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QCD coupling constant
•small error  
•First principle, nonperturbative 
•Further improvement can be expected

36 9. Quantum chromodynamics
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Figure 9.2: Summary of determinations of αs(M2
Z) from the six sub-fields

discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of αs(M2

Z).

below, it may be worth mentioning that the collider results listed above average to a
value of αs(M2

Z) = 0.1172 ± 0.0059.

So far, only one analysis is available which involves the determination of αs from
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Lattice QCD has advantages

Static QCD potential is a good quantity 
for QCD coupling measurement
•Intuitively clear: interquark force  
•Tools available: EFT and OPE, NNNLO perturbation 
•Data available from lattice simulations

We extract αs  by enlarging matching region 
of OPE and lattice QCD for static potential.

Matching at shorter distance  
→ Johannes’s talk 1907.117474[hep-lat]
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Static QCD potential

VQCD(r) = 2δm + VS(r) + δEUS(r) + ⋯

Pole mass renormalon Non-local gluon 
condensate

Static potential in multipole expansion    
 Brambilla-Vairo-Pineda-Soto (2000)

Renormalon  
cancellation

T

rW[C] = ⟨Tr Peig ∫C dx⋅A(x)⟩ T→∞→ e−TVQCD(r)

Lattice QCD simulates Wilson loop:   

−
CFαs

r
+ ⋯ 𝒪(r2)

Coulom + pert. corr.
Renormalon  
cancellation
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Vs(r) and RG

αV(q2) = αs(q2) a0 + a1 ( αs(q2)
4π ) + a2 ( αs(q2)

4π )
2

+ a3 ( αs(q2)
4π )

3

VS(r) = − 4πCF ∫
d3q

(2π)3
eiq⋅r αV(q)

q2

d
d ln q2

αs(q2) = β(αs(q2)) = − αs(q2)
3

∑
i=0

βi ( αs(q2)
4π )

i+1
NNNLL: 4-loop RG running

W.Fischler
A.Billoire

M.Peter 
Y.Schroeder

Smirnov-Smirnov-Steinhauser
Anzai-YK-Sumino, Lee-
Smirnov-Smirnov-Steinhauser

We use momentum space RG improved Vs(r):
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Renormalon subtraction

VS(μf , r) = − 4πCF ∫q>μf

d3q
(2π)3

eiq⋅r αV(q)
q2

= VC(μf , r) +C0(μf ) +C1(μf )r +C2(μf )r2 +𝒪(r3)

[VS]IR = − 4πCF ∫q≤μf

d3q
(2π)3

eiq⋅r αV(q)
q2

∼ C̃0Λ + C̃2Λ3r2+𝒪(r3)
IR Renormalons in Vs

IR subtracted potential (μf - dependent)

Renormalons in the static potential

Renormalon subtracted potential:

Lim μf →0   C0(μf), C2(μf) are divergent 
VC(μf,r), C1(μf) are actually μf independent

VRF
S (r) = VC(r) + C1r (C1 = 1.8444Λ2

MS for nf = 3 at N3LL)

 Contour deformation 
prescription by Sumino 05

!6



RF potential
C1 r

Vc(r)

VRF(r)=Vc(r)+C1r

NNNLL  αV(q)  is used 
Free from O(Λ), O(r2Λ2) renormalons  
Conventional RG improvements show unphysical fall-off around r～
Λ but RF potential nicely rises up 
Extend the OPE validity region→ soften the window problem
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OPE and Renormalon subtraction

VQCD(r) = 2δm(μf ) + VS(μf , r) + δEUS(μf , r)

= VRF
S (r)+{2δm(μf ) + C0(μf )}+{C2(μf )r2 + δEUS(μf , r)}

≡ δERF
US (r)renormalon free

We call the pNRQCD multipole expansion formula as OPE for 
static  QCD potential

Λ−1
MSVOPE

S (r) = Λ−1
MS[VRF

S (r)+A0+A2r2]
We fit the OPE formula with lattice data: fit.param(A0, A2)  and ΛQCD

