Gelfand-Tsetlin $\mathfrak{gl}(n)$-modules for arbitrary characters

Luis Enrique Ramirez

Universidade Federal do ABC

Workshop on Quantum Symmetries
October 18th, 2019

Joint with V. Futorny, D. Grantcharov, P. Zadunaisky, J. Zhang
Conventions

- We fix $n \geq 2$.
Conventions

- We fix $n \geq 2$.
- $\mathfrak{gl}(n)$ will denote the Lie algebra of $n \times n$ matrices over \mathbb{C}.
Gelfand-Tsetlin subalgebra

Let for $m \leq n$, \mathfrak{gl}_m be the Lie subalgebra of $\mathfrak{gl}(n)$ spanned by
\[\{ E_{ij} \mid i, j = 1, \ldots, m \} . \]

\[\mathfrak{gl}_1 \subset \mathfrak{gl}_2 \subset \ldots \subset \mathfrak{gl}_n \]

which induces a chain

\[U_1 \subset U_2 \subset \ldots \subset U_n \]

where $U_m = U(\mathfrak{gl}_m)$.
Gelfand-Tsetlin subalgebra

Definition

The Gelfand-Tsetlin subalgebra Γ of U is the subalgebra generated by $\{Z_m \mid m = 1, \ldots, n\}$. Where the center Z_m of U_m is generated by

$$c_{mk} = \sum_{(i_1, \ldots, i_k) \in \{1, \ldots, m\}^k} E_{i_1i_2} E_{i_2i_3} \cdots E_{i_ki_1}. \quad (1)$$

$k = 1 \ldots, m$.
Gelfand-Tsetlin modules

Definition

A Gelfand-Tsetlin module is a U-module M such that

$$M = \bigoplus_{\chi \in \Gamma^*} M(\chi),$$

with $M(\chi)$ the set of all vectors of generalized Γ-eigenvalue χ.

$$M(\chi) = \{ v \in M : \forall g \in \Gamma, \exists k \in \mathbb{N} \text{ such that } (g - \chi(g))^k v = 0 \}.$$
Theorem (Futorny, Ovsienko-2000)

Set \(\chi \in \Gamma^* \) and \(Q_n = 2! \cdots (n - 1)! \). Then

1. The number of isomorphism classes of irreducible \(U \)-modules \(N \) such that \(N(\chi) \neq 0 \) is always nonzero and does not exceed \(Q_n \).

2. For any irreducible Gelfand-Tsetlin module \(M \), such that \(M(\chi) \neq 0 \) one has

\[
\dim_{\mathbb{C}} M(\chi) \leq Q_n.
\]
Given a arbitrary Gelfand-Tsetlin character χ, construct a Gelfand-Tsetlin module M such that $M(\chi) \neq 0$.
Given a arbitrary Gelfand-Tsetlin character χ, construct a Gelfand-Tsetlin module M such that $M(\chi) \neq 0$.

Given a arbitrary Gelfand-Tsetlin character χ, construct all (up to isomorphism) Gelfand-Tsetlin modules M such that $M(\chi) \neq 0$.
Definition

\[
\begin{array}{cccc}
 l_{n1} & l_{n2} & \cdots & l_{n,n-1} \\
 l_{n-1,1} & \cdots & \cdots & l_{n-1,n-1} \\
 l_{21} & l_{22} & \cdots & \cdots \\
 l_{11} & \cdots & \cdots & \cdots \\
\end{array}
\]

is called a **Gelfand-Tsetlin tableau**. A Gelfand-Tsetlin tableau is called **standard** if the entries satisfied the relations

\[
l_{ki} - l_{k-1,i} \in \mathbb{Z}_{\geq 0} \quad \text{and} \quad l_{k-1,i} - l_{k,i+1} \in \mathbb{Z}_{>0}.
\]
Gelfand-Tsetlin Theorem

Theorem (Gelfand-Tsetlin-1950)

