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CONCORDANCE 𝚲CDM MODEL

A phenomenological Standard Model of Cosmology has 
emerged, in perfect agreement with current observations: 

Complemented with the inflationary 
scenar io to genera te p r imord ia l 
f luctuations that seed large scale 
structures we observe today

The ΛCDM model (Lambda cold dark matter)            

In this model, the universe contains three 
major components: dark energy, Λ, cold 
dark matter and ordinary matter.Dark  
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• Observations consistent with tiny cosmological constant. 
E.g.  

• Upcoming Dark Energy Surveys will probe 

CONCORDANCE 𝚲CDM MODEL

12 1. Dark energy

Figure 1.3: Constraints on the present matter fraction Ωm and the Hubble constant
H0 from various combinations of data, assuming flat ΛCDM (left and middle panels)
or a constant dark energy equation of state w (right panel). Dark and light shaded
regions indicate 68.3% and 95.4% confidence levels, respectively. The right panel
also shows 100 Monte Carlo samples from the CMB+BAO constraints with the
value of w indicated by the colors of the dots. “CMB” is Planck+WP in the outer
panels and WMAP9 in the middle panel, “BAO” is the combination of SDSS-II,
BOSS, and 6dFGS, and “H0 (HST)” is the HST constraint from [40].

One should not immediately conclude from Figure 1.3 that w ̸= −1, but this comparison
highlights the importance of fully understanding (and reducing) systematic uncertainties
in direct H0 measurements. If errors were reduced and the central value remained close
to that plotted in Figure 1.3, then the implications would be striking. Other recent H0
determinations exhibit less tension with CMB+BAO, because of lower central values
and/or larger errors [42,43], including the values of H0 = 69 ± 7 km s−1Mpc−1 and
68± 9 km s−1Mpc−1 from Refs. [44,45], who circumvent the traditional distance ladder
by using maser distances to galaxies in the Hubble flow. Gravitational lens time delays
offer another alternative to the traditional distance ladder, and their precision could
become competitive over the next few years, with increasing sample sizes and better
constrained lens models.

The amplitude of CMB anisotropies is proportional to the amplitude of density
fluctuations present at recombination, and by assuming GR and a specified dark energy
model one can extrapolate the growth of structure forward to the present day to predict
σ8. As discussed in Sec. 1.3 probes of low redshift structure typically constrain the
combination σ8Ω

α
m with α ≈ 0.3–0.5. Figure 1.4 displays constraints in the σ8−Ωm plane

from CMB+BAO data and from weak lensing and cluster surveys [46]. Planck data
themselves reveal a CMB lensing signature that constrains low redshift matter clustering
and suggests a fluctuation amplitude somewhat lower than the extrapolated value for flat
ΛCDM. However, including the CMB lensing signal only slightly alters the Planck+WP
confidence interval for ΛCDM (purple vs. yellow contours in Fig. 1.4a). Allowing free w
(gray contours) expands this interval, primarily in the direction of lower Ωm and higher
σ8 (with w < −1).
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• Hints at physics beyond ΛCDM in H0 measurements:

‣ direct measurement:

H0 = 74.22± 1.84 km/s/Mpc

‣ value inferred from CMB:

H0 = 67.4± 0.5 km/s/Mpc
[Riess et al. ’16]

giving 4.4σ discrepancy...

OBSERVATIONAL HINTS BEYOND 𝚲CDM? 
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• Hints at physics beyond ΛCDM in H0 measurements:

‣ direct measurement:

H0 = 74.22± 1.84 km/s/Mpc

‣ value inferred from CMB:

H0 = 67.4± 0.5 km/s/Mpc
[Riess et al. ’16]

giving 4.4σ discrepancy...

Physics beyond ΛCDM?
exotic (e.g. phantom) dark energy, dark radiation, dark matter 

decay, coupled dark matter/dark energy …

OBSERVATIONAL HINTS BEYOND 𝚲CDM? 



[Vafa et al. 06-19]

DE SITTER AND QUANTUM GRAVITY 

• Recent theoretical constraints on low energy effective 
theories of gravity would suggest that a pure cosmological 
constant, 𝛬, cannot be realised in a consistent quantum 
theory with ultra-violet completion, such as string theory 

VS

landscape
(have UV completion in QG) 

swampland
(no UV completion in QG) 



[Danielsson, Van Riet ’18;  
Obied, Ooguri, Spodyneiko, Vafa ’18; 

 Garg, Krishnan ’18;  
Ooguri, Palti, Shiu, Vafa ’18]

DE SITTER SWAMPLAND CONJECTURE

• The scalar potential in the LEEFT of any consistent quantum 
gravity must satisfy either:
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 for some universal constants c, c′ > 0 of order 1. 
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[Danielsson, Van Riet ’18;  
Obied, Ooguri, Spodyneiko, Vafa ’18; 

 Garg, Krishnan ’18;  
Ooguri, Palti, Shiu, Vafa ’18]

DE SITTER SWAMPLAND CONJECTURE

• The scalar potential in the LEEFT of any consistent quantum 
gravity must satisfy either:

p
ririV

V
& c

MPl

or min(rirjV )

V
. � c0

M2
Pl

 for some universal constants c, c′ > 0 of order 1. 

• Rules out metastable dS, allows sufficiently unstable dS

• Connections to other conjectures: weak gravity conjecture; 
distance conjecture, etc.



IMPLICATIONS FOR DARK ENERGY

• Dark energy may be quintessence field:

T0 �0 m3/2 m'1 m'2 ms1 ms2 F T F � V
barrier

12.9 0.85 57 TeV 0 77.1m3/2 1.98m3/2 75.4m3/2 1.98m3/2 1.72m3/2 0.5m2
3/2

13.4 0.87 33 TeV 0 77m3/2 2m3/2 77m3/2 1.91m3/2 1.73m3/2 0.6m2
3/2

Table 1: Location of the minimum, mass spectrum, F -terms and height of the potential barrier for
the parameter choice (30). The upper and lower line correspond to exact numerical result and analytic
approximation respectively.
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Figure 1: The left panel shows the scalar potential (in Planck units) in modulus and meson direction
rescaled by m2

3/2. A local minimum with broken supersymmetry is located at T0 = 12.9, �0 = 0.85. The
field direction with the shallowest potential barrier is indicated by the red line. In the right panel, the
potential along this direction is shown.

2.4 Generalization to Several Moduli

Realistic G2 manifolds must contain the full MSSM spectrum with its O(100) couplings. They
will generically feature a large number of moduli and non-perturbative terms in the superpotential.
The low energy phenomenology, however, mostly depends on the lightest modulus. In this sense,
the mass spectrum derived in the previous section is realistic, once T is identified with the lightest
modulus. However, in the early universe, high energy scales are accessed. This implies that, for
cosmology, the heavier moduli do actually matter. We will later see that inflation in M-theory
relies on large mass hierarchies in the moduli sector. In order to motivate their existence, we now
introduce an example with two moduli T1,2.

One linear combination of moduli TL plays the role of the light modulus as in the previous
section. It participates (subdominantly) in supersymmetry breaking and its mass is tied to the
gravitino mass. The orthogonal linear combination TH can, however, be decoupled through a large
supersymmetric mass term from the superpotential. In order to be explicit, we will identify

TH =

T1 + T2

2

, TL =

T1 � T2

2

. (32)

The superpotential is assumed to be of the form

W = W(TH) + w(TH, TL) , (33)

The part W only depends on TH and provides the large supersymmetric mass for the heavy linear
combination. The part w is responsible for supersymmetry breaking and its magnitude is controlled
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IMPLICATIONS FOR DARK ENERGY

Assuming convex potential, current observations on       
constrain              in
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by fine-tuning initial conditions.
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Figure 1: (a) The black curve shows the current observational 2� bound on w(z) for 0 < z < 1 based on SNeIa, CMB and BAO
data [26]. This is compared with the predicted w(z) for exponential quintessence potentials with di↵erent values of constant
� under the constraint that ⌦�(z = 0) = 0.7 and assuming initial conditions x = y ⇡ 0. From this we observe that the
upper bound on � is ⇠ 0.6 (blue curve). (b) The blue curve shows the trajectory in the (x, y) plane corresponding to constant
� = 0.6, the upper bound allowed in Fig. 1(a), assuming initial conditions (x, y) = (0, 0). The current (x, y) is where the
blue curve meets the green; the dashed blue curve illustrates its future asymptotic behavior. Trajectories to the right of the
blue curve have a larger w(z) at 0 < z < 1 and, hence, violate the observational constraints in Fig. 1(a). As explained in the
text, trajectories to the left of the blue curve extrapolate back in time, hit the y-axis at some finite y and then continue on to
(x, y) = (�1, 0) or ⌦� ! 1. These trajectories disrupt matter domination and, hence, large-scale structure formation. Hence,
the bound for constant �, c < 0.6 in Fig. 1(a), is also the bound for general �(�) > c.

trajectories for a range of values of �. We com-
pare these predictions with the current 2� upper
bounds on w(z) for 0 < z < 1 (black curve3) [26].
The comparison shows that the upper bound on �
is 0.6, somewhat less than unity.

Second, a universal upper bound on c can be de-
rived for general �(�). We claim and will shortly
prove that the constant � case with �(�) = c is
the least constrained trajectory. From above, such
a trajectory is ruled out if c is bigger than 0.6. It
follows that every possible �(�) is ruled out if c is
bigger than 0.6, leading to the bound c . 0.6.

We now provide the argument why the �(�) = c
trajectory is the limiting case. Figure 1(b) shows
in blue the trajectory for the case � = c =
0.6 which connects the fixed point at (x, y) =
(c/

p
6,
p

1� c2/6) to the repulsive fixed point at
(x, y) = (0, 0). From figure 1(a), this trajectory fits

3 The black curve is determined from Fig. 21 in Ref. [26]
by finding the values of (w0, wa) all along the 2� contour;
plotting all w(z) of the form w(z) = w0 + waz/(1 + z); and
finding the upper convex hull.

observational constraints for 0 < z < 1 and z > 1.
Where the blue curve intersects the upper black line
in the future is the stable fixed point; if the universe
began at the repulsive fixed point in the past, the
current position along the trajectory is where the
blue curve meets the green one.

Note that trajectories are bounded by the condi-
tion

�x

y
<

dy

dx
< �x

y

0

@1� (1� x2 � y2)(y2 � x2)q
2
3cxy

2 � x2(1� x2 + y2)

1

A

(13)

where we use the fact that the slope dy/dx for each
trajectory at each point is a monotonic function of
�. Starting from any point in the x � y plot, we
can use this condition to bound any trajectory that
passes through that point if �(�) > c. Namely,
draw trajectories through the point with �(�) = c
and �(�) ! 1; these form a cone through which
any other trajectory for general �(�) must pass.
This is illustrated, for example, by the black lines
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[Agrawal, Obied, Steinhardt, Vafa, ’18]

• Dark energy may be quintessence field:

!(z)
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STRING MODELS OF QUINTESSENCE

• Need a slowly-rolling ultra-light string modulus with:

hV i ' 10�120M4
Pl m . 10�32eVand 

so two fine-tuning problems!

Many of the same ingredients and challenges as in dS 
constructions

• String dilaton or volume modulus lead to fifth forces and 
varying fundamental constants.

• Local modulus may be sequestered with weaker than 
Planck SM couplings [Cicoli, Pedro, Tasinato, ’12]

• String axion evades 5th forces and can easily be light      
m ⇠ e�⌧MPl f & 3MPl [Svrcek ’06]but need ... alignment?