≡ A0
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Lattice simulation
JLQCD  T. Kaneko

a

L

0.08,  0.05, 0.04 fm

•Lattice Size: 323x64, 483x96, 643x128 
    

•Fermion: 2(u,d)+1(s) Domain-wall fermion 
    

  

•Action: O(a)-improved action 
 discretization error～O(a2)

a−1
1 = 2.453(4), a−1

2 = 3.610(9), a−1
3 = 4.496(9)GeV

Mπ ∼ 300MeV (Mphys
π = 140MeV)

MK ∼ 520MeV (Mphs
K = 500MeV)
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Data analysis
• Statistics; 

χ2 -fit, covariance matrix, in Jackknife method 

• Continuum limit:  
extrapolation with a2-fit  
tree-level improvement 

• Systematic error 
mass effect, finite a, higher order, US, matching 
range, factorization scale
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Analysis
•Analysis(I) 
Continuum extrapolation 
Matching with OPE 
 Check O(a2) discretization error 
 Check  OPE validity;   

•Analysis(II) 
Continuum limit +Matching with OPE at once 
via a global fit 
 First principle analysis 
 tree-level improvement taken into account

VRF
S (r) − Vlatt(r) = O(r2)
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A(I): cont. limit

Xlatt = r1[Vlatt(r) − Vlatt(r1)] (r2
1

dV
dr

= 1)
Xlatt(r, a1) → Xlatt(r, a2) → Xlatt(r, a3) ⟶ Xlatt(r, a = 0)Extrapolation:

direction1 direction2

Controlling finite a and L effects, 
we used lattice data in the range 
2a<r<L/2

• Continuum limit for direction=1,2  

＊Model-like interpolations needed in analysis(I)

To avoid severe discretization 
error  in the shortest distance, 
And to avoid finite size effect in 
long distance
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A(I): OPE validity range

• Validity range of OPE    

• Conventional perturbation    
Λr ≲ 0.8 (r ≲ 0.5fm)

Λr ≲ 0.3 (r ≲ 0.2fm)

Check of OPE formula   using  Vcont
latt − VRF

S = O(r2) ΛPDG
MS = 336MeV
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A(I): pert. convergence of  VRF
S (r)

Check of perturbative convergence using  ΛPDG
MS = 336MeV

• As an input for   ,    is used 

• convergence:   

VRF
S (r) [ΛN3LL

MS = ΛPDG
MS = 336MeV, αs(Q2) = 0.2]

ΛMS = 160LL → 359NLL → 339N2LL → 336N3LL MeV
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A(I):   determinationαs

Λ−1
MSVOPE(r) = Λ−1

MS[VRF
S (r) + A0 + A2r2] ⟷ (ΛMSr1)−1[Xcont

latt ](r/r1)

Maching OPE with continuum lattice data( )r1 = 0.311(2)fm

αs(Mz) = 0.1166+0.0010
−0.0011(stat)+0.0018

−0.0017(sys)

⟶ Λ(nf =3)
MS

= 315 ± 15(stat)MeV

RG run from nf=3 to nf=5 is performed up to Mz scale

finite a interpol. fn. subt. point h.o. US range r1

Obtained value −4 +4 −8 +14 (t=−1)
−12 (t=1)

+1 (3ΛMS)
−0 (4ΛMS)

+5 (0.7)
−8 (0.9) ±1

Assigned error ±4 ±4 ±8 +14
−12 ±1 +5

−8 ±1

Table 5. Estimates of systematic errors in Analysis (I) from variations of the central value of
αs(M2

Z) in units of 10−4 when varying the analysis conditions. In the upper row, variations are
shown. (Detailed conditions are shown inside brackets). Assigned systematic errors are shown in
the lower row.

• Matching range: We vary the range of the lattice result used in the matching as

ΛPDG
MS

r < 0.7 or 0.9 (3.14)

to examine the stability of the OPE truncated at O(r2).

• r1: We vary r1 in the range r1 = 0.311± 0.002 fm.