If $L(\lambda)$ is a finite dimensional irreducible representation of $\mathfrak{gl}(n)$ of highest weight $\lambda = (\lambda_1, \ldots, \lambda_n)$, there exists a basis of $L(\lambda)$ consisting of all standard tableaux $T(L)$'s with top row $l_{nj} = \lambda_j + j - 1$. Moreover, the action of the generators of $\mathfrak{gl}(n)$ is given by the Gelfand-Tsetlin formulas.
Gelfand-Tsetlin formulas

\[
E_{k,k+1}(T(L)) = - \sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k+1} (l_{ki} - l_{k+1,j})}{\prod_{j \neq i}^{k} (l_{ki} - l_{kj})} \right) T(L + \delta^{ki}),
\]

\[
E_{k+1,k}(T(L)) = \sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k-1} (l_{ki} - l_{k-1,j})}{\prod_{j \neq i}^{k} (l_{ki} - l_{kj})} \right) T(L - \delta^{ki}),
\]

\[
E_{kk}(T(L)) = \left(k - 1 + \sum_{i=1}^{k} l_{ki} - \sum_{i=1}^{k-1} l_{k-1,i} \right) T(L),
\]

Where \(T(L \pm \delta^{ki}) \) is the tableau obtained by \(T(L) \) adding \(\pm 1 \) to the \((k, i)\)'s position of \(T(L) \) (if a new tableau is not standard then the result of the action is zero). The formulas above are called Gelfand-Tsetlin formulas for \(\mathfrak{gl}(n) \).
Theorem (Zhelobenko-1972)

If V is an irreducible finite dimensional module parameterized by tableaux as in the Gelfand-Tsetlin theorem, then the action of the generators of Γ on any tableau $T(L)$ of the basis is given by:

$$c_{mk} T(L) = \gamma_{mk}(l_{m1}, \ldots, l_{mm}) T(L).$$

where γ_{mk} is an explicit symmetric polynomial of degree k in m variables.
Two approaches

Can we use some analogous to standard relations to obtain a well defined set of tableaux where the Gelfand-Tsetlin formulas give a module structure?
Two approaches

Can we use some analogous to standard relations to obtain a well defined set of tableaux where the Gelfand-Tsetlin formulas give a module structure?

Given an arbitrary tableau, can we construct a tableaux-type module with the action of $\mathfrak{gl}(n)$ given by some generalized Gelfand-Tsetlin formulas?
Approach I

Relation modules
Set $\mathcal{V} := \{(i, j) \mid 1 \leq j \leq i \leq n\}$.

$\mathcal{R}^+ := \{((i, j); (i - 1, t)) \mid 1 \leq j \leq i, \ 2 \leq i \leq n, \ 1 \leq t \leq i - 1\}$

$\mathcal{R}^- := \{((i, j); (i + 1, s)) \mid 1 \leq j \leq i \leq n - 1, \ 1 \leq s \leq i + 1\}$

$\mathcal{R}^0 := \{((n, i); (n, j)) \mid 1 \leq i \neq j \leq n\}$

and let $\mathcal{R} := \mathcal{R}^- \cup \mathcal{R}^0 \cup \mathcal{R}^+ \subset \mathcal{V} \times \mathcal{V}$. From now any $\mathcal{C} \subseteq \mathcal{R}$ will be called a set of relations.
Associated with any $\mathcal{C} \subseteq \mathcal{R}$ we can construct a directed graph $G(\mathcal{C})$ with set of vertices \mathcal{V} and an arrow going from (i, j) to (r, s) if and only if $((i, j); (r, s)) \in \mathcal{C}$.
Associated with any $C \subseteq \mathcal{R}$ we can construct a directed graph $G(C)$ with set of vertices \mathcal{V} and an arrow going from (i, j) to (r, s) if and only if $((i, j); (r, s)) \in C$.