[Cicoli et al, ’18; Chiang-Murayama, ’18; Marsh, ’18, Han et al. ’18; D’amico et al.’18; Olguín-Trejo et al.’18; Emelin-Tatar, 
’18; Hertzberg  et al. ’18; van de Bruck-Thomas, ’19; Dimopoulos-Donaldson-Wood, ’19, Hardy-Parameswaran, ‘19…]   



QUINTESSENCE FROM A RUNAWAY STRING MODULUS

• Consider an early Universe scenario (e.g. inflation) that ends 
in supersymmetric Minkowski minimum, with most moduli 
stabilised and heavy in            supergravity framework:

heavy

where       is the holomorphic superpotential W

• Assume a single flat direction (for simplicity):
with      a string coupling constant - saxion - and     its axion    ✓

and Kähler potential 

e.g.              for overall volume modulus,            for other 
volume moduli, complex structure, dilaton, blow-up 
modulus.

n = 3 n = 1

N = 1

hDiWsusyi = 0 , hWsusyi = 0 , h�ii

K = �n log (�+

¯

�)

� = �+ i✓
�

[Olguín-Trejo, Parameswaran, Tasinato, IZ, ’19]



QUINTESSENCE FROM A RUNAWAY STRING MODULUS

• Superpotential, W is protected from perturbative 
corrections to all finite orders by non-renormalisation 
theorem ☞

[Olguín-Trejo, Parameswaran, Tasinato, IZ, ’19]

‣ Axionic shift symmetry ⇒ W cannot depend on 𝜃. 
‣ Holomorphy ⇒ W cannot depend on 𝜙.

• On the other hand, the Kähler potential, K, does receive 
perturbative corrections, but so long as W = 0, these will not 
lift flat direction.

But receives non-perturbative corrections, Wnp / e�↵�



RUNAWAY STRING MODULUS

• Consider                                      and                             at  

leading order, generated e.g. by worldsheet instantons, 
gaugino condensation in bulk or brane, Euclidean D-
branes, ...

• The parameters          are model dependent constants. ↵, A

E.g. A may be itself exponentially suppressed in heavy 
moduli vevs, e.g. gaugino condensation with 1-loop 
threshold corrections:

Wnp = µ2e�↵f , with

K = �n log (�+

¯

�)

Wnp = Ae�↵�

f = �+

X

j

cj log(dj�)
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RUNAWAY STRING MODULUS

• Consider                                      and                             at  

leading order, generated e.g. by worldsheet instantons, 
gaugino condensation in bulk or brane, Euclidean D-
branes, ...

• The parameters          are model dependent constants. ↵, A

• The scalar potential                                         for the saxion isV = eK
�
|DW |2 � 3|W |2

�

V =
A2

2nn
e�2↵���n

�
n2 + 4↵2�2 + n(4↵�� 3)

�

with axion flat direction at leading order

K = �n log (�+

¯

�)

Wnp = Ae�↵�



RUNAWAY MODULUS WITH DS MAXIMUM  

V =
A2

2nn
e�2↵���n

�
n2 + 4↵2�2 + n(4↵�� 3)

�

4

��� ��� ��� ��� ���

-��×��-���

�

��×��-���

ϕ

�(
ϕ)

FIG. 1: Potential (4) for ↵ =
p
2 and A = e�1105/8 in Planck units.

III. QUINTESSENCE FROM A RUNAWAY MODULUS

The runaway modulus is governed by the cosmological equations:

3
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, (7)

where H0 is today’s Hubble constant, ⌦
M

is the density parameter for matter and ⌦
r

the one for
radiation, with a(t

today

) = 1. Also, g
ab

and �a

bc

are target-space metric and Christo↵el symbols
derived from the Kähler potential (2).

Following these equations, under certain conditions the runaway modulus can source an accel-
erated expansion at late times. In particular, the system includes a slow-roll quintessence scenario
[24], where 1

2 '̇
2 ⌧ V for the canonically normalised field:

' = M
pl

r
n

2
log � . (8)

Since the potential for the axion, ✓, is flat, we consider the solution ✓̇ = 0. The slow-roll condition
for the (non-canonically normalised) saxion field, �, is then:

M2
pl

4

�̇2

�2
⌧ V , (9)

whereas the Klein-Gordon equation (7) gives:

�̇ ⇡ 2�2V 0(�)M�2
pl

� �̈

3H
, (10)

where H = ȧ/a, so (neglecting �̈) � is slowly rolling as long as:

2�2V
0(�)2

V
⌧ M2

pl

H2 . (11)

• If n=1, there is a dS maximum at 

�
max

=
1p
2↵

,

consistent with dS Swampland 
conjecture.

• Corrections from       and      Kp Wnpsub

suppressed for small coupling constant 

• Starting from susy Minkowski – well under control

• Giving up dS minimum – no fine tuning of perturbative and 
non-perturbative corrections against each other
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• Cosmological equations in an FRW background are:

• To source acceleration                  , slow-roll quintessence.  
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QUINTESSENCE FROM A RUNAWAY MODULUS

• Behaviour of the slow-roll parameter 
in different regions of the potential:
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LATE-TIME QUINTESSENCE ON THE RUNAWAY

• For a quintessence that dominates 
the energy density:
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THAWING QUINTESSENCE FROM
√ 
RUNAWAY MODULUS  

• Near hilltop we have a viable frozen 
or thawing quintessence model
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e�138.122, choosing various initial conditions �init, �̇init = 0 and ✓̇init = 0. We take H0 = 5.95⇥ 10�61Mpl,
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around 4% of the hilltop value �
max

= 0.5, the evolution is consistent with current observations. For
example, for �

init

= 0.48, we have today ⇢
'

= 6.98⇥ 10�121M4
pl

, H = 1.44⇥ 10�33eV , ! = �0.96,

and m2 = � �
2.36⇥ 10�33 eV
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6.14⇥ 10�33eV
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. For �

init

= 0.53 we have the current

values ⇢
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= 6.86⇥ 10�121M4
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, H = 1.43⇥ 10�33eV and ! = �0.95 and m2 =
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2.27⇥ 10�33eV
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,

and � �
4.37⇥ 10�33eV
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. Quantum fluctuations, �' ⇠ H/2⇡, stay within the viable window close

to the inflection point, right up to H . 0.01M
pl

.
It is interesting to note that, independently of the initial conditions, the late time behaviour of

the system far in the future, as N ! 1, is:

�(N) ! 1

2a
ln

✓
36A2↵

5H2
0⌦M

◆
+

3

2↵
(N + ln(N))

⇢
'

! e�3N 2H2
0⌦M

3N2

! ! �1

4
. (18)

We have verified this both analytically and numerically.

✓
'c = MPl

r
n

2

log �

◆



THAWING QUINTESSENCE FROM
√ 
RUNAWAY MODULUS  

• Near hilltop we have a viable frozen 
or thawing quintessence model

4

��� ��� ��� ��� ���

-��×��-���

�

��×��-���

ϕ

�(
ϕ)

FIG. 1: Potential (4) for ↵ =
p
2 and A = e�1105/8 in Planck units.

III. QUINTESSENCE FROM A RUNAWAY MODULUS

The runaway modulus is governed by the cosmological equations:

3

✓
ȧ

a

◆2

=
1

2

�̇2

�2
+M�2

pl

V + 3H2
0⌦M

a(t)�3 + 3H2
0⌦r

a(t)�4

0 = �̈+ 3
ȧ
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• Axion lifted by subleading corrections                 axion DE with 
              . E.g.                         with  

• Axino has light mass                                    . With params 
above                                           axino dark radiation 

• Relic abundance is model dependent, e.g. via thermal 
scattering or decays or out of equilibrium decay via lightest 
stabilised modulus  

• So far mild susy breaking by runaway - effect of susy 
breaking in visible sector must be sequestered, e.g. if 
modulus describes local feature in string compactification, 
distant from SM: 

• Tree-level decoupling ensures radiative stability, suppression 
of fifth forces and time variation of fundamental constants…
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SUMMARY 

• Existence or not of metastable dS vacuum in string theory 
remains an open question.  

• Very few candidates for quintessence in string theory - 
usually tension with swampland constraints and/or control 
issues.  

• Late time dominating slow-roll quintessence is impossible at 
runaway tail – no stringy example (and inconsistent with dS 
conjecture).  

• Hilltop in runaway potential can source frozen/thawing 
quintessence consistently with observations and QG 
conjectures - and under control! Comes with axion DE and 
axino DR. BUT need fine-tuned initial conditions... anthropics 
on a susy  Landscape?  

• Model dependent questions: susy breaking and vacuum 
energy in visible sector, fifth forces and time variation of 
fundamental constants...  

• The cosmological constant problem... 



COUPLED DARK ENERGY - DARK MATTER MODELS 

Puzzle of cosmic coincidence:

‣ If it is not accidental ⇒ an exchange of energy is plausible, 
and therefore a coupling between dark energy and dark 
matter.

Why is the dark energy density of same order (only about two 
times bigger) as that of matter density in the present 
cosmological epoch?

‣ Resolution of the 'cosmic coincidence' problem implies 
that dark energy and dark matter follow the same scaling 
solution during a significant period of evolution.

‣ Whereas new forces between DE and normal matter are 
heavily constrained by observations (e.g. in the solar 
system and gravitational experiments on Earth), this is not 
the case for DM.
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• Coupled dark matter - dark energy (scalar field) changes 
cosmological evolution with interesting implications:
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D-BRANE SCALAR-TENSOR THEORIES  
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• In four dimensions, including D-branes, low energy action for 
scalars, matter and gravity takes the form
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‣ non-standard kinetic terms arise 
from D-brane DBI action 
‣ conformal and disformal coupling 

between scalar (DE) and matter 
(DM)

where
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D-BRANE SCALAR-TENSOR THEORIES  

The induced metric        has the form, which agrees 

+D(�)@µ�@⌫�g̃µ⌫ = C(�)gµ⌫

conformal transformation (preserves angles)
disformal transformation (distorts angles)D(�)

C(�)The first term in (1.1) is the conformal transformation which characterises the Brans-Dicke

class of scalar-tensor theories widely explored in the literature [8–13]. The second term

is the so called disformal coupling, which is generic in extensions of general relativity. In

particular, it arises naturally in D-brane models, as discussed in [6] in a natural model of

coupled dark matter and dark energy. In [7], we studied briefly the e↵ect of turning on the

disformal term besides the conformal one studied in [8] in a phenomenological set-up. In

such case, the functions C and D are in principle independent functions, so long as they

satisfy the causality constraint: C(�) > 0 and C(�) + 2D(�)X > 0, (X = 1
2(@�)

2) [21].

We found however that in order to have a real positive modified expansion rate, H̃, the
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where          satisfy the causality constraintC,D

with the most general relation between two metrics 
compatible with general covariance introduced by 
Bekenstein

g̃µ⌫

[Bekenstein, ’92]



D-BRANE SCALAR-TENSOR THEORIES  

Starting action is 

and suitable initial conditions. Compared to the pure conformal case [8], (conformal and)

disformally coupled scalar-tensor theories o↵er a richer phenomenology.

The rest of the paper is organised as follows. In the next section we first introduce

briefly the general D-brane-like set up following the conventions and notation of [7] (see

also [6]). We then go directly to the cosmological equations and discuss how the expansion

rate is modified in general. In section 3 we move on to the D-brane-like case, where the

conformal and disformal functions are related. We start discussing the equations in the

Jordan frame as well as the initial conditions and constrains that we use to solve numerically

the full equations. We then discuss in detail the solutions for the unwarped case, that is,

a purely disformal e↵ect (or C =const.). We compute numerically the modified expansion

rate, the enhancement factor and the e↵ects on the relic abundance and DM annihilation

rate. Next we discuss the warped case, using for concreteness the same conformal function

used in [7, 8]. We also comment on the result of using other functions. Finally in 3.5

we discuss the e↵ect on the DM relic abundances and annihilation rates. We conclude in

Section 4 with a discussion and summary of our results.