The estimated systematic errors are summarized in table 5.
By taking the root-sum-square of the errors, we obtain

αs(M
2
Z) = 0.1166+0.0010

−0.0011(stat)
+0.0018
−0.0017(sys) (3.15)

from Analysis (I).

3.3 Analysis (II): Global fit

In Analysis (I), an interpolating function is assumed in order to take the continuum limit of
the potential, although the exact functional form is unknown. This is a short-coming from
the viewpoint of first principles. In Analysis (II), we perform a first-principle determination,
without using such a model-like interpolating function. This is achieved by a global fit in
which the continuum extrapolation and the matching with a theoretical calculation are
performed at once.

This analysis is based on the idea that the OPE prediction should be correct at short
distances and coincide with the lattice data once the discretization errors are removed.
Then, the OPE is matched with the modified lattice data which can be regarded as the
result in the continuum limit:

V cont
latt (r) = Vlatt,d,i(r)− κd,i

(
1

r
−
[
1

r

]

d,i

)
+ fd

a2i
r3

− c0,d,i . (3.16)

Discretization errors contained in the original lattice data Vlatt,d,i are removed by the sec-
ond and third terms (depending on i and d), and the last term adjusts the r-independent
constant;

[
1
r

]
is the LO result in the lattice perturbation theory, which deviates from a

smooth 1/r-function due to finite a and L effects. Hence, the second term removes the dis-
cretization error at the tree-level. Note that the tree-level potential is given by a one-gluon
exchanging diagram and is order αs. Here, κ is regarded as an effective coupling of lattice

– 23 –
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Analysis(II):
 Global fit:  continuum limit and matching at once

Vcont
latt (r) = Vlatt,d,i(r) − κd,i ( 1

r
− [1

r ]
d,i) + fd

a2
i

r3
− c0,d,i

Tree-level improvement
Remove disc. error of O(a2)

i=1,2,3 for lattice setup  a1, a2, a3

d=1, 2 directionVOPE(r) = VRF
S (r) + A2r2

Matching

conversion from lattice a-unit(Wilson-flow scale) to Λ-unit

16 fitting parameters: �

Fit range �

{ΛMS, A2, κd,i, fd, c0,d,i}

0.07 ≤ ΛPDG
MS r ≤ 0.6 (a ∼ 0.05 fm ≤ r ≤ 0.35 fm)
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Lattice in cont. limit(black)
 and OPE fit(green)

Λ(nf=3)
MS

= 334 ± 10(stat) MeV

αs(Mz) = 0.1179 ± 0.0007(stat)

αs(Mz) = 0.1179 ± 0.0007(stat)+0.0014
−0.0012(sys)

finite a h.o. US Mass range fact. scheme latt. spacing

Obtained value −2
+12 (t=−1)
−10 (t=1)

+2 (3ΛMS)

+0 (4ΛMS)
−0(MSmass

Constituent mass)
−3 (0.5)
−4 (0.8)

+3 ±4

Assigned error ±2 +12
−10 ±2 ±0 ±4 ±3 ±4

Table 7. Estimates of systematic errors in Analysis (II) from variations of the central value of
αs(M2

Z) in units of 10−4 when varying the analysis conditions. In the upper row, variations are
shown. (Detailed conditions are shown inside brackets). Mass effects are negligibly small in both
cases. Assigned systematic errors are shown in the lower row.

• Factorization scheme: In extracting the renormalon free part V RF
S , we rewrite the

integrand of VS by a complex function; see (B.2) in Appendix B. In general, there can
be other choices for this function, and in this regard, we have chosen a certain scheme.
A different scheme practically causes an O(r3) difference in the OPE prediction trun-
cated at O(r2); see Ref. [16] for details.28 To see an effect of this scheme dependence,
we add an A3r3-term in the fit so that this scheme dependence is absorbed. (Note
that, in order to determine coefficients up to higher orders in r, a wider fitting range
is required. We choose the range in this analysis as ΛPDG