For convenience we will picture the vertex set as disposed in a triangular arrangement with n rows and k-th row given by $\{(k, 1), \ldots, (k, k)\}$.
Set $\mathcal{R}^+ = \{((i, j); (i - 1, t)) \mid 1 \leq j \leq i, \ 2 \leq i \leq n, \ 1 \leq t \leq i - 1\}$

$G(\mathcal{R}^+)$
Set $\mathcal{R}^- = \{((i,j); (i+1, s)) \mid 1 \leq j \leq i \leq n - 1, \ 1 \leq s \leq i + 1\}$
Definition

Let \mathcal{C} be any set of relations.

(i) \mathcal{C} is called indecomposable if $G(\mathcal{C})$ is a connected graph.

(ii) Given $(i, j), (r, s) \in \mathcal{C}$ we will write $(i, j) \succeq_{\mathcal{C}} (r, s)$ if there exists a path in $G(\mathcal{C})$ starting in (i, j) and finishing in (r, s).
Definition

We will say that $T(L)$ is a C-realization if:

- $l_{ij} - l_{rs} \in \mathbb{Z}_{\geq 0}$ for any $((i, j); (r, s)) \in C^+ \cup C^0$.
- $l_{ij} - l_{rs} \in \mathbb{Z}_{> 0}$ for any $((i, j); (r, s)) \in C^-$.
- For any $1 \leq k \leq n - 1$ we have, $l_{ki} - l_{kj} \in \mathbb{Z}$ if and only if (k, i) and (k, j) in the same connected component of $G(C)$.
The vector space

- By $\mathcal{B}_\mathcal{C}(T(L))$ we denote the set of all tableaux of the form $T(L + z)$, $z \in \mathbb{Z}^{n(n+1)/2}$ such that $z_{ni} = 0$, $i = 1, \ldots, n$ which are \mathcal{C}-realizations.
- By $V_{\mathcal{C}}(T(L))$ we denote the complex vector space spanned by $\mathcal{B}_\mathcal{C}(T(L))$.
Example

Is a C-realization, where $G(C)$ is given by one of the following graphs:

\[
\begin{array}{ccc}
(3,1) & (3,2) & (3,3) \\
(2,1) & (2,2) & \\
(1,1) & & (1,1)
\end{array}
\]
Definition $\mathcal{C} \subseteq \mathcal{R}$ is call admissible if:

- There exist a \mathcal{C}-realization $T(L)$.
- For any \mathcal{C}-realization $T(L)$, the vector space $V_{\mathcal{C}}(T(L))$ has a structure of a \mathfrak{gl}_n-module, endowed with the action of \mathfrak{gl}_n given by the Gelfand-Tsetlin formulas.
Finite dimensional modules

Example

\[S^+ := \{(i + 1, j); (i, j)\} \mid 1 \leq j \leq i \leq n - 1 \]
\[S^- := \{((i, j); (i + 1, j + 1)) \mid 1 \leq j \leq i \leq n - 1 \}. \]
FRZ Condition

For every adjoining pair \((k, i)\) and \((k, j)\), \(1 \leq k \leq n - 1\), there exist \(p, q\) such that \(C_1 \subseteq C\) or, there exist \(s < t\) such that \(C_2 \subseteq C\), where the graphs associated to \(C_1\) and \(C_2\) are as follows:

\[
G(C_1) = (k, i) \quad \quad \quad \quad G(C_2) = (k, i)
\]

\[
\begin{array}{ccc}
(k+1, p) & \rightleftharpoons & (k, j) \\
\downarrow & & \downarrow \\
(k-1, q) & \rightleftharpoons & (k+1, s) \\
\end{array}
\]

\[
\begin{array}{ccc}
(k+1, t) & \rightleftharpoons & (k, j) \\
\end{array}
\]
Theorem (Futorny, R., Zhang)