2 D-brane Disformal Coupling

We start this section by outlining our set-up, which as described in the introduction, can

arise from a post-string inflationary scenario. At this stage, the universe is already four

dimensional and moduli associated to the compactification have been properly stabilised4.

However, the relevant parameters in the model will depend on the string theory quantities

such as the string scale, string coupling and compactification volume as we will argue.

The starting action we consider is given by

S = SEH + Sbrane , (2.1)

where:

SEH =
1

22

Z
d4x

p
�g R, (2.2)

Sbrane = �
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s
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D(�)

C(�)
(@�)2 + V (�)

#
�
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d4x

p
�g̃LM (g̃µ⌫) , (2.3)

where in a string set-up, 2 = M�2
P = 8⇡G = is related to the string coupling, scale and

compactification overall volume as M2
P = 2V6

2⇡g2s↵
0 , with M�2

s = `2s = ↵0(2⇡)2 is the string

scale, V6 is the dimensionless 6D volume in string units and gs is the string coupling.

Note also that G is not in general equal to Newton’s constant as measured by e.g. local

experiments.

In (2.3) we describe the brane dynamics (of transverse and longitudinal fluctuations

associated to the scalar and matter respectively) given by the DBI and CS actions for a

single D3-brane. The DBI part gives rise to the non-canonically normalised scalar field �,

4
Though these fields might be displaced from their minima, giving rise to a matter dominated regime,

with interesting consequences (see e.g. [22]).
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✦ Identify the Dark D-brane with a moving hidden sector 
Dbrane (has no or little interaction with SM D-branes) 

✦ Dark D-brane matter can be identified with dark matter 
(massive fields) or dark radiation (massless fields). 

✦ Brane motion parameterised by brane’s position, identified 
with dark energy (DBI quintessence)  

✦ Conformal and disformal couplings can modify the 
expansion rate at different epochs, with interesting 
cosmological implications 
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For cosmology, consider evolution in an FRW universe:  

ds

2 = �dt

2 + a

2(t)dxi
dxi

COSMOLOGICAL EVOLUTION 

The evolution equations in Einstein frame (with respect to       ) 
become

where 

2.1 Cosmological equations

Consider an homogeneous and isotropic FRW metric gµ⌫ ,

ds2 = �dt2 + a(t)2dxidx
i , (2.20)

where a(t) is the scale factor. In this background, the Einstein and Klein-Gordon equations

become, respectively

H2 =
2

3
[⇢� + ⇢] , (2.21)

Ḣ +H2 = �2

6
[⇢� + 3P� + ⇢+ 3P ] , (2.22)

�̈+ 3H�̇+ V,� +Q0 = 0 . (2.23)

where, H = ȧ
a , dots are derivatives with respect to t and we have denoted V,� ⌘ dV

d� . Also

the Lorentz factor becomes

� = (1�D �̇2/C)�1/2.

The continuity equations for the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.24)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.25)

where Q0 is given by

Q0 = ⇢


D

C
�̈+

D

C
�̇

✓
3H +

⇢̇

⇢

◆
+

✓
D,�

2C
� D

C

C,�

C

◆
�̇2 +

C,�

2C
(1� 3!)

�
.

(2.26)

Using (2.25) we can rewrite this in a more compact and useful form as

Q0 = ⇢

✓
�̇

�̇ �
+

C,�

2C
(1� 3! �2)� 3H!

(�2 � 1)

�̇

◆
. (2.27)

Plugging this into the (non-)conservation equation for dark matter (2.25), gives:

⇢̇+ 3H(⇢+ P �2) = ⇢


�̇

�
+

C,�

2C
�̇ (1� 3!�2)

�
. (2.28)

Using the relations for the physical proper time and the scale factors in the two frames,

given by

ã = C1/2a , d⌧̃ = C1/2��1d⌧ , (2.29)

we can define the disformal-frame Hubble parameter H̃ ⌘ d ln ã
d⌧̃ , as

H̃ =
�

C1/2


H +

C,�

2C
�̇

�
, (2.30)

so that (2.13) takes the standard form in terms of H̃:

d⇢̃

d⌧̃
+ 3H̃(⇢̃+ P̃ ) = 0 . (2.31)

Equations (2.30) and (2.31) give the background evolution equations for the modified ex-

pansion rate and matter’s density evolution.
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gµ⌫

The equation of motion for the scalar field is:
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
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
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�
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
D

C
Tµ⌫@⌫�

�
= 0 , (2.11)

where C,� denotes derivative of C w.r.t. � and similarly for D,V . Finally, the energy-

momentum conservation equation, rµT
µ⌫
tot = rµ

⇣
Tµ⌫
� + Tµ⌫

⌘
= 0, combined with the

equation of motion for the scalar field, allows us to define Q as:

Q ⌘ rµ


D

C
Tµ� @��

�
� Tµ⌫

2


C,�

C
gµ⌫ +

D,�

C
@µ�@⌫�

�
, (2.12)

so that, rµT
µ⌫
� = �rµT

µ⌫ = Q@⌫� [7].

2.2 Cosmological equations

Let us now look at the cosmological evolution. We start with an FRW background metric:

ds2 = �dt2 + a2(t)dxidx
i , (2.13)

with a(t) the scale factor in the Einstein frame. With this metric, the equations of motion

become:

H2 =
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3
[⇢� + ⇢] , (2.14)

Ḣ +H2 = �2

6
[⇢� + 3P� + ⇢+ 3P ] , (2.15)
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
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where, H = ȧ
a , dots are derivatives with respect to t,
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⇢
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,

(2.17)

here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.18)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.19)
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by
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⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.19)

– 6 –

The equation of motion for the scalar field is:

�rµ

⇥
M4DC� @µ�

⇤
+
��1M4C2

2


D,�

D
+ 3

C,�

C

�
+
�M4C2

2


C,�

C
�

D,�

D

�
+V�

�Tµ⌫

2


C,�

C
gµ⌫ +

D,�

C
@µ�@⌫�

�
+rµ


D

C
Tµ⌫@⌫�

�
= 0 , (2.11)

where C,� denotes derivative of C w.r.t. � and similarly for D,V . Finally, the energy-

momentum conservation equation, rµT
µ⌫
tot = rµ

⇣
Tµ⌫
� + Tµ⌫

⌘
= 0, combined with the

equation of motion for the scalar field, allows us to define Q as:

Q ⌘ rµ


D

C
Tµ� @��

�
� Tµ⌫

2


C,�

C
gµ⌫ +

D,�

C
@µ�@⌫�

�
, (2.12)

so that, rµT
µ⌫
� = �rµT

µ⌫ = Q@⌫� [7].

2.2 Cosmological equations

Let us now look at the cosmological evolution. We start with an FRW background metric:

ds2 = �dt2 + a2(t)dxidx
i , (2.13)

with a(t) the scale factor in the Einstein frame. With this metric, the equations of motion

become:

H2 =
2

3
[⇢� + ⇢] , (2.14)
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a , dots are derivatives with respect to t,

� = (1�D �̇2/C)�1/2,

and

Q0 = ⇢


D

C
�̈+

D

C
�̇

✓
3H +

⇢̇

⇢

◆
+

✓
D,�

2C
� D

C

C,�

C

◆
�̇2 +

C,�

2C
(1� 3!)

�
,

(2.17)

here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.18)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.19)
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and

⇢� =
M4CD�2

� + 1
�̇2 + V

P� =
M4CD �

� + 1
�̇2 � V
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.18)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.19)
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.18)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.19)

– 6 –

⇢� =
M4CD�2

� + 1
�̇2 + V

P� =
M4CD �

� + 1
�̇2 � V

COSMOLOGICAL EVOLUTION 

However in the Jordan/disformal 
frame, the energy-momentum 
tensor is conserved:

2.1 Cosmological equations

Consider an homogeneous and isotropic FRW metric gµ⌫ ,

ds2 = �dt2 + a(t)2dxidx
i , (2.20)

where a(t) is the scale factor. In this background, the Einstein and Klein-Gordon equations

become, respectively

H2 =
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3
[⇢� + ⇢] , (2.21)

Ḣ +H2 = �2

6
[⇢� + 3P� + ⇢+ 3P ] , (2.22)

�̈+ 3H�̇+ V,� +Q0 = 0 . (2.23)

where, H = ȧ
a , dots are derivatives with respect to t and we have denoted V,� ⌘ dV

d� . Also

the Lorentz factor becomes

� = (1�D �̇2/C)�1/2.

The continuity equations for the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.24)
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where Q0 is given by

Q0 = ⇢


D

C
�̈+

D

C
�̇

✓
3H +

⇢̇

⇢

◆
+

✓
D,�

2C
� D

C

C,�

C

◆
�̇2 +

C,�

2C
(1� 3!)

�
.

(2.26)

Using (2.25) we can rewrite this in a more compact and useful form as
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�̇

�̇ �
+

C,�

2C
(1� 3! �2)� 3H!

(�2 � 1)

�̇

◆
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Plugging this into the (non-)conservation equation for dark matter (2.25), gives:

⇢̇+ 3H(⇢+ P �2) = ⇢


�̇

�
+

C,�

2C
�̇ (1� 3!�2)

�
. (2.28)

Using the relations for the physical proper time and the scale factors in the two frames,

given by

ã = C1/2a , d⌧̃ = C1/2��1d⌧ , (2.29)

we can define the disformal-frame Hubble parameter H̃ ⌘ d ln ã
d⌧̃ , as

H̃ =
�

C1/2


H +

C,�

2C
�̇

�
, (2.30)

so that (2.13) takes the standard form in terms of H̃:

d⇢̃

d⌧̃
+ 3H̃(⇢̃+ P̃ ) = 0 . (2.31)

Equations (2.30) and (2.31) give the background evolution equations for the modified ex-

pansion rate and matter’s density evolution.