MS
r < 0.8, where A2 and A3

are stable against variation of the range.29)

• Lattice spacing: The lattice spacing a, used to convert r and Vlatt into physical
units, has an error as shown in table 1, and has an additional error of 1.7 % due
to the uncertainty of the physical value of the Wilson-flow scale [44]. For the former
one, the error is etimated by the largest deviation detected from a set of six data,
{{a1 ± δa1, a2, a3}, {a1, a2 ± δa2, a3}, {a1, a2, a3 ± δa3}}, where δai denotes the error
shown in table 1. The error associated with the latter is estimated by shifting all the
a’s simultaneously by its uncertainty. By combining these two errors in αs(M2

Z) in
quadrature, the uncertainty from the lattice spacing is estimated.

The estimated systematic errors are summarized in table 7. Some error sources included
in Analysis (I) are absent thanks to the first-principle nature of this analysis. In addition,
most of the systematic errors are reduced compared to Analysis (I). In particular, the
higher order uncertainty is smaller since a shorter distance region is used; see Fig. 2. The
mass effects turn out to be negligibly small even if we consider the constituent quark mass.
This is because we are probing a sufficiently short-distance region. (Additional analyses on
systematic errors are given in Appendix F.)

As a result of Analysis (II), we obtain

αs(M
2
Z) = 0.1179± 0.0007(stat)+0.0014

−0.0012(sys) . (3.25)

3.4 Summary of results

We have performed two determinations of αs. In Analysis (I), which is a preparatory
analysis, we first took the continuum limit of the lattice data, and then we matched the

28 In Ref. [16], it is shown that the current choice is natural from the viewpoint of analyticity.
29 This range is chosen after studying the stability for various ranges.
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finite a h.o. US Mass range fact. scheme latt. spacing

Obtained value −2
+12 (t=−1)
−10 (t=1)

+2 (3ΛMS)

+0 (4ΛMS)
−0(MSmass

Constituent mass)
−3 (0.5)
−4 (0.8)

+3 ±4

Assigned error ±2 +12
−10 ±2 ±0 ±4 ±3 ±4

Table 7. Estimates of systematic errors in Analysis (II) from variations of the central value of
αs(M2

Z) in units of 10−4 when varying the analysis conditions. In the upper row, variations are
shown. (Detailed conditions are shown inside brackets). Mass effects are negligibly small in both
cases. Assigned systematic errors are shown in the lower row.

• Factorization scheme: In extracting the renormalon free part V RF
S , we rewrite the

integrand of VS by a complex function; see (B.2) in Appendix B. In general, there can
be other choices for this function, and in this regard, we have chosen a certain scheme.
A different scheme practically causes an O(r3) difference in the OPE prediction trun-
cated at O(r2); see Ref. [16] for details.28 To see an effect of this scheme dependence,
we add an A3r3-term in the fit so that this scheme dependence is absorbed. (Note
that, in order to determine coefficients up to higher orders in r, a wider fitting range
is required. We choose the range in this analysis as ΛPDG

MS
r < 0.8, where A2 and A3

are stable against variation of the range.29)

• Lattice spacing: The lattice spacing a, used to convert r and Vlatt into physical
units, has an error as shown in table 1, and has an additional error of 1.7 % due
to the uncertainty of the physical value of the Wilson-flow scale [44]. For the former
one, the error is etimated by the largest deviation detected from a set of six data,
{{a1 ± δa1, a2, a3}, {a1, a2 ± δa2, a3}, {a1, a2, a3 ± δa3}}, where δai denotes the error
shown in table 1. The error associated with the latter is estimated by shifting all the
a’s simultaneously by its uncertainty. By combining these two errors in αs(M2

Z) in
quadrature, the uncertainty from the lattice spacing is estimated.

The estimated systematic errors are summarized in table 7. Some error sources included
in Analysis (I) are absent thanks to the first-principle nature of this analysis. In addition,
most of the systematic errors are reduced compared to Analysis (I). In particular, the
higher order uncertainty is smaller since a shorter distance region is used; see Fig. 2. The
mass effects turn out to be negligibly small even if we consider the constituent quark mass.
This is because we are probing a sufficiently short-distance region. (Additional analyses on
systematic errors are given in Appendix F.)

