a s determination from static QCD
potential with lattice data

Yuichiro Kiyo (Juntendo Univ.)

Based on collaboration:;
H. Takaura, T. Kaneko, Y. Sumino:;

JHEP 1904(2019) 155

Workshop on Determination of Fundamental QCD Parameters
Oct. 03, 2019, ICTP-SAIFR, Sao Paulo, Brazil



QCD coupling constant

Lattice QCD has advantages
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Static QCD potential

Static potential in multipole expansion

Vocn(r) = 26m + V(r) + SEy4(r) + -+

/
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Pole mass renormalon €——3 Coulom + pert. corr. €——> Non-local gluon

Lattice QCD simulates Wilson loop: —
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Vs(r) and RG

We use momentum space RG improved Vs(r):
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NNNLL: 4-loop RG running
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Renormalon subtraction

Renormalons in the static potential

d3q i ay(q)

o — ~ CoA + CA T+ 0(r)
T q

IR Renormalons in Vs

[Vilir = — 4ECFJ

q<pys

IR subtracted potential (ur- dependent)

q o W)
V(up, 1) = — 4ﬂCFJ o) e'1r V2
q>Hr & q

= Vel 1) +Col) + G +Colu)r® +0()

+ Lim puf—-0 Co(us), Co(uf) are divergent
+ Ve(usr), Ci(us) are actually u+f independent

Renormalon subtracted potential:

VRF() = Ve + Cir - (€, = 1.8444A2 for n,=3 at N'LL)




RF potential

VRF(r)=Vc(r)+Cir

> NNNLL av(qg) is used

> Free from O(A), O(r2/A2) renormalons

> Conventional RG improvements show unphysical fall-off around r~
N\ but RF potential nicely rises up

> Extend the OPE validity region— soften the window problem



OPE and Renormalon subtraction

We call the pNRQCD multipole expansion formula as OPE for
static QCD potential

VQCD(r ) = 25m(/4f) + VS(Mfa r) + 5EUS(/’tf9 r)

= VEE(r)+{28m(up) + Colup)}+{ Colpp)r? + SE sy, 1)
renormalon free = A, = SERL(r)

We fit the OPE formula with lattice data: fit.param(AO, A2) and Aacp

VORI = AL [VE (N+Ag+AL )



L attice simulation

JLQCD T. Kaneko

0.08, 0.05, 0.04 fm

. Lattice Size: 323x64, 483x906, 643x128
¢ al_l = 2.453(4), az_l = 3.610(9), a3_1 = 4.496(9)GeV

. Fermion: 2(u,d)+1(s) Domain-wall fermion
¢ M_~300MeV (M™ = 140MeV)

¢ My ~520MeV (M2 = 500MeV)

- Action: O(a)-improved action E
¢ discretization error~Q(a?)




Data analysis

. Statistics:
x 2 -fit, covariance matrix, in Jackknife method

. Continuum limit;
extrapolation with a2-fit

tree-level improvement

. Systematic error
mass effect, finite a, higher order, US, matching

range, factorization scale
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Analysis
. Analysis(|)

@ Continuum extrapolation

@ Matching with OPE
¢ Check O(a?) discretization error

¥ Check OPE validity; V¥ (r) = V,,,(r) = O(r%)

. Analysis(ll)
@ Continuum limit +Matching with OPE at once
via a global fit
¢ First principle analysis
¥ tree-level Improvement taken into account
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A(l): cont. limit

. Continuum limit for direction=1.2

dV ) |
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direction2

Xiatt = 711 V1ae(") = Via(rp)] (
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direction’

Extrapolation: X, (r,a;) = Xiu(r, ay) = X7, a3) — Xjp(r, a = 0)

* Model-like interpolations needed in analysis(l)

Controlling finite a and L effects,

we used lattice data in the range
2a<r<L/2

To avoid severe discretization
error in the shortest distance,
And to avoid finite size effect in
long distance
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A(l): OPE validity range

Check of OPE formula V2" — V& = O(r*) using AT = 336MeV

latt

3

' §- ViSOPt / Ayps t+const.
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A,r?
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. Validity range of OPE Ar <0.8 (r <0.5fm)