– 6 –

Total energy is conserved                           but individual 
conservation equations are modified:

and one can define the energy density and pressure of the scalar field as:

⇢� = �1

2
(@�)2 + V , P� = �1

2
(@�)2 � V . (2.8)

Finally the equation of motion for the scalar field dark energy becomes:

�rµrµ�+ V 0 � Tµ⌫

2


C 0

C
gµ⌫ +

D0

C
@µ�@⌫�

�
+rµ


D

C
Tµ⌫@⌫�

�
= 0 . (2.9)

Due to the nontrivial coupling, the individual conservation equations for the two fluids

are modified. However, the conservation equation for the full system is preserved, and

given in the usual way by

rµ

⇣
Tµ⌫
� + Tµ⌫

⌘
= 0 . (2.10)

Thus using (2.7) and the equation of motion for the scalar field we can write

rµT
µ⌫
� = Q @⌫� = �rµT

µ⌫ , (2.11)

where

Q ⌘ rµ


D

C
Tµ� @��

�
� Tµ⌫

2


C 0

C
gµ⌫ +

D0

C
@µ�@⌫�

�
. (2.12)

In the Jordan, or disformal frame, as defined above, matter is conserved,

r̃µT̃
µ⌫ = 0 , (2.13)

where r̃µ is the covariant derivative computed with respect to the disformal metric (2.2)

with the Christo↵el symbols given by

�̃µ
↵� = �µ

↵� +
C 0

C
�µ(↵@�)�� �2

C 0

2C
@µ� g↵� +

D

C
�22 @

µ�


r↵r��+

✓
D0

2D
�C 0

C

◆
@↵�@��

�
,

(2.14)

and we have introduced the “Lorentz factor” � defined as

� =
1q

1 + D
C (@�)2

. (2.15)

In this frame, the energy-momentum tensor is defined as

T̃µ⌫ =
2p�g̃

�SM

�g̃µ⌫
(2.16)

and the disformal energy-momentum tensor can be written as:

T̃µ⌫ = (⇢̃+ P̃ )ũµũµ + P̃ g̃µ⌫ , (2.17)

where ũµ = C�1/2� uµ. Using (2.16), we obtain a relation between the energy momentum

tensor in both frames as:

T̃µ⌫ = C�3� Tµ⌫ . (2.18)

Further using (2.17) we arrive at a relation among the energy densities and pressures in

both frames, given by

⇢̃ = C�2��1⇢ , P̃ = C�2� P, (2.19)

and therefore the equations of state in both frames are related by !̃ = ! �2. Note that in

the pure conformal case, D = 0, � = 1 and therefore !̃ = !.
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rµT̃
µ⌫ = 0

⇢̃+ 3H̃(⇢̃+ P̃ ) = 0)
⇣
⇢̃ = C�2��1⇢ , P̃ = C�2�P

⌘
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.18)
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by
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Due to the nontrivial coupling, the individual conservation equations for the two fluids
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In the Jordan, or disformal frame, as defined above, matter is conserved,
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and we have introduced the “Lorentz factor” � defined as

� =
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. (2.15)

In this frame, the energy-momentum tensor is defined as

T̃µ⌫ =
2p�g̃

�SM

�g̃µ⌫
(2.16)

and the disformal energy-momentum tensor can be written as:

T̃µ⌫ = (⇢̃+ P̃ )ũµũµ + P̃ g̃µ⌫ , (2.17)

where ũµ = C�1/2� uµ. Using (2.16), we obtain a relation between the energy momentum

tensor in both frames as:

T̃µ⌫ = C�3� Tµ⌫ . (2.18)

Further using (2.17) we arrive at a relation among the energy densities and pressures in

both frames, given by

⇢̃ = C�2��1⇢ , P̃ = C�2� P, (2.19)

and therefore the equations of state in both frames are related by !̃ = ! �2. Note that in

the pure conformal case, D = 0, � = 1 and therefore !̃ = !.
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.18)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.19)
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by
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where     chosen by 
hand (bottom up)
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⇢̇dm + 3H⇢dm = Q
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Q
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here we have used the equation of state for matter P = !⇢. The continuity equations for

the scalar field and matter are given by
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and one can define the energy density and pressure of the scalar field as:

⇢� = �1

2
(@�)2 + V , P� = �1

2
(@�)2 � V . (2.8)

Finally the equation of motion for the scalar field dark energy becomes:

�rµrµ�+ V 0 � Tµ⌫

2


C 0

C
gµ⌫ +

D0

C
@µ�@⌫�

�
+rµ


D

C
Tµ⌫@⌫�

�
= 0 . (2.9)

Due to the nontrivial coupling, the individual conservation equations for the two fluids

are modified. However, the conservation equation for the full system is preserved, and

given in the usual way by

rµ

⇣
Tµ⌫
� + Tµ⌫

⌘
= 0 . (2.10)

Thus using (2.7) and the equation of motion for the scalar field we can write

rµT
µ⌫
� = Q @⌫� = �rµT

µ⌫ , (2.11)

where

Q ⌘ rµ


D

C
Tµ� @��

�
� Tµ⌫

2


C 0

C
gµ⌫ +

D0

C
@µ�@⌫�

�
. (2.12)

In the Jordan, or disformal frame, as defined above, matter is conserved,

r̃µT̃
µ⌫ = 0 , (2.13)

where r̃µ is the covariant derivative computed with respect to the disformal metric (2.2)

with the Christo↵el symbols given by

�̃µ
↵� = �µ

↵� +
C 0

C
�µ(↵@�)�� �2

C 0

2C
@µ� g↵� +

D

C
�22 @

µ�


r↵r��+

✓
D0

2D
�C 0

C

◆
@↵�@��

�
,

(2.14)

and we have introduced the “Lorentz factor” � defined as

� =
1q

1 + D
C (@�)2

. (2.15)

In this frame, the energy-momentum tensor is defined as

T̃µ⌫ =
2p�g̃

�SM

�g̃µ⌫
(2.16)

and the disformal energy-momentum tensor can be written as:

T̃µ⌫ = (⇢̃+ P̃ )ũµũµ + P̃ g̃µ⌫ , (2.17)

where ũµ = C�1/2� uµ. Using (2.16), we obtain a relation between the energy momentum

tensor in both frames as:

T̃µ⌫ = C�3� Tµ⌫ . (2.18)

Further using (2.17) we arrive at a relation among the energy densities and pressures in

both frames, given by

⇢̃ = C�2��1⇢ , P̃ = C�2� P, (2.19)

and therefore the equations of state in both frames are related by !̃ = ! �2. Note that in

the pure conformal case, D = 0, � = 1 and therefore !̃ = !.
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where     chosen by 
hand (bottom up)

⇢̇de + 3H(1 + !de)⇢de = �Q
⇢̇dm + 3H⇢dm = Q

Phenomenological models in the literature: 
Q

Q0 = ⇢


D

C
�̈+

D

C
�̇

✓
3H +

⇢̇

⇢

◆
+

✓
D,�

2C
� D

C

C,�

C

◆
�̇2 +

C,�

2C
(1� 3!)

�



LATE TIME UNIVERSE EVOLUTION

EARLY UNIVERSE EVOLUTION

Accelerating scaling solutions ➠ implications for recent 
observational puzzles?

Modified expansion rate ➠ modified thermal DM, 
implications for inflation  
                                             



CY3

D3
�

‣ Consider an AdS5 throat with a quadratic potential 

V = V0 �
2h =

�

�4
,

scalar associated to brane’s position� =
p
T3 r

C(�) = [T3 h(�)]
�1/2

D(�) = [h(�)/T3]
1/2

h(�) = h(r)/T3 warp factor in terms of the scalar

conformal piece 

disformal piece

where

[Koivisto, Wills, IZ, ’13]

LATE TIME COSMOLOGY 

(�0 = �V0)



The resulting fixed points
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Figure 2: The time evolution of the various equations of state as functions of the e-floding

time N = log a when �0 = 50. In the left panel the kinetic energy x is initially small and

the w
�

= p
�

/⇢
�

(purple dash-dotted line) as well as the e↵ective equation of state for the

field weff

�

(blue dashed line) are essentially w
�

= �1 until the coupling begins to modify

the dynamics. The e↵ect of the the coupling is to increase the weff

�

and to lower the

e↵ective equation of state for dark matter weff

DDM

(black dotted line) so they both track the

total equation of state w (red thick line) during the scaling epoch. When this epoch ends,

the dark matter dilutes faster than dark energy, but as seen from the plot, the coupling

continues to have an e↵ect on the DDM-component. In the right panel, initial conditions

are set such that the kinetic energy x is significant and thus w
�

> �1. In such a case the

universe evolves to the kinetic attractor soon after the coupling kicks in, before the scaling

solution is reached.

a virtually non-warped region in the early universe, after reaching the matter scaling fixed

point the universe can stay there for in principle arbitrary number of e-folds before the

brane has reached close enough to the tip of the throat to end the matter scaling behaviour.

On the other hand, if the initial conditions are relativistic enough the x-variable grows with

a “saturated” rate also during matter dominated epoch and there is no di↵erence in the

observational predictions. In the right panel of figure 3 we see that the scaling of the

�-factor, which is identical for all initial values during the matter epochs, changes only

when the attractor is reached. IZ: again, this is related to the problem with section

3.1.2, so needs to be explained: The scaling is such that �� ⇠ a�3w, as expected

already from the considerations in Section 3.1.2.

Finally we check how cosmology depends upon the parameter �0, which is the sole

theoretical quantity that controls the evolution. We illustrate this in figure 4 by plotting

x and ⌦ as functions of the scale factor for �0 of a few di↵erent orders of magnitude. In

complete agreement with the results of the analytic study in section 3.2, we find that the

�0 = 1 is the dividing value above which the universe accelerates and eventually ends with

⌦ = 0, and below which the universe decelerates forever and ⌦ retains a constant finite

value.
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Figure 1: The evolution of the fractional energy densities and the total equation of state

as functions of the e-folding time N = log a for �0 = 10 (left panel) and �0 = 100 (right

panel). The equation of state is the dash-dotted purple line that settles to its attractor

value Eq. (3.53). The black dotted line is the ⌦ for matter that drops first from the matter-

dominated value ⌦ = 1 to the saddle point solution value given by Eq. (3.52) and then to

zero as the universe eventually reaches the attractor described by Eq.(3.55). At the latter

transition, the kinetic energy contribution of the field, x2, plotted as the blue dashed line,

becomes important. The potential energy contribution z2, plotted as the red solid line,

retains its value through the two latter stages.

for these quantities is shown in figure 2. Because the �� grows with time, there is energy

transfer from the scalar field to dark matter that makes the latter dilute slower. During

the scaling era, by definition, w = weff

DDM

= weff

�

. Even when this era ends, the coupling

continues to slow down the dilution of the DDM energy density, so that weff

DDM

remains at

a constant negative value. In the right panel of figure 2, we show an example of a case when

initially the energy density of the field is not potential-dominated. Then the kinetic scaling

era begins shortly after the coupling becomes e�cient, and the scaling behavior never quite

takes place. Such initial conditions require the coupling and the kinetic contribution to

both become significant around the present epoch, and are thus less generic than the initial

conditions that allow some e-folds of scaling. An interesting detail to observe is that due to

the fact that we have set the field evolving as an initial condition, the coupling is e↵ective

from early on: in particular it forces the energy density of the DBI to remain constant.

IZ: I don’t quite see this, could you explain it better? The causes an energy flow

from dark matter to dark energy, which contributes a very tiny positive weff

DDM

in such a

way that IZ: why? weff

DDM

= (1 + w
�

)⇢
�

/⇢, i.e. it forces weff

�

= �1 as seen from (3.24).

To get a better understanding at the dynamics behind this evolution and the role of

initial conditions, we plot the variable x and the Lorenz factor � as functions of the scale

factor in figure 3 for di↵erent initial values of �. We start with a small x and z: for a fixed

�, the initial value of z determines when we enter into the saddle point, and the initial

value of x when into the attractor. We see that the transition from the accelerating fixed

point to another occurs when x reaches its critical value given by Eq. (3.55). The more

nonrelativistic � is, the longer this will take. If the brane starts moving very slowly from
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Acceleration requires ! < �1/3 �0 > 1 (�0 = �V0)

Dynamical system analysis
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Acceleration requires ! < �1/3 �0 > 1

System gives a viable coupled quintessence scenario with 
matter scaling epochs and “easy” acceleration: relaxing 
coincidence and fine tuning problems of DE.

The resulting fixed points



✴ Disformal transformation finds a fundamental origin in terms 
of D-branes in string theory with clear geometrical origin.   

✴ Coupling among DM and DE cannot be turned off: will 
always be there unless speed of brane is tuned.  

✴ This system gives a viable coupled quintessence scenario 
with matter scaling epochs and “easy” acceleration: 
relaxing coincidence and fine tuning problems of DE. 

✴ Can it help with recent cosmological puzzles/hints for new 
physics beyond 𝝠CDM?