As a result of Analysis (II), we obtain

αs(M
2
Z) = 0.1179± 0.0007(stat)+0.0014

−0.0012(sys) . (3.25)

3.4 Summary of results

We have performed two determinations of αs. In Analysis (I), which is a preparatory
analysis, we first took the continuum limit of the lattice data, and then we matched the

28 In Ref. [16], it is shown that the current choice is natural from the viewpoint of analyticity.
29 This range is chosen after studying the stability for various ranges.

– 28 –

A(II):   determinationαs
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result with the OPE prediction. Although this analysis partially relies on a model-like
assumption, we explicitly showed that (a) the continuum extrapolation of the lattice data
can be taken smoothly, and that (b) the OPE combined with our renormalon subtraction is
indeed consistent; see Fig. 8. We obtained ΛMS = 315±15(stat)+26

−25(sys) = 315+30
−29MeV and

αs(M2
Z) = 0.1166+0.0010

−0.0011(stat)
+0.0018
−0.0017(sys) = 0.1166+0.0021

−0.0020. The total errors are obtained by
combining the statistic and systematic errors in quadrature.

In Analysis (II), we performed a global fit, where theoretical constraints are fully used.
Analysis (II) is superior to Analysis (I) in the sense that it is a first-principle analysis and
that our dominant error, higher order uncertainty, is reduced thanks to the use of short
distance range. This gives our final result:

{
ΛMS = 334± 10(stat)+21

−18(sys)MeV = 334+23
−21MeV ,

αs(M2
Z) = 0.1179± 0.0007(stat)+0.0014

−0.0012(sys) = 0.1179+0.0015
−0.0014 .

(3.26)

One can see that both analyses give consistent values. Our results of αs(M2
Z) are

compared with the current PDG and FLAG results in Fig. 12, where one can see that our
results are also consistent with them.

Figure 12. Comparison of various αs determinations.

4 Conclusions and discussion

We determined the strong coupling constant αs from the static QCD potential by matching
a lattice result with a new OPE calculation where renormalons are subtracted from the
leading Wilson coefficient. We subtract both u = 1/2 and u = 3/2 renormalons from
the Wilson coefficient. In particular, we confirmed the following features regarding the
renormalon subtraction.

1. Theoretically the cancellation of the u = 3/2 renormalon against the nonperturbative
term is checked at the LL order. Furthermore, logarithmic contributions at IR region
in the Fourier integral, which cause factorial divergence, are subtracted at the NNNLL
level.

– 29 –
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Summary
We extracted QCD strong coupling constant from static QCD potential 
computed in lattice QCD simulation: 
analysis (I): continuum limit of lattice and matching with OPE 

Matching range:    

  

  

Analysis (II): global fit for continuum limit and matching simultaneously 
Matching range:   

  

 

3a ≤ r < 0.8/ΛPDG
MS

Λnf =3
MS

= 315 ± 15(stat)+26
−25(sys) MeV

αs(Mz) = 0.1166+0.0010
−0.0011(stat)+0.0018

−0.0017(sys)

a ≤ r < 0.6/ΛPDG
MS

Λnf =3
MS

= 334 ± 10(stat)+22
−18(sys) MeV

αs(Mz) = 0.1179 ± 0.0007(stat)+0.0014
−0.0012(sys)

!19



Global fit

Figure 11. Lattice result in the continuum limit (black points) and the OPE calculation (green)
determined simultaneously by the fit in Analysis (II). The distance region used in this fit rΛPDG

MS
<

0.6 is shown by the dotted line. For reference, r = r1 is also shown.

The obtained ΛMS in Eq. (3.18) gives

αs(M
2
Z) = 0.1179± 0.0007(stat) . (3.19)

The procedure to obtain αs(M2
Z) is the same as for Analysis (I).