. Conventional perturbation Ar <03 (r <0.2fm)
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A(l): pert. convergence of Vr(r)

Check of perturbative convergence using AT = 336MeV

00 02 04 06 08 10 12 14
r/\M—S

. As an input for V&), [A%jL = ATD® = 336MeV, o(Q% =0.2] is used

. convergence: Ayg = 16080 —  359NEL _, 339NLL . 336NLL pey
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A(l): a, determination

Maching OPE with continuum lattice data(r, = 0.311(2)fm)

—1
AM_s

VOPE(r) = Ay Vs (0 + Ag + Ayr?|  — (Agrsr) ™' [Xg] (/)

N A;Z_fs=3> — 315 + 15(stat)MeV

RG run from nf=3 to n=5 is performed up to Mz scale

a(M,) = 0.11661 )01 (stat) 001 5(sys)

finite a interpol. fn.  subt. point h.o. US range 1
) T4 (i==1) +1 BAys)  +5 (0.7)
Assigned error +4 +4 +8 J_r%;l +1 fg +1

Table 5. Estimates of systematic errors in Analysis (I) from variations of the central value of
as(MZ) in units of 107* when varying the analysis conditions. In the upper row, variations are
shown. (Detailed conditions are shown inside brackets). Assigned systematic errors are shown in

the lower row.
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Analysis(ll):

Global fit: continuum limit and matching at once

Vcont -V 1 - 1 _ aiz
e ) = Viaa, (1) =Kz | — = | = +fd—3 — C0d,i
r r : r
- A d
' R disc. f O(a2
MatChmg Tree-level improvement emove disc. error of O(a?)

_ YRF 2 i=1,2,3 for lattice setup ai, az, a3
VOPE(F) o VS (I”) T Azl’ d=1, 2 direction

» conversion from lattice a-unit(Wilson-flow scale) to A-unit
e 16 fitting parameters: { Aygg, Aoy Ky s Jus Co.ai )

¢ Fit range 0.07 < A%Gr <06 (a~0.05fm<r<0.35 tm)
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A(ll): a, determination

05—

0.0

Lattice 1n cont. limit(black)

s and OPE fit(green)

3

= -0 (”f:3)

AM_S = 334 + 10(stat) MeV
: W a(M,) = 0.1179 % 0.0007(stat)
0.0 0.5 1.0 r [G1éi/_1] 2.0 2.5 3.0
a(M,) = 0.1179 £ 0.0007(stat)*(0015(sys)
finite a h.o. US Mass range fact. scheme latt. spacing

Obtained value —2 TREEY S OIS e mas) 4 (00 +3 +4
Assigned error +2 f%% +2 40 +4 +3 +4

Table 7. Estimates of systematic errors in Analysis (II) from variations of the central value of
as(M?2) in units of 10™* when varying the analysis conditions. In the upper row, variations are
shown. (Detailed conditions are shown inside brackets). Mass effects are negligibly small in both
cases. Assigned systematic errors are shown in the lower row.



¢ Analysis (l)
® Analysis (lI)
. FLAG[2]
0114 0116 0118 0120 0122

as(MZZ)
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Summary

We extracted QCD strong coupling constant from static QCD potential
computed in lattice QCD simulation:

- analysis (I): continuum limit of lattice and matching with OPE
¢ Matching range: 3a <r < 0-8//\§4—DSG
¢ Anﬁ&—? = 315 = 15(stat)*2%(sys) MeV
€ a (M) = 0.1166%) 01 \(stat) "o 0 15(sys)

—0.0011 0.0017

- Analysis (ll): global fit for continuum limit and matching simultaneously

¢ Matching range: a < r < 0.6/AfRS
¢ Aﬁ_f = 334 + 1O(stat)f%§(8y8) MeV

€ aM,)=0.1179 £ O.OOO7(stat)J_r8:88%‘2‘(sys)
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Global fit

Controlling finite a effects: The data at r > a are used combined with the tree-level

correction.
Singlet potential: V& (r) defined by Eq. (2.10), which has N3LL accuracy
Regularization of US divergence: Prescription I [Eq. (2.20)]

Quark masses: We use the lattice data obtained with unphysical quark mass inputs

and Vg{F in the massless quark approximation.