SUMMARY 



MODIFIED THERMAL DM SCENARIO

During early universe evolution, non-trivial couplings between 
dark matter and scalars can modify expansion rate. 

If modified expansion occurs during DM decoupling, DM 
freeze-out may be modified with measurable consequences 
for the thermal relic scenario. 

Planck Inflation BBN CMB

1015GeV TeV GeV MeV eV

Any modification of the post-inflationary history can also 
have an effect on the range of e-folds relevant for inflation 
modifying the predictions for the inflationary parameters 

[Kamionkowski, Turner, ’90; Salati, ’03; Rosati, ’03; Profumo, Ullio, ’03, ; 
Catena et al. ’04 … Meehan, Whittingham ’15, Dutta, Jimenez, IZ, '16-'17, 

D’Eramo, Fernandez, Profumo, ’17… ]

[Dai, Kamionkowski, Wang, ’14; 
Maharana, IZ, ’18]



Modified Thermal DM Scenario

The abundance of the present CDM can be computed 
using the Boltzmann equation  

dn�

dt
+ 3Hn� = �h�vi

⇣
n2
� � neq2

�

⌘ �

�

SM

SM

Modification to LHS of Boltzmann equation due to 
modification of expansion rate in the scalar-tensor theories 
described before will arise.



The modified expansion rate in the disformal (or Jordan) frame, 
felt by matter       ,                 is given byg̃µ⌫

where            ,

2.2 Master equations

In order to solve the cosmological equations, it is convenient to replace time derivatives

with derivatives with respect to the number of e-folds N , defined as N = ln a/a0 and define

� = V
⇢ (=

Ṽ
⇢̃ ). With these definitions, we can rewrite the Friedmann equation (2.21) and

Q0 as:

H2 =
2⇢

3

(1 + �)⇣
1� 2�02

6

⌘ , (2.32)

Q0

⇢
=

�2H2

2

"
2D

C
�00 � 2D

C
�0
✓
3! +

2�02

2
+

3(1 + !)B

2(1 + �)

◆
+

✓
D

C

◆

,�

�02 +
C,�

H2C
(��2 � 3!)

#
,

(2.33)

where here we denote 0 = d/dN . Note also that (2.32) implies that �0  ±p
6.

Using these equations and further defining a dimensionless scalar field ' = �, we can

rewrite (2.22) and (2.23) as:

H 0 = �H


3B

2(1 + �)
(1 + !) +

'02

2

�
, (2.34)

'00

1+

3H2�2B

2(1 + �)

D

C

�
+ 3'0


1� !

3H2�2B

2(1 + �)

D

C

�
+

H 0

H
'0

1 +

3H2�2B

2(1 + �)

D

C

�

+
3B

1 + �
↵(')(1� 3!�2) +

3B�

(1 + �)

V,'

V
+

3H2�2B

2(1 + �)

D

C

⇥
(�(')� ↵('))'02⇤ = 0 ,

(2.35)

where we defined:

B ⌘ 1� '02

6
, (2.36)

��2 = 1� H2

2
D

C
'02 , (2.37)

↵(') =
d lnC1/2

d'
, (2.38)

�(') =
d lnD1/2

d'
. (2.39)

One can solve the system of coupled equations above for H and ' as functions of

N . However, in some cases it is simpler to use (2.34) into (2.35) and solve the following

disformal master equation:

2(1 + �)

3B
'00 + (2�+ 1� !)'0 + 2�

d lnV

d'
+ 2(1� 3! �2)↵(')

+
2�2(1 + �)

3B

D⇢

C

 
'00 � 3'0


! +

'02

6
+

(1 + !)B

2(1 + �)

�
+

C

2D

✓
D

C

◆

,'

'02

!
= 0 ,

(2.40)
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One can solve the system of coupled equations above for H and ' as functions of

N . However, in some cases it is simpler to use (2.34) into (2.35) and solve the following

disformal master equation:

2(1 + �)

3B
'00 + (2�+ 1� !)'0 + 2�

d lnV
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with � given by:

��2 = 1� (1 + �)

3B

D⇢

C
'02 . (2.41)

From (2.40) we see that the conformal case is recovered for D = 0, when the second

line vanishes. Moreover, the disformal piece appears always together with derivatives of

the scalar field, as expected and also nontrivially coupled to the energy density. This

complicates considerably the analysis of the disformal case, as we will see below.

2.3 Modified expansion rate

The e↵ect of the expansion rate during the early time evolution due to the presence of a

scalar field can be extracted from the Hubble parameter evolution in the disformal frame

defined as:

H̃ = d(log ã)/d⌧̃ ,

which can be written using (2.29) as:

H̃ =
H�

C1/2

�
1 + ↵(')'0� , (2.42)

where remember that � depends onH (or ⇢) as seen from (2.37), while in the pure conformal

case D = 0 and � = 1. Note that in principle, the factor (1 + ↵(')'0) can be positive or

negative, indicating an expansion or contraction modified rate. We stick to positive definite

values for this factor and therefore only modified expansion rates, though in principle, one

could have a brief contraction period during the early universe evolution, before the onset of

BBN3. Moreover, notice that while H̃ can grow during the cosmological evolution, the null

energy condition (NEC) is not violated. This is because the Einstein frame expansion rate

H is dictated by the energy density ⇢ and pressure p, which obey the NEC and therefore

Ḣ < 0 during the whole evolution, as it should (see for example [19]).

We further want to relate the modified expansion rate to the expected expansion rate

in general relativity (GR), that is:

H2
GR =

2GR

3
⇢̃ . (2.43)

We can do this be using the Friedmann equation (2.32) and the relation between the energy

densities (2.19) to write

��1H2 =
2

2GR

C2 (1 + �)

B
H2

GR . (2.44)

Using the definition of � (see (2.37)) into this equation, one finds a cubic equation for

H2 in terms of all the other parameters. The real positive solution to that equation can

then be replaced into (2.42) to find the modified expansion rate H̃, which will thus be a

complicated function of HGR as we now see. The cubic equation for H takes the form:

d1H
6 �H4 + d22 = 0 , (2.45)

3See [18] for a review on scenarios with a possible contraction phase in the early universe.
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while the standard GR rate HGR is:

2.1 Cosmological equations

Consider an homogeneous and isotropic FRW metric gµ⌫ ,

ds2 = �dt2 + a(t)2dxidx
i , (2.20)

where a(t) is the scale factor. In this background, the Einstein and Klein-Gordon equations

become, respectively

H2 =
2

3
[⇢� + ⇢] , (2.21)

Ḣ +H2 = �2

6
[⇢� + 3P� + ⇢+ 3P ] , (2.22)

�̈+ 3H�̇+ V,� +Q0 = 0 . (2.23)

where, H = ȧ
a , dots are derivatives with respect to t and we have denoted V,� ⌘ dV

d� . Also

the Lorentz factor becomes

� = (1�D �̇2/C)�1/2.

The continuity equations for the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.24)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.25)

where Q0 is given by

Q0 = ⇢


D

C
�̈+

D

C
�̇

✓
3H +

⇢̇

⇢

◆
+

✓
D,�

2C
� D

C

C,�

C

◆
�̇2 +

C,�

2C
(1� 3!)

�
.

(2.26)

Using (2.25) we can rewrite this in a more compact and useful form as

Q0 = ⇢

✓
�̇

�̇ �
+

C,�

2C
(1� 3! �2)� 3H!

(�2 � 1)

�̇

◆
. (2.27)

Plugging this into the (non-)conservation equation for dark matter (2.25), gives:

⇢̇+ 3H(⇢+ P �2) = ⇢


�̇

�
+

C,�

2C
�̇ (1� 3!�2)

�
. (2.28)

Using the relations for the physical proper time and the scale factors in the two frames,

given by

ã = C1/2a , d⌧̃ = C1/2��1d⌧ , (2.29)

we can define the disformal-frame Hubble parameter H̃ ⌘ d ln ã
d⌧̃ , as

H̃ =
�

C1/2


H +

C,�

2C
�̇

�
, (2.30)

so that (2.13) takes the standard form in terms of H̃:

d⇢̃

d⌧̃
+ 3H̃(⇢̃+ P̃ ) = 0 . (2.31)

Equations (2.30) and (2.31) give the background evolution equations for the modified ex-

pansion rate and matter’s density evolution.
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H̃ = d(log ã)/d⌧̃ ,

which can be written using (2.29) as:

H̃ =
H�

C1/2

�
1 + ↵(')'0� , (2.42)

where remember that � depends onH (or ⇢) as seen from (2.37), while in the pure conformal

case D = 0 and � = 1. Note that in principle, the factor (1 + ↵(')'0) can be positive or

negative, indicating an expansion or contraction modified rate. We stick to positive definite

values for this factor and therefore only modified expansion rates, though in principle, one

could have a brief contraction period during the early universe evolution, before the onset of

BBN3. Moreover, notice that while H̃ can grow during the cosmological evolution, the null

energy condition (NEC) is not violated. This is because the Einstein frame expansion rate

H is dictated by the energy density ⇢ and pressure p, which obey the NEC and therefore

Ḣ < 0 during the whole evolution, as it should (see for example [19]).

We further want to relate the modified expansion rate to the expected expansion rate

in general relativity (GR), that is:

H2
GR =

2GR

3
⇢̃ . (2.43)

We can do this be using the Friedmann equation (2.32) and the relation between the energy

densities (2.19) to write

��1H2 =
2

2GR

C2 (1 + �)

B
H2

GR . (2.44)

Using the definition of � (see (2.37)) into this equation, one finds a cubic equation for

H2 in terms of all the other parameters. The real positive solution to that equation can

then be replaced into (2.42) to find the modified expansion rate H̃, which will thus be a

complicated function of HGR as we now see. The cubic equation for H takes the form:

d1H
6 �H4 + d22 = 0 , (2.45)

3See [18] for a review on scenarios with a possible contraction phase in the early universe.
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The modified expansion rate in the disformal (or Jordan) frame, 
felt by matter       ,                 is given byg̃µ⌫

2.1 Cosmological equations

Consider an homogeneous and isotropic FRW metric gµ⌫ ,

ds2 = �dt2 + a(t)2dxidx
i , (2.20)

where a(t) is the scale factor. In this background, the Einstein and Klein-Gordon equations

become, respectively

H2 =
2

3
[⇢� + ⇢] , (2.21)

Ḣ +H2 = �2

6
[⇢� + 3P� + ⇢+ 3P ] , (2.22)

�̈+ 3H�̇+ V,� +Q0 = 0 . (2.23)

where, H = ȧ
a , dots are derivatives with respect to t and we have denoted V,� ⌘ dV

d� . Also
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� = (1�D �̇2/C)�1/2.

The continuity equations for the scalar field and matter are given by

⇢̇� + 3H(⇢� + P�) = �Q0�̇ , (2.24)

⇢̇+ 3H(⇢+ P ) = Q0 �̇ . (2.25)

where Q0 is given by

Q0 = ⇢


D

C
�̈+

D

C
�̇

✓
3H +

⇢̇

⇢

◆
+

✓
D,�

2C
� D

C

C,�

C

◆
�̇2 +

C,�

2C
(1� 3!)

�
.

(2.26)

Using (2.25) we can rewrite this in a more compact and useful form as

Q0 = ⇢

✓
�̇

�̇ �
+

C,�

2C
(1� 3! �2)� 3H!