For convenience, we summarize the conditions used in our main analysis, with which
we determine the central value of αs(M2

Z).

• Controlling finite a effects: The data at r ≥ a are used combined with the tree-level
correction.

• Singlet potential: V RF
S (r) defined by Eq. (2.10), which has N3LL accuracy

• Regularization of US divergence: Prescription I [Eq. (2.20)]

• Quark masses: We use the lattice data obtained with unphysical quark mass inputs
and V RF

S in the massless quark approximation.

• Matching range: ΛPDG
MS

r < 0.6

Now we estimate systematic errors of our determination. We perform the following re-
analyses. Since this analysis will give our final result, some additional aspects are studied
in comparison to Analysis (I).

– 26 –!20



Systematic error
• Finite a effects: We use the lattice data at r ≥ 2a. In this case, we omit the tree-level

correction by setting κ’s to zero. This is because the role of the tree-level correction
is similar to that of the a2/r3-term under the current hierarchy a/r ≤ 1/2, where the
tree-level correction is well approximated in expansion in a/r.27

• Higher order uncertainty: We replace V RF
S in matching as

V RF
S + tδV RF

S (3.20)

with t = −1 or 1 in order to estimate higher order uncertainty; see Eq. (2.23) for
δV RF

S .

• US regularization: We adopt the regularization method II, given by Eq. (2.21). We
have chosen µUS as 3ΛMS and 4ΛMS.

• Mass effects: Lattice data are obtained with the unphysical mass inputs. We include
an estimation of this mass difference effect as a systematic error, since we do not know
the true correction. We estimate the lattice data on the physical point as

Vlatt,d,i(r;m
latt,i) → Vlatt,d,i(r;m) = Vlatt,d,i(r;m

latt,i) + [Vpt,i(r;m)− Vpt,i(r;m
latt,i)] ,

(3.21)
where m is the MS masses for the light quarks (u, d, s); Vpt is the finite mass correction
evaluated in perturbative QCD at N2LO [41–43]. More precisely, it is a function of
{r,m, µ} of the form

Vpt(r;m) = c1(r,m)α2
s + c2(r,m, µ)α3

s , (3.22)

which vanishes in the limit m → 0. In the above estimation, we take the renormaliza-
tion scale as µ = a−1

i and choose αs as 0.27, 0.23, 0.21 for i = 1, 2, 3, respectively, so
that it is close to αs(µ2 = a−2

i ). For the MS mass values of the light quarks, we use
mu = 2.2 MeV,md = 4.7 MeV,ms = 96 MeV. To model a nonperturbative effect,
we also substitute a constituent quark mass of 300 MeV for m in Eq. (3.21) as an
additional test (while the other parameters are kept fixed). Furthermore, since V RF

S

is obtained by treating the light quarks as massless, the finite mass effects are also
added to V RF

S as
V RF
S → V RF

S + Vpt(r;m) . (3.23)

For this Vpt, we take µ = 3 GeV and αs = 0.25. In this way, we estimate both
theoretical prediction and lattice result at the physical point.

• Matching range: We vary the range of the lattice result used in the matching as

ΛPDG
MS

r < 0.5 or 0.8 (3.24)

to examine the stability of the OPE truncated at O(r2).
27 If we include both κ’s and f ’s, the fit is destabilized due to a flat direction caused by this degeneracy.

We adopt the a2/r3-term rather than the tree-level correction since the tree-level correction becomes less
reliable when the matching range shifts to lower energy region.

– 27 –
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• Finite a effects: We use the lattice data at r ≥ 2a. In this case, we omit the tree-level
correction by setting κ’s to zero. This is because the role of the tree-level correction
is similar to that of the a2/r3-term under the current hierarchy a/r ≤ 1/2, where the
tree-level correction is well approximated in expansion in a/r.27

• Higher order uncertainty: We replace V RF
S in matching as

V RF
S + tδV RF

S (3.20)

with t = −1 or 1 in order to estimate higher order uncertainty; see Eq. (2.23) for
δV RF

S .