A reduced set of relations \mathcal{C} without cycles and crosses is admissible if and only if $\text{G}(\mathcal{C})$ is a union of disconnected sets satisfying FRZ Condition.
Generic modules

$$G(\emptyset).$$

<table>
<thead>
<tr>
<th>(4,1)</th>
<th>(4,2)</th>
<th>(4,3)</th>
<th>(4,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,1)</td>
<td>(3,2)</td>
<td>(3,3)</td>
<td></td>
</tr>
<tr>
<td>(2,1)</td>
<td>(2,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1,1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuspidal modules

\[G(C_1) \]

\[
\begin{array}{cccc}
(4,1) & (4,2) & (4,3) & (4,4) \\
(3,1) & (3,2) & (3,3) & \\
(2,1) & (2,2) & \\
(1,1) & \\
\end{array}
\]
Verma modules

\[G(C_2) \]

\[
\begin{array}{c}
(4,1) \\
\downarrow \\
(3,1) \\
\downarrow \\
(2,1) \\
\downarrow \\
(1,1)
\end{array}
\quad
\begin{array}{c}
(4,2) \\
\downarrow \\
(3,2) \\
\downarrow \\
(2,2)
\end{array}
\quad
\begin{array}{c}
(4,3) \\
\downarrow \\
(3,3)
\end{array}
\quad
\begin{array}{c}
(4,4)
\end{array}
\]
Theorem (Futorny, R., Zhang)

For any admissible C the module $V_C(T(L))$ is a Gelfand-Tsetlin module with diagonalizable action of the generators of the Gelfand-Tsetlin subalgebra Γ.
Approach II

Generalized GT Formulas
Universal Gelfand-Tsetlin modules

Given a Gelfand-Tsetlin character χ, and $T(L)$ a Gelfand-Tsetlin tableau associated with χ, we construct a fully supported module with basis parameterized by the set

$$\{ T(L + \bar{z}) \mid z \in \mathbb{Z}_0^{n(n+1)/2} \}$$

With action of $\mathfrak{gl}(n)$ given by generalized GT-formulas.
\[E_{k,k+1}(T(L)) = - \sum_{i=1}^{k} \left(\prod_{j=1}^{k+1} \left(l_{ki} - l_{k+1,j} \right) \right) \frac{\prod_{j \neq i}^{k} \left(l_{ki} - l_{kj} \right)}{\prod_{j \neq i}^{k} \left(l_{ki} - l_{kj} \right)} T(L + \delta^{ki}), \]

\[E_{k+1,k}(T(L)) = \sum_{i=1}^{k} \left(\prod_{j=1}^{k-1} \left(l_{ki} - l_{k-1,j} \right) \right) \frac{\prod_{j \neq i}^{k} \left(l_{ki} - l_{kj} \right)}{\prod_{j \neq i}^{k} \left(l_{ki} - l_{kj} \right)} T(L - \delta^{ki}), \]

\[E_{kk}(T(L)) = \left(k - 1 + \sum_{i=1}^{k} l_{ki} - \sum_{i=1}^{k-1} l_{k-1,i} \right) T(L), \]
Definition

A vector \(\mathbf{v} \in \mathbb{Z}^{n(n+1)/2} \) is called **singular** if \(v_{rs} - v_{rt} \in \mathbb{Z} \) for some \(1 \leq s < t \leq r \leq n - 1 \).
Singular Pairs

Suppose first that the singularities of \(\nu \) are given in pairs, which means:

\[
\nu_{ki} - \nu_{kj} \in \mathbb{Z} \text{ implies } \nu_{ki} - \nu_{kt} \notin \mathbb{Z} \text{ for any } t \neq i, j.
\]

Theorem (FGR16, FGR17)