(�2 � 1)

�̇

◆
. (2.27)

Plugging this into the (non-)conservation equation for dark matter (2.25), gives:

⇢̇+ 3H(⇢+ P �2) = ⇢


�̇

�
+

C,�

2C
�̇ (1� 3!�2)

�
. (2.28)

Using the relations for the physical proper time and the scale factors in the two frames,

given by

ã = C1/2a , d⌧̃ = C1/2��1d⌧ , (2.29)

we can define the disformal-frame Hubble parameter H̃ ⌘ d ln ã
d⌧̃ , as

H̃ =
�

C1/2


H +

C,�

2C
�̇

�
, (2.30)

so that (2.13) takes the standard form in terms of H̃:

d⇢̃

d⌧̃
+ 3H̃(⇢̃+ P̃ ) = 0 . (2.31)

Equations (2.30) and (2.31) give the background evolution equations for the modified ex-

pansion rate and matter’s density evolution.
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'02 . (2.41)
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values for this factor and therefore only modified expansion rates, though in principle, one

could have a brief contraction period during the early universe evolution, before the onset of

BBN3. Moreover, notice that while H̃ can grow during the cosmological evolution, the null

energy condition (NEC) is not violated. This is because the Einstein frame expansion rate

H is dictated by the energy density ⇢ and pressure p, which obey the NEC and therefore

Ḣ < 0 during the whole evolution, as it should (see for example [19]).

We further want to relate the modified expansion rate to the expected expansion rate

in general relativity (GR), that is:
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GR =
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We can do this be using the Friedmann equation (2.32) and the relation between the energy

densities (2.19) to write
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Using the definition of � (see (2.37)) into this equation, one finds a cubic equation for

H2 in terms of all the other parameters. The real positive solution to that equation can

then be replaced into (2.42) to find the modified expansion rate H̃, which will thus be a

complicated function of HGR as we now see. The cubic equation for H takes the form:

d1H
6 �H4 + d22 = 0 , (2.45)

3See [18] for a review on scenarios with a possible contraction phase in the early universe.
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Deviations from GR can be readily computed from the ratio 

To study post-inflationary modified cosmologies, this 
parameter should go to one towards the onset of BBN, to 
avoid spoiling BBN predictions            . Similarly, constraints will 
arise for modifications at different epochs. 
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Figure 8: Scalar field as a function of temperature for di↵erent values ofM . The conformal

coupling is (1 + 0.1 e�8')2 and the initial conditions chosen are 'i = 0.2 and '0
i = �0.004.

These solutions of (3.1) and (3.2) correspond to the expansion rates shown in the right

plot of Figure 9.

As mentioned in Section 2.4, the conformal term acts as an e↵ective potential, or

force, in equation (3.2), given by (3.6). This e↵ective force can be neglected when the

factor fC = 3H2��1B
M4C22 is much larger than 1, as can be seen from (3.2). In this regime,

the evolution of the scalar field is given by a flat e↵ective potential, and the scalar field

stays approximately constant. When fC is becomes of order 1 or smaller and !̃ 6= 1/3,

the evolution of the scalar field is driven by the e↵ective potential (3.6) and by the Hubble

friction term.

For the conformal coupling considered (3.19), the e↵ective potential allows for an

interesting behaviour, according to the choice of initial conditions [7]. That is, for negative

initial velocities, '0
i < 0, the scalar field will start rolling-up the e↵ective potential towards

smaller values. After reaching a maximum point, it will turn back down the e↵ective

potential, eventually reaching its final value. This behaviour in the scalar field sources a

non-trivial behaviour in C and importantly, its derivative, ↵ and therefore in the modified

expansion rate H̃. Indeed, when C 6= const. we have

⇠ =


GR

C1/2�3/2

B1/2

⇥
1 + ↵(')'0⇤ . (3.20)

It is not hard to see that for the initial conditions above, due to the factor inside the

parenthesis, ⇠ can become less than one during the evolution. Recalling that ⇠ = H̃/HGR,

⇠ < 1 implies that H̃ < HGR, as shown in the explicit solutions below. This e↵ect gives

rise to the possibility of a re-annihilation period, as was discussed in [7] and first pointed

out in [8].

Let us now give a closer look at the evolution of fC with temperature. Numerically,

we found that when fC & 1 it behaves as fC(T̃ ) w 3geff (T̃ )
10

⇣
T̃
M

⌘4
. But when fC < 1

then it evolves as fC(T̃ ) w h(T̃ )
3geff (T̃ )

10

⇣
T̃
M

⌘4
where h(T̃ ) is function that measures the
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Figure 9: Modified expansion rate for the case C = 1 + 0.1e�8'. The initial value of the

scalar field for all the curves is 'i = 0.2. Also, '0
i = �0.004 for the plot on the left and

'0
i = �0.4 for the plot on the right.

enhancement of H̃, which is larger than 1 and depends on the scale M (see right plot in

Figure 7). When fC � 1, the e↵ective force is negligible and the scalar field stays roughly

constant. As fC decreases and becomes close to and/or smaller than 1, the e↵ective force

takes over the evolution of the scalar field. The velocity of the scalar field starts decreasing

(we use small negative velocities), and for suitable values, the scalar field goes up the

e↵ective potential and comes back down again as described above.

In Figure 8 we plot the full numerical solution for the scalar field for 'i = 0.2 and an

initial velocity '0 = �0.004. The red, green and blue curves (scale masses smaller than

T̃i = 1000 GeV) show the scalar field going up the e↵ective potential toward smaller values

of the field, and then rolling down its terminal value. While for the brown curve (M =1000

GeV), the scalar field stays almost constant because for this value of M its initial velocity

is not negative enough to move the field up the e↵ective potential.

The e↵ect of the scalar field on the modified expansion rate is shown in Figure 9 (the

black straight line isHGR). The left plot shows H̃ corresponding to the scalar field solutions

in Figure 8. For these solutions, the factor fC is initially much bigger than 1 and as the

temperature decreases passes one (around 200 GeV) and keeps decreasing to very small

values. For some values of M , the scalar field goes up and down the e↵ective potential,

producing the enhancement and the little notch in H̃ (blue), where ⇠ < 1 as explained

above. On the other hand, in the right plots, fC is initially of order 1 and then decreases

to negligible values. The initial velocity used ('0 = �0.4) is su�ciently negative producing

the enhancement and notch in H̃ for some of the M values (green and blue).

Let us mention another point about the right plot in Figure 9. For the brown curve

corresponding to M = 5000GeV, the enhancement is very small, and since the factor fC
decreases as the mass scale M increases, choosing larger values of M would give a similar

result, for the same choice of initial conditions. Indeed, as M ! 1, fC = 3H2��1B
M4C22 ! 0

and we recover the pure conformal case in (3.2). Notice that the last term in this equation

vanishes when M increases, since � ! 1 as M increases. So, by dropping all terms

proportional to fC and the last term in (3.2) ones recovers the conformal case equations
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('0,'
0
0) = (0.2,�0.99) and then use (3.2) to express '(Ñ) as function of T̃ 5. As we can

see, the conformal factor starts growing towards a maximum value as ' moves to negative

values, to rapidly drop down towards its GR value at C ! 1 as ' moves down the e↵ective

potential towards positive values. This non-trivial e↵ect will give rise to the possibility of

re-annihilation, as we discuss below.

Figure 1: Typical evolution of the scalar field as temperature decreases. The initial values

are (', d'/d Ñ) = (0.2,�0.994).
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Figure 2: Behaviour of the conformal factor, C(') as a function of the temperature for

the same initial values as in Fig. 1.

Based on the discussion above, we have solved the master equation (3.5), to find the the

scalar field as a function of Ñ for various initial conditions, where we see the interesting

behaviour explained above. The resulting modified expansion rate and its comparison

with the standard case is shown in Figure 3 for the same initial conditions as in Figures

5In appendix A we show further examples of the thermal evolution of the scalar field.
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Figure 4: Speed-up factor, ⇠ = H̃/HGR, as function of temperature for the expansion

rates shown in the bottom left plot in Figure 3. The initial conditions chosen are 'i = 0.2

and '0
i = 0.002.

Figure 5: Scalar field as a function of temperature. The initial conditions chosen are

'i = 0.2 and '0
i = 0.002. These solutions of (3.16) and (3.17) correspond to the expansion

rates shown in the bottom left plot in Figure 3.

For instance, for all the green lines T̃i/M=58.8.

3.4 Conformal and disformal case C 6= const.

We now move to the case where the conformal coupling is not constant, so both conformal

and discormal e↵ects are turned on. For concreteness we consider the same conformal

coupling as that studied in [7] and [8], which is given by

C(') = (1 + b e�� ')2 , (3.19)

– 17 –

Figure 4: Speed-up factor, ⇠ = H̃/HGR, as function of temperature for the expansion

rates shown in the bottom left plot in Figure 3. The initial conditions chosen are 'i = 0.2

and '0
i = 0.002.

Figure 5: Scalar field as a function of temperature. The initial conditions chosen are

'i = 0.2 and '0
i = 0.002. These solutions of (3.16) and (3.17) correspond to the expansion

rates shown in the bottom left plot in Figure 3.

For instance, for all the green lines T̃i/M=58.8.

3.4 Conformal and disformal case C 6= const.

We now move to the case where the conformal coupling is not constant, so both conformal

and discormal e↵ects are turned on. For concreteness we consider the same conformal

coupling as that studied in [7] and [8], which is given by

C(') = (1 + b e�� ')2 , (3.19)

– 17 –

Figure 4: Speed-up factor, ⇠ = H̃/HGR, as function of temperature for the expansion

rates shown in the bottom left plot in Figure 3. The initial conditions chosen are 'i = 0.2

and '0
i = 0.002.

Figure 5: Scalar field as a function of temperature. The initial conditions chosen are

'i = 0.2 and '0
i = 0.002. These solutions of (3.16) and (3.17) correspond to the expansion

rates shown in the bottom left plot in Figure 3.

For instance, for all the green lines T̃i/M=58.8.

3.4 Conformal and disformal case C 6= const.

We now move to the case where the conformal coupling is not constant, so both conformal

and discormal e↵ects are turned on. For concreteness we consider the same conformal

coupling as that studied in [7] and [8], which is given by

C(') = (1 + b e�� ')2 , (3.19)

– 17 –

Figure 4: Speed-up factor, ⇠ = H̃/HGR, as function of temperature for the expansion

rates shown in the bottom left plot in Figure 3. The initial conditions chosen are 'i = 0.2

and '0
i = 0.002.

Figure 5: Scalar field as a function of temperature. The initial conditions chosen are

'i = 0.2 and '0
i = 0.002. These solutions of (3.16) and (3.17) correspond to the expansion

rates shown in the bottom left plot in Figure 3.

For instance, for all the green lines T̃i/M=58.8.

3.4 Conformal and disformal case C 6= const.

We now move to the case where the conformal coupling is not constant, so both conformal

and discormal e↵ects are turned on. For concreteness we consider the same conformal

coupling as that studied in [7] and [8], which is given by

C(') = (1 + b e�� ')2 , (3.19)

– 17 –

Full numerical solutions: 

Figure 3: Modified expansion rate for the pure disformal case, C = 1. We show di↵erent

boundary conditions and values of the scale parameter. The initial value of the scalar field

for all the curves is 'i = 0.2. The black line in all plots represent the standard expansion

rate HGR.

in this range the scalar field increases very slowly, looking almost constant. For lower

temperatures, between 50 GeV and 1 GeV, H̃ converges towards HGR and the scalar field

increases faster. While for temperatures smaller than 1 GeV, H̃ ⇠ HGR and the scalar

field reaches its final value.

