.25 \text{ GeV}^2$, no-DV fits

• Left: w_0, right: w_2
 solid/dashed lines: FOPT/CIPT $D=0$ fits

• Left: w_3, right: w_4
 solid/dashed lines: FOPT/CIPT $D=0$ fits
\(\alpha_s(m_T^2) \) vs \(s_0^{min} \), various weights, with and without DVs

- **Blue**: \(w_0 \) FESR, no DVs
- **Red**: \(w_2 \) FESR, no DVs
- **Green**: \(w_3 \) FESR, no DVs
- **Black**: \(w_0 \) FESR, with DVs

Addition of DVs stabilizes fits at lower \(s_0 \)
Final averaged EM results for α_s

FOPT: $\alpha_s^{(3)}(m_T^2) = 0.298(17) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1158(22)$

CIPT: $\alpha_s^{(3)}(m_T^2) = 0.304(19) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1166(25)$

- c.f. analogous ALEPH 2013 I=1, τ-data-based analysis, including DVs

 FOPT: $\alpha_s^{(3)}(m_T^2) = 0.296(10) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1155(14)$

 CIPT: $\alpha_s^{(3)}(m_T^2) = 0.310(14) \leftrightarrow \alpha_s^{(5)}(M_Z^2) = 0.1174(17)$

- EM errors currently data dominated

- *Note 0.014 \rightarrow 0.006 reduction in FOPT-CIPT $\alpha_s(m_T^2)$ difference in higher-scale EM vs τ analysis (hence reduced theory uncertainty)*
PART II: R(s)-based tests of the “truncated OPE” (tOPE) approach (used for most results included in the PDG assessment of α_s from τ)

- [E.g., Pich-Lediberder PLBB289, 165; ALEPH; OPAL; Pich, Rodriguez-Sanchez PRD94, 034027 [1605.06830]]
- τ, $I=1$ V, A, V+A channel analyses using (at least) doubly pinched weights, neglecting DVs (with V+A argued safest)
- Final results from $s_0 = m_\tau^2$ only (minimizes residual DV contributions)
- Kinematic weight case $w_\tau(y) = 1-3y^2+2y^3$ (spectral integral from inclusive BFs)
 - insufficient as theory side involves 3 OPE parameters α_s, C_6, C_8
- Additional (higher-degree-weight) FESRs to fit C_6, C_8
- Complication: new degree 4 $w(y)$ brings in the new OPE parameter C_{10}, new degree 5 $w(y)$ the new OPE parameter C_{12}, etc. ⇒ # of OPE parameters always exceeds # $s_0 = m_\tau^2$ spectral integrals without further assumptions/OPE truncation
With conventional Pich-Le Diberder spectral weights \(w_{km}(y) = y^m(1-y)^{2+k}(1+2y) \)

D≥4 OPE contributions (dimensionless)

<table>
<thead>
<tr>
<th>Weight</th>
<th>D=4</th>
<th>D=6</th>
<th>D=8</th>
<th>D=10</th>
<th>D=12</th>
<th>D=14</th>
<th>D=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{00} = w_\tau)</td>
<td>-3C_6/s_0^3</td>
<td>-2C_8/s_0^4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{10})</td>
<td>C_4/s_0^2</td>
<td>-3C_6/s_0^3</td>
<td>-5C_8/s_0^4</td>
<td>-2C_{10}/s_0^5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{11})</td>
<td>-C_4/s_0^2</td>
<td>-C_6/s_0^3</td>
<td>3C_8/s_0^4</td>
<td>5C_{10}/s_0^5</td>
<td>C_{12}/s_0^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{12})</td>
<td>C_6/s_0^3</td>
<td>C_8/s_0^4</td>
<td>-3C_{10}/s_0^5</td>
<td>-5C_{12}/s_0^6</td>
<td>-C_{14}/s_0^7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{13})</td>
<td></td>
<td>-C_8/s_0^4</td>
<td>-C_{10}/s_0^5</td>
<td>3C_{12}/s_0^6</td>
<td>5C_{14}/s_0^7</td>
<td>C_{16}/s_0^8</td>
<td></td>
</tr>
</tbody>
</table>

- 5 \(s_0 = m_\tau^2 \) spectral integrals; 4 OPE fit parameters: \(\alpha_s, C_4, C_6, C_8 \)
- D=10, 12, 14, 16 contributions dropped (the tOPE assumption) on grounds of assumed scaling with additional factors of \(\sim (\Lambda_{QCD}^2/m_\tau^2) \)
• With Pich, Rodriguez-Sanchez “optimal” weights $w_{2k}(y) = 1 - (k+2)y^{k+1} + (k+1)y^{k+2}$

D ≥ 4 OPE contributions (dimensionless)

<table>
<thead>
<tr>
<th>Weight</th>
<th>D=4</th>
<th>D=6</th>
<th>D=8</th>
<th>D=10</th>
<th>D=12</th>
<th>D=14</th>
<th>D=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{21} = w_\tau$</td>
<td>$-3C_6/s_0^3$</td>
<td>$-2C_8/s_0^4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_{22}</td>
<td>$4C_8/s_0^4$</td>
<td>$3C_{10}/s_0^5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_{23}</td>
<td></td>
<td>$-5C_{10}/s_0^5$</td>
<td>$-4C_{12}/s_0^6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_{24}</td>
<td></td>
<td></td>
<td>$6C_{12}/s_0^6$</td>
<td>$5C_{14}/s_0^7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_{25}</td>
<td></td>
<td></td>
<td></td>
<td>$-7C_{14}/s_0^7$</td>
<td>$-6C_{16}/s_0^8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 5 $s_0 = m_\tau^2$ spectral integrals; 4 OPE fit parameters: α_s, C_6, C_8, C_{10}
- D=12, 14, 16 contributions dropped (the tOPE assumption) on grounds of assumed scaling with additional factors of $\sim (\Lambda_{QCD}^2/m_\tau^2)$
tOPE assumptions, potential issues, and possible tests