Matching range: A%GT < 0.6
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Systematic error

Finite a effects: We use the lattice data at » > 2a. In this case, we omit the tree-level
correction by setting x’s to zero. This is because the role of the tree-level correction
is similar to that of the a?/r3-term under the current hierarchy a/r < 1/2, where the

tree-level correction is well approximated in expansion in a/r.

Higher order uncertainty: We replace VSBF in matching as
V&t + tovEr (3.20)

with ¢ = —1 or 1 in order to estimate higher order uncertainty; see Eq. (2.23) for
SVEF,

US regularization: We adopt the regularization method II, given by Eq. (2.21). We
have chosen pys as 3Azg and 4A3s.

Mass effects: Lattice data are obtained with the unphysical mass inputs. We include
an estimation of this mass difference effect as a systematic error, since we do not know
the true correction. We estimate the lattice data on the physical point as

Viatt,d,i (7; mlatt’i) — Viatt,d,i(7:M) = Viagt,a,6(7; mlatt’i) + [Vpt.i(r;m) — Vit i (73 mlatt,i)]

(3.21)
where 7 is the MS masses for the light quarks (u, d, s); Vit 1s the finite mass correction
evaluated in perturbative QCD at N?LO [41-43]. More precisely, it is a function of

{r,m, u} of the form

Vot(r;m) = e (r, m)%i + ca(r,m, p)as (3.22)



e Matching range: We vary the range of the lattice result used in the matching as

ALRCr < 0.5 or 0.8 (3.24)

to examine the stability of the OPE truncated at O(r?).

e [uctorization scheme: In extracting the renormalon free part VSBF, we rewrite the
integrand of Vg by a complex function; see (B.2) in Appendix B. In general, there can
be other choices for this function, and in this regard, we have chosen a certain scheme.
A different scheme practically causes an O(r?3) difference in the OPE prediction trun-
cated at O(r?); see Ref. [16] for details.?® To see an effect of this scheme dependence,
we add an Azrs-term in the fit so that this scheme dependence is absorbed. (Note
that, in order to determine coeflicients up to higher orders in r, a wider fitting range
is required. We choose the range in this analysis as A%Gfr < 0.8, where A9 and As
are stable against variation of the range.?”)

e Lattice spacing: The lattice spacing a, used to convert r and Vj,tt into physical
units, has an error as shown in table 1, and has an additional error of 1.7 % due
to the uncertainty of the physical value of the Wilson-flow scale [44|. For the former
one, the error is etimated by the largest deviation detected from a set of six data,
{{a1 + daq, aog, CL3}, {&1, as £ das, CL3}, {CLl, as, a3 * 5&3}}, where da; denotes the error
shown in table 1. The error associated with the latter is estimated by shifting all the
a’s simultaneously by its uncertainty. By combining these two errors in as(M%) in
quadrature, the uncertainty from the lattice spacing is estimated.
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Fitting parameters

Cl
Vit () = Vigea (N — kg | — = [= +fd — Co.d,i
R R Y
1=1,2,3 for lattice setup ai, az, a

VOPE(F) — VSB F(r) +A2r2 d=1’,’2d§ection P
i (size) i =1 (323 x 64) i =2 (483 x 96) i = 3 (643 x 128)
d (Niqg) | d=1(4) d=2(3) | d=1(6) d=2(4) | d=1(8) d=2 (5)
K 0.19(15) —0.26(85) | 0.27(12) —0.53(88) | 0.27(11) —0.57(91)
co [GeV] | 2.245(11) | 2.300(87) | 3.012(11) | 3.099(89) | 3.546(10) | 3.631(36)
e x?/d.o.f. =8.7/(30 — 16) (global fit)
fa f1 =0.0004(18), fo = —0.025(32) (common to all 7)
As Ay = —0.0091(54) GeV?  (common to all ¢,d)

Table 6. Fitting parameters in Analysis (II). Only statistic errors are shown. N; 4 expresses the
number of data points for direction d of the -th lattice.
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