All the cases shown in Figure 3 satisfy the constraints discussed in Section 3.2. In

particular, '0
BBN = 0 (so ⌥ = 0) and the speed-up factor, ⇠, is equal to 1 prior to BBN as

shown in Figure 4. For scales M smaller than 10 GeV the last condition is not satisfied,

that is ⇠ > 1 by the onset of BBN. Therefore, scales M smaller than 10 GeV are discarded.

As we have mentioned, if we consider larger values of M than the ones presented in

Figure 3, the enhancement of the expansion rate will occur earlier at higher temperatures,

such that f(T̃ ) is much bigger than 1 at around the initial value of the temperature, T̃i.

To achieve this, one has to consider M smaller than T̃i, which happens when the initial

value of '0 is much smaller than 1. We illustrate this in Figure 6 were we show a series

of plots were the mass scale takes values up to order EeV. This figure also shows that the

speed-up factor (2.34), has the same behavior as long as the ratio T̃i/M doesn’t change.
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BBN = 0 (so ⌥ = 0) and the speed-up factor, ⇠, is equal to 1 prior to BBN as

shown in Figure 4. For scales M smaller than 10 GeV the last condition is not satisfied,

that is ⇠ > 1 by the onset of BBN. Therefore, scales M smaller than 10 GeV are discarded.

As we have mentioned, if we consider larger values of M than the ones presented in

Figure 3, the enhancement of the expansion rate will occur earlier at higher temperatures,

such that f(T̃ ) is much bigger than 1 at around the initial value of the temperature, T̃i.

To achieve this, one has to consider M smaller than T̃i, which happens when the initial

value of '0 is much smaller than 1. We illustrate this in Figure 6 were we show a series

of plots were the mass scale takes values up to order EeV. This figure also shows that the

speed-up factor (2.34), has the same behavior as long as the ratio T̃i/M doesn’t change.
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H

H̃colour

Figure 6: Modified expansion rate for the pure disformal case, C = 1, for larger values of

M as compared to Fig. 3. For these plots, ' = 0.2 and '0 = 2⇥ 10�5.

Figure 7: Evolution of the factor f as a function of temperature for C = const. case (left)

and C 6= const. (fC , right). The initial conditions chosen in the left plot are shown in

Figure 3, while in the right plot 'i = 0.2 and '0
i = �0.004.

with the values b = 0.1, � = 8. We have also analysed other functions such as C = (b'2+c)2

with b = 4, 8, 15, c = 1. However it is harder to find numerical solutions for this and other

functions, which satisfy the phenomenological constraints. In the cases we analysed, the

e↵ect on the expansion rate H̃ was smaller with respect to the case in (3.19).
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Figure 11: Expansion rate corresponding to M = 12 GeV shown in the top left plot of

Figure 3, and interaction rates of 100 GeV (purple), 600 GeV (green) and 2500 GeV (red)

GeV DM particle masses as function of temperature. The interaction rate, �̃, is given by

h�vis̃Ỹ .

Figure 12: h�vi as function of dark matter particle mass. h�viGR predicted by the

standard cosmology model correspond to the black line, while the color lines correspond

to the h�vi predicted by using the expansion rates, shown in Figure 3, representing mass

scales of M = 12 GeV (brown), 34 GeV (red), 106 GeV (green) and 333 GeV (blue).

to the standard case, with a maximum that moves towards larger dark matter masses as

the scale M increases. Therefore, the smaller the scale M the larger the annihilation cross

section h�vi. We can correlate this behaviour with that of ⇠ in Fig. 4, which shows the

enhancement of the expansion rate. For example, for a mass scale of 34 GeV (red) the

– 23 –

Expansion and decay rates for M = 12 
GeV as function of temperature.

[Similar behaviour in phenomenological model: D’Eramo, Fernandez, Profumo, ’17]

Relic abundance evolution is 
computed from Boltzmann equation 

Figure 4: Evolution of !̃ in (3.9) as function of temperature during the radiation domi-

nated era.

[24–26] indicate that ↵0 should be very small, with values ↵2
0 . 10�5, while binary pulsar

observations impose that ↵0
0 & �4.5. The last constraint applies to the the speed-up

factor ⇠, which has to be of order 1 before the onset of BBN. In our examples we have

↵2
0 ' 2⇥ 10�5, ↵0

0 > 0 and ⇠ ⇡ 1.05.

3.1.3 Impact on relic abundances

We are now ready to discuss the impact of the modified expansion rates on the relic abun-

dance of dark matter species. For a dark matter species � with mass m� and annihilation

cross-section h�vi, where v is the relative velocity, the dark matter number density n�

evolves according to the Boltzmann equation

dn�

dt
= �3H̃n� � h�vi �n2

� � (neq
� )2

�
, (3.15)

where, as we have discussed above, the relevant expansion rate is the Jordan frame one,

which can give interesting e↵ects due to the presence of the scalar field. Further neq
� is the

equilibrium number density. We can rewrite this equation in terms of x = m�/T̃

dY

dx
= � s̃h�vi

xH̃

�
Y 2 � Y 2

eq

�
. (3.16)

where Y = n
�

s̃ , s̃ = 2⇡
45 gs(T̃ )T̃

3. Numerical solutions to the Boltzmann equation (3.16) with

the modified expansion rate H̃ were found for dark matter particles with masses ranging

from 5 GeV to 1000 GeV. For instance, we show solutions in figures 5 and 6 for two di↵erent

masses. As we can see from (3.16), the annihilation cross-section influences the evolution

of the abundance Y . The current value of Y determines the present dark matter content of

the universe. This can be seen clearly by recalling the current value of the energy density

parameter ⌦0 = ⇢0
⇢
c,0

= mY0 s0
⇢
c,0

, where ⇢c,0 and s0 are the well-known current values of the

critical energy density and the entropy density of the universe, respectively. So, for each
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Here relic for a DM particle with mass 

Figure 10: Abundance Ỹ for a dark matter particle with mass of 100 GeV.

to the interaction rate11 �̃ and for a small period, between x = 20 and x = 1000, the

abundance decreases slowly until becomes constant. The comparison between H̃ (brown)

and �̃ (purple) can be seen in Figure 11. Between around 5 GeV (x = 20) and 0.1 GeV

(x = 1000), H̃ and �̃ are close to each other as temperature decreases.

In the plot of Fig. 11, we also show the interaction rate for two other DM particle

masses, 600 GeV (green) and 2500 GeV (red). Notice that for the three masses shown,

once the interaction rate becomes smaller than the expansion rate H̃ (brown), it always

stays smaller than it. Therefore, there is no re-annihilation e↵ect, as we anticipated in

section 3.3. However re-annihilation can occur for the C 6= const. case, where after the

first freeze-out �̃ can overcome H̃ due to ⇠ < 1, and later become smaller again.

Let us now turn to the dark matter cross-sections we have used when solving the

Boltzmann equation (3.22). For this we used the observed dark matter density ⌦0 = 0.27

to determine the thermally-averaged annihilation cross section, h�vi required to match the

current 27% DM content. The present dark matter content of the universe is determined by

the current value of the relic abundance. This can be obtained from the current value of the

energy density parameter ⌦0 =
⇢0
⇢c,0

= mY0 s0
⇢c,0

. Here ⇢c,0 and s0 are the well-known current

values of the critical energy density and the entropy density of the universe, respectively.

The resulting annihilation cross-sections we determine in this way are shown in Figure

12 for dark matter masses between 10 GeV and 5000 GeV, for di↵erent values of M and

corresponding expansion rates H̃ shown in Figure 3. We compare this to the annihilation

cross sections h�viGR predicted by the standard cosmology model (black line), which is

around 2.1⇥ 10�26cm3/s.

The behaviour of the cross-section h�vi in Fig. 12, shows an enhancement with respect

11
The interaction rate is defined as

˜

� ⌘ h�vi s̃ ˜Y .
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m� = 100GeV

(Y = n/s, x = m/T )

(�� . H ! freeze� out)

Disformal Effect on DM Relic Abundance

Disformal expansion enhancement implies 
earlier freeze-out

[Dutta, Jimenez, IZ, ’16-17]



Figure 8: Expansion rate (as in figure 3) and interaction rate as function of temperature.

The interaction rate, �̃, is given by h�viConformal s̃ Ỹ . We use Ỹ from figures 5 and 6 and

the values of h�viConformal presented previously for 130 GeV and 1000 GeV masses.

analysis shows that, as found in [3], re-annihilation occurs for this particular choice of

conformal factor. However, we found that when fully integrating the master equation, the

re-annihilation occurs only for very large masses of the dark matter particles (in [3] it was

found for m = 50GeV). On the other hand, in [15], no re-annihilation was found9, which

was probably due to the initial conditions used and the values of the DM masses explored.

3.2 Disformal case

We now discuss briefly the e↵ect of the disformal factor in the metric (2.2) to the expansion

rate of the universe, H̃, and compare it to the conformal modification to H̃10. Hence, we

exploreD(�) 6= 0 for the same conformal factor studied before, that is, C(') = (1+b e�� ')2

for b = 0.1, � = 8. To investigate these modifications, we first need to look at the the

scalar field evolution with temperature.

In the pure conformal case studied above, we found the thermal evolution of the

scalar field by solving the master equation (3.5) numerically, which is (2.40) for D(�) = 0.

However, to study the e↵ects of the disformal factor on the scalar field, it is more convenient

to solve the system of two coupled equations (2.34) and (2.35). Using these equations we

find solutions for the dimensionless scalar field ', and for the expansion rate in the Einstein

frame H.

Notice that solving the system of coupled equations or solving the master equation to

find the thermal evolution of the scalar field are equivalent methods (as we have explicitly

checked), because (2.40) it is nothing but a combination (2.34) and (2.35). However, while

9Although [15] used a di↵erent conformal factor to [3], we expect the re-annihilation e↵ect to be present

also in that case.
10We leave a detailed exploration for a future publication.
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Relic abundance evolution is 
computed from Boltzmann equation 

Expansion and interaction rates’ 
evolution
A re-annihilation phase occurs for 
suitable initial conditions

Figure 4: Evolution of !̃ in (3.9) as function of temperature during the radiation domi-

nated era.

[24–26] indicate that ↵0 should be very small, with values ↵2
0 . 10�5, while binary pulsar

observations impose that ↵0
0 & �4.5. The last constraint applies to the the speed-up

factor ⇠, which has to be of order 1 before the onset of BBN. In our examples we have

↵2
0 ' 2⇥ 10�5, ↵0

0 > 0 and ⇠ ⇡ 1.05.

3.1.3 Impact on relic abundances

We are now ready to discuss the impact of the modified expansion rates on the relic abun-

dance of dark matter species. For a dark matter species � with mass m� and annihilation

cross-section h�vi, where v is the relative velocity, the dark matter number density n�

evolves according to the Boltzmann equation

dn�

dt
= �3H̃n� � h�vi �n2

� � (neq
� )2

�
, (3.15)

where, as we have discussed above, the relevant expansion rate is the Jordan frame one,

which can give interesting e↵ects due to the presence of the scalar field. Further neq
� is the

equilibrium number density. We can rewrite this equation in terms of x = m�/T̃

dY

dx
= � s̃h�vi

xH̃

�
Y 2 � Y 2

eq

�
. (3.16)

where Y = n
�

s̃ , s̃ = 2⇡
45 gs(T̃ )T̃

3. Numerical solutions to the Boltzmann equation (3.16) with

the modified expansion rate H̃ were found for dark matter particles with masses ranging

from 5 GeV to 1000 GeV. For instance, we show solutions in figures 5 and 6 for two di↵erent

masses. As we can see from (3.16), the annihilation cross-section influences the evolution

of the abundance Y . The current value of Y determines the present dark matter content of

the universe. This can be seen clearly by recalling the current value of the energy density

parameter ⌦0 = ⇢0
⇢
c,0

= mY0 s0
⇢
c,0

, where ⇢c,0 and s0 are the well-known current values of the

critical energy density and the entropy density of the universe, respectively. So, for each
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Here relic for a DM particle with mass 
m� = 1000GeV

e↵ect on the temperature evolution of the abundance for a 1000 GeV DM particle. First

of all, the freeze-out happens earlier than expected due to the enhancement of the expan-

sion rate, H̃. Then, an unusual e↵ect appears. As the temperature decreases, H̃ becomes

smaller than the interaction rate8 �̃ and a short period of annihilation starts again called

“re-annihilation”. The re-annihilation process reduces the abundance of dark matter until

a second and final freeze-out happens. After this final freeze-out the abundance remains

constant.
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Figure 6: Abundance for a mass of 1000 GeV.