There exist a labeling of the set of tableaux in \(V(T(\nu)) \) indexed by permutations in a subgroup \(\tilde{G} \) of \(S_{n-1} \times \cdots \times S_1 \) (\(\tilde{G} \cong (S_2)^r \)) where \(r \) is the number of singular pairs on \(\nu \)), differential operators \(\{D_\sigma\}_{\sigma \in \tilde{G}} \) and polynomials \(\{P_\sigma\}_{\sigma \in \tilde{G}} \) such that:

\[
E(T_\sigma(\nu + z)) = D_{w_0}(P_{\sigma^{-1}}E(T(\nu + z)))
\]

defines a \(\mathfrak{gl}(n) \)-module structure on \(V(T(\nu)) \).
In this case the polynomials P_σ are products of differences of singularities $\prod (\nu_{ki} - \nu_{kj})$ and the differential operators are compositions of differential operator of the form:

$$D_{ij}^{\bar{v}}(f) = \frac{1}{2} \left(\frac{\partial f}{\partial \nu_{ki}} - \frac{\partial f}{\partial \nu_{kj}} \right) (\bar{v}).$$

$$D_\sigma(fT(\nu + z)) = \sum_{\sigma' \leq \sigma} D_{\sigma'}^{\bar{v}}(f) T_{(\sigma')^{-1}}(\bar{v} + z)$$
In [RZ18] a Gelfand-Tsetlin module \(V(T(\bar{v})) \) is associated to any \(\bar{v} \) (a similar construction using a geometric approach appears in [EMV18]). The module \(V(T(\bar{v})) \) is called the \textit{universal tableaux module associated to} \(\bar{v} \). It is a module with \(\mathbb{C} \)-basis given by the set

\[
\left\{ D_\sigma(\bar{v} + z) \mid z \in \mathbb{D}, \sigma \in S^{\mathbb{Z}}_{\pi} \right\}
\]

whose elements are called \textit{derivative tableaux}. A tableau of the form \(D_e(\bar{v} + z) \) is called the \textit{classical tableau} associated to \(\bar{v} + z \).
Generalized GT-formulas

Explicit action

Given \(l = [a, b]_k \) with \(k < n \) we set

\[
e_l = \frac{\prod_{j=1}^{k+1} (x_{k,a} - x_{k+1,j})}{\prod_{(k,j) \notin l} (x_{k,a} - x_{k,j})};
\]

\[
f_l = \frac{\prod_{j=1}^{k-1} (x_{k,b} - x_{k-1,j})}{\prod_{(k,j) \notin l} (x_{k,b} - x_{k,j})}.
\]

We also set

\[
h_k = x_{k,1} + \cdots + x_{k,k} - (x_{k-1,1} + \cdots + x_{k-1,k-1}) + k - 1.
\]
Theorem (FGRZ18)

The action of the canonical generators of $\mathfrak{gl}(n, \mathbb{C})$ on $V(T(\bar{v}))$ is given by the formulas

$$E_{k,k+1}D_\sigma(\bar{v} + z) = - \sum_{l \in \Pi(\bar{v}, z)[k]} \sum_{\tau \leq \sigma \alpha(l)} \mathcal{D}_{\tau,\sigma \alpha(l)}(e_I)D_\tau(\bar{v} + z + \delta^{k,a(l)})$$,

$$E_{k+1,k}D_\sigma(\bar{v} + z) = \sum_{l \in \Pi(\bar{v}, z)[k]} \sum_{\tau \leq \sigma \beta(l)} \mathcal{D}_{\tau,\sigma \beta(l)}(f_I)D_\tau(\bar{v} + z - \delta^{k,b(l)})$$,

$$E_{k,k}D_\sigma(\bar{v} + z) = h_k(\bar{v} + z)D_\sigma(\bar{v} + z)$$,

where $\mathcal{D}_{\tau,\sigma}$ are the Postnikov-Stanley operators introduced in [FGRZ18], and elements $D_\tau(\bar{v} + u)$ such that τ is not a u-shuffle should be treated as zero.
Conjecture

Every irreducible GT-module V with $V_{\chi} \neq \{0\}$ is isomorphic to a subquotient of the module constructed.
Thanks for your attention!