• Basic tOPE assumptions
 - $s_0 = m_T^2$ large enough that residual integrated DVs negligible (at least for doubly pinched $w(y)$)
 - integrated OPE series behaves as if (rapidly) converging with D for $s_0 = m_T^2$, out to at least $D=16$

• Potential tOPE issues
 - $s_0 = m_T^2$ only: precludes variable-s_0 tests of validity of assumed neglect of residual DVs
 - Even if residual DVs negligible, OPE asymptotic (at best) ⇒ assumed scaling with increasing D (and related tOPE neglect of unsuppressed higher D terms) certainly incorrect in general

• Potential tests of tOPE assumptions
 - exponential damping of $\rho_{DV}(s)$, decrease of higher D non-perturbative contributions with increasing s_0 ⇒ if assumptions good for some s_0^*, should be even better for $s_0 > s_0^*$
 - Kinematic constraint $s_0 \leq m_T^2$ precludes test with $s_0 > m_T^2$ in τ, but not EM case
An R(s)-based strategy for testing tOPE assumptions

- If residual integrated DVs not negligible, tOPE assumptions incorrect and tOPE ruled out, so assume DVs negligible for $s_0 \sim m_T^2$ and above and test OPE truncation assumption

- Find $s_0^* \geq m_T^2$ admitting a successful $s_0 = s_0^*$ tOPE optimal weight or w_{km} spectral weight fit

- With resulting tOPE fit parameters, test theory predictions for the $s_0 > s_0^*$ spectral integrals

- Because of strong correlations between (i) spectral integrals for different s_0, (ii) theory integrals for different s_0, (iii) fitted OPE parameters and $\rho_{EM}(s)$ data (hence theory and spectral integrals) form single difference combinations

$$\Delta I_{th/exp}^{th/exp}(s_0; s_0^*) \equiv I_{th/exp}^{th/exp}(s_0) - I_{th/exp}^{th/exp}(s_0^*)$$

and display test results in double difference theory-minus-experiment form

$$\Delta^{(2)}(s_0; s_0^*) \equiv \Delta I_{th}(s_0; s_0^*) - \Delta I_{exp}(s_0; s_0^*)$$
tOPE test results

- $s_0^* = m_T^2$: very low correlated-fit p-values, incompatible correlated, diagonal fit $\alpha_s(m_T^2)$, incompatible w_{km}, optimal weight fit $\alpha_s(m_T^2)$
- $s_0^* > m_T^2$ for acceptable correlated EM fit (correlated, diagonal $\alpha_s(m_T^2)$ then compatible, but correlated w_{km}, optimal weight not)

<table>
<thead>
<tr>
<th>Weight type</th>
<th>s_0^* [GeV2]</th>
<th>p-value [corr fit]</th>
<th>$\alpha_s(m_T^2)$ [corr]</th>
<th>$\alpha_s(m_T^2)$ [diag]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{km}</td>
<td>m_T^2</td>
<td>7×10^{-21}</td>
<td>0.322(3)</td>
<td>0.281(6)</td>
</tr>
<tr>
<td>Optimal</td>
<td>m_T^2</td>
<td>2×10^{-15}</td>
<td>0.308(4)</td>
<td>0.245(10)</td>
</tr>
<tr>
<td>w_{km}</td>
<td>3.7</td>
<td>0.16</td>
<td>0.277(5)</td>
<td>0.268(9)</td>
</tr>
<tr>
<td>Optimal</td>
<td>3.6</td>
<td>0.41</td>
<td>0.264(5)</td>
<td>0.256(12)</td>
</tr>
</tbody>
</table>
Correlated $s_0^* = 3.6$ GeV2 optimal weight fit theory-experiment matches
Correlated $s_0^* = 3.7 \text{ GeV}^2$ w_{km} fit theory-experiment matches
\(\Delta^{(2)}(s_0; s_0^*) \) correlated \(s_0^* = 3.6 \text{ GeV}^2 \) optimal weight fit results
$\Delta^{(2)}(s_0; s_0^*)$ correlated $s_0^* = 3.7 \text{ GeV}^2$ w_{km} fit results
Conclusions of the R(s)-based tOPE strategy tests

• Good χ^2 from single-s_0 tOPE fit demonstrably insufficient to ensure reliability of neglect of DVs and/or prematurely truncated OPE theory representation

\Rightarrow even if integrated DVs negligible for conventional τ analyses (doubtful: see e.g. S. Peris talk), α_s results from tOPE implementations unreliable

• Strong correlations between different-s_0 spectral integrals, different-s_0 OPE integrals, and fitted OPE and spectral integrals make it easy to be misled re level of theory-experiment agreement: double-difference-type tests crucial
BACKUP SLIDES
$s_0^* = m_\tau^2$ diagonal tOPE optimal weight fit theory-experiment matches
Δ^{(2)}(s_0; s_0^* = m_T^2) diagonal optimal weight fit results