Figure 7: Annihilation cross section as function of mass. The presence of the scalar field

enhances the h�vi for large masses, and diminishes h�vi for masses around 130 GeV, while

small mass the e↵ect is almost negligible.

The re-annihilation phase can be described better by discussing the relation between

the expansion rate H̃ and the interaction rate �̃. The first freeze-out happens when �̃

becomes smaller than H̃ which can be seen in figure 8 to happen around a temperature

8The interaction rate is defined as �̃ ⌘ h�vi
Conformal

s̃ Ỹ .
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for conformal case

Conformal Re-annihilation Effect
[Dutta, Jimenez, IZ, ’16-17]



The present dark matter content of 
the universe is determined by 
current value of the relic 
abundance

x̃

Ỹ

dỸ

dx̃
= � �̃

H̃

0

@1�
 
Ỹeq

Ỹ

!2
1

A
⇣
�̃ ⌘ Ỹ s̃h�vi

⌘⌦DM =
m�Y0s0
⇢cr,0

We used this to determine the 
thermally-averaged annihilation 
cross section      required to match 
it, and use it to solve the Boltzmann 
equation

(= 0.27)

h�vi

The resulting annihilation cross sections are 

e↵ect on the temperature evolution of the abundance for a 1000 GeV DM particle. First

of all, the freeze-out happens earlier than expected due to the enhancement of the expan-

sion rate, H̃. Then, an unusual e↵ect appears. As the temperature decreases, H̃ becomes

smaller than the interaction rate8 �̃ and a short period of annihilation starts again called

“re-annihilation”. The re-annihilation process reduces the abundance of dark matter until

a second and final freeze-out happens. After this final freeze-out the abundance remains

constant.
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Figure 7: Annihilation cross section as function of mass. The presence of the scalar field

enhances the h�vi for large masses, and diminishes h�vi for masses around 130 GeV, while

small mass the e↵ect is almost negligible.

The re-annihilation phase can be described better by discussing the relation between

the expansion rate H̃ and the interaction rate �̃. The first freeze-out happens when �̃

becomes smaller than H̃ which can be seen in figure 8 to happen around a temperature

8The interaction rate is defined as �̃ ⌘ h�vi
Conformal

s̃ Ỹ .
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�
h�viGR ⇠ 2.1⇥ 10�26cm3/s

�

Figure 11: Expansion rate corresponding to M = 12 GeV shown in the top left plot of

Figure 3, and interaction rates of 100 GeV (purple), 600 GeV (green) and 2500 GeV (red)

GeV DM particle masses as function of temperature. The interaction rate, �̃, is given by

h�vis̃Ỹ .

Figure 12: h�vi as function of dark matter particle mass. h�viGR predicted by the

standard cosmology model correspond to the black line, while the color lines correspond

to the h�vi predicted by using the expansion rates, shown in Figure 3, representing mass

scales of M = 12 GeV (brown), 34 GeV (red), 106 GeV (green) and 333 GeV (blue).

to the standard case, with a maximum that moves towards larger dark matter masses as

the scale M increases. Therefore, the smaller the scale M the larger the annihilation cross

section h�vi. We can correlate this behaviour with that of ⇠ in Fig. 4, which shows the

enhancement of the expansion rate. For example, for a mass scale of 34 GeV (red) the
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h�viGR

DisformalConformal

Effect on DM Cross-Section
[Dutta, Jimenez, IZ, ’16-17]
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energy density dominates over radiation at early times. This in turn leads to a modification in the relic

abundance calculations. Even this simple model leads to novel features in the phenomenology – dark

matter annihilation processes can continue to take place long after the decoupling of dark matter from

the thermal bath. This was dubbed as relentless dark matter, as it can be thought of as dark matter

trying to get back into thermal equilibrium.

More generally, scalar-tensor (ST) theories of gravity arise in extensions of the standard models of

cosmology and particle physics. For example, in higher dimensional models, additional scalar fields arise

through the compactification of the extra dimensions and couple to the metric with gravitational strength.

Thus the gravitational interaction is mediated by both the metric and scalar fields so that scalar-tensor

gravity models represent a departure from standard General Relativity (GR). In string theory models of

particle physics and cosmology, new ingredients such as D-branes can also appear. For such D-branes,

the longitudinal fluctuations are identified with the matter fields such as the SM and DM particles, while

transverse fluctuations correspond to scalar fields. These scalars couple conformally and disformally to

the matter living on the brane and thus can modify the cosmological expansion rate felt by matter and

hence the standard predictions for the dark matter relic abundance2 [39–41]. An attractive feature of

the ST case, is the possibility of tracker solutions of the scalar field, which ensure that the scalar field

becomes inactive at the onset of BBN (and thereafter) as is required for its successes.

One of the major successes of the inflationary paradigm is the explanation for the approximately scale

invariant spectrum of the CMB. Given a model of inflation, the predictions for the scalar spectral tilt

(n
s

) and the tensor to scalar ratio (r) are determined by the number of e-foldings, N
k

, between horizon

exit of the CMB modes and the end of inflation. Typically N
k

is taken to be in the range 50 to 60.

It is important to keep in mind the inputs that go into deriving this. The derivation makes use of two

aspects of the physics of inflation: the condition for horizon exit of the CMB modes (k = a
k

H
k

; where k

is the wavenumber of the CMB modes, a
k

and H
k

are the scale factor and Hubble constant at the time

of horizon exit) and the relationship between the strength of the scalar perturbations and the energy

density at the time of horizon exit. Taking these inputs, the evolution of the energy density from the

time of horizon exit to the present epoch and entropy evolution from the end of reheating to the present

epoch are tracked. For the evolution, the post-inflationary history is taken to be the standard history

associated with the hot big-bang model. This tracking then yields the equation that determines N
k

:

N
k

⇡ 57 +
1

4
ln r � 1

4
(1� 3wre)Nre , (1)

where r is the tensor to scalar ratio and wre, Nre are the (e↵ective) equation of state parameter and

number of e-foldings during the reheating epoch. In the canonical reheating scenario, wre ' 0, but more

general cases can give 1/3 < wre < 0 [42, 43]. Given the uncertainties associated with reheating and the

2
Further studies of the modifications to the relic abundances in conformally coupled scalar-tensor theories have been

discussed in [27–38].

2

๏ Given a model of inflation, the cosmological parameters            
are determined by the number of e-folds,   between horizon 
exit of the CMB modes and the end of inflation. 

(ns, r)
Nk

๏ The standard equation that  
determines        is given byNk

๏ This assumes a standard post-inflationary history associated 
with the hot big-bang model. In the canonical reheating 
scenario,              . (In more general cases                      )                       0 < !re < 1/3!re ' 0

Nk ' 60� 50

Modified Evolution and Inflation
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๏ Any modification of the post-inflationary history has an effect 
on the range of       modifying the predictions for           . (ns, r)Nk

๏ How does      is modified for these models and what would be  
the implications for inflationary predictions?

๏ The models discussed before 
in the context of thermal dark 
matter abundance have a 
non-standard cosmological 
history prior to BBN. 

Nk

Modified Evolution and Inflation

[Dai, Kamionkowski, Wang, ’14]



๏ For the case of a pure disformal coupling: 

[Maharana, IZ, ’18]

(g̃µ⌫ = C(�)gµ⌫ +D(�)@µ�@⌫�)

C = C0, D = 1/C0M
4

The number of e-folds is modified by        : 

with 

�Nk

�Nk = �1

8
(1� 3!̃re) lnCre

Nk ' Nst
k + �Nk

For              (e.g. a D-brane at the tip of throat)               C0 < 1 �Nk > 0

➟ larger values of       compared to standard case. Nk

Disformal Coupling and the number 
of e-folds



[Maharana, IZ, ’18]

For suitable values of     , we find                , implying         
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for which the reheating epoch is not extended, this corresponds to �N
k

⇡ +16. Such a shift is possible

for a large range of the model parameters both the decoupled and coupled scalar cases; particularly in

the case of relentless dark matter and the D-brane scalar-tensor model [41]. We note that although the

shift brings both n
s

and r within their 1 � � values, the model only enters the the 2 � � region in the

marginalised joint distribution in the (n
s

, r) plane9. But overall the shift in the predictions is in the

direction favoured by the present data. For the linear potential (↵ = 1), N
k

in the range of 50 to 60 gives

n
s

in the range 0.980 to 0.983 and r in the range 0.080 to 0.066. In this case the prediction for n
s

is on

the higher side, and increase in N
k

further increases the tension in the n
s

prediction. The situation for

↵ = 2/3 is similar.

Another interesting class of models is that of natural inflation [72]. In this case the dependence on N

of the cosmological parameters (n
s

, r) is non-perturbative with:

n
s

= 1 +
1

f2

(eNk/f
2
+ 1)

(eNk/f
2 � 1)

, r =
8

f2

1

eNk/f
2 � 1

, (31)

where f is the axion decay constant (in Planck units). Therefore, a larger value of N
k

can bring this

model back into the allowed region of the parameters. For example, for f = 7M
P

, N
k

= 60 we have

(n
s

, r) = (0.962, 0.07), while f = 7M
P

, N
k

= 75 gives (n
s

, r) = (0.968, 0.05). We show the model

predictions as a function of N
k

in Fig. 2
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Figure 2: Predictions of Natural Inflation in the (n
s

, r) plane.

9
With the Planck 2015 data, it impossible for the model to enter 1� � region in the joint distribution, for the model to

predict r values in the necessary range requires N > 100, but in this regime the predictions for ns are incompatible with the

data.

11

natural inflation V / [1� cos(�/f)]

(!̃re ⇠ 0)C0 �Nk ' 15

Nk ⇠ (60� 50) + 15

For example, for monomial and natural inflation, this implies 

Disformal Coupling and the number 
of e-folds



• Particularly interesting is non-standard evolution in (D-
brane) scalar-tensor theories with conformal and disformal 
couplings to matter

• The effect of this coupling is to enhance or decrease the 
expansion rate, with respect to the standard case.

 
⇠ =

H̃

HGR

!

⇠ 1<
>

g̃µ⌫ = C(�)gµ⌫ +D(�)@µ�@⌫�

• Scalar fields are ubiquitous in fundamental theories BSM. 
These fields can modify the standard cosmological 
evolution at different epochs, with interesting effects 

SUMMARY 



• Non-standard post-inflationary evolution changes also the 
inflationary predictions for cosmological parameters  

• When non-standard evolution happens during radiation 
domination, it can modify the standard DM thermal 
production scenario: freeze-out occurs at higher 
temperatures ➠ larger annihilation rates.

• Non-standard expansion rate may be relevant for other 
physical phenomena during universe’s evolution (21cm, H0, 

… ?)

SUMMARY 