• US regularization: We adopt the regularization method II, given by Eq. (2.21). We
have chosen µUS as 3ΛMS and 4ΛMS.

• Mass effects: Lattice data are obtained with the unphysical mass inputs. We include
an estimation of this mass difference effect as a systematic error, since we do not know
the true correction. We estimate the lattice data on the physical point as

Vlatt,d,i(r;m
latt,i) → Vlatt,d,i(r;m) = Vlatt,d,i(r;m

latt,i) + [Vpt,i(r;m)− Vpt,i(r;m
latt,i)] ,

(3.21)
where m is the MS masses for the light quarks (u, d, s); Vpt is the finite mass correction
evaluated in perturbative QCD at N2LO [41–43]. More precisely, it is a function of
{r,m, µ} of the form

Vpt(r;m) = c1(r,m)α2
s + c2(r,m, µ)α3

s , (3.22)

which vanishes in the limit m → 0. In the above estimation, we take the renormaliza-
tion scale as µ = a−1

i and choose αs as 0.27, 0.23, 0.21 for i = 1, 2, 3, respectively, so
that it is close to αs(µ2 = a−2

i ). For the MS mass values of the light quarks, we use
mu = 2.2 MeV,md = 4.7 MeV,ms = 96 MeV. To model a nonperturbative effect,
we also substitute a constituent quark mass of 300 MeV for m in Eq. (3.21) as an
additional test (while the other parameters are kept fixed). Furthermore, since V RF

S

is obtained by treating the light quarks as massless, the finite mass effects are also
added to V RF

S as
V RF
S → V RF

S + Vpt(r;m) . (3.23)

For this Vpt, we take µ = 3 GeV and αs = 0.25. In this way, we estimate both
theoretical prediction and lattice result at the physical point.

• Matching range: We vary the range of the lattice result used in the matching as

ΛPDG
MS

r < 0.5 or 0.8 (3.24)

to examine the stability of the OPE truncated at O(r2).
27 If we include both κ’s and f ’s, the fit is destabilized due to a flat direction caused by this degeneracy.

We adopt the a2/r3-term rather than the tree-level correction since the tree-level correction becomes less
reliable when the matching range shifts to lower energy region.
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finite a h.o. US Mass range fact. scheme latt. spacing

Obtained value −2
+12 (t=−1)
−10 (t=1)

+2 (3ΛMS)

+0 (4ΛMS)
−0(MSmass

Constituent mass)
−3 (0.5)
−4 (0.8)

+3 ±4

Assigned error ±2 +12
−10 ±2 ±0 ±4 ±3 ±4

Table 7. Estimates of systematic errors in Analysis (II) from variations of the central value of
αs(M2

Z) in units of 10−4 when varying the analysis conditions. In the upper row, variations are
shown. (Detailed conditions are shown inside brackets). Mass effects are negligibly small in both
cases. Assigned systematic errors are shown in the lower row.

• Factorization scheme: In extracting the renormalon free part V RF
S , we rewrite the

integrand of VS by a complex function; see (B.2) in Appendix B. In general, there can
be other choices for this function, and in this regard, we have chosen a certain scheme.
A different scheme practically causes an O(r3) difference in the OPE prediction trun-
cated at O(r2); see Ref. [16] for details.28 To see an effect of this scheme dependence,
we add an A3r3-term in the fit so that this scheme dependence is absorbed. (Note
that, in order to determine coefficients up to higher orders in r, a wider fitting range
is required. We choose the range in this analysis as ΛPDG

MS
r < 0.8, where A2 and A3

are stable against variation of the range.29)

• Lattice spacing: The lattice spacing a, used to convert r and Vlatt into physical
units, has an error as shown in table 1, and has an additional error of 1.7 % due
to the uncertainty of the physical value of the Wilson-flow scale [44]. For the former
one, the error is etimated by the largest deviation detected from a set of six data,
{{a1 ± δa1, a2, a3}, {a1, a2 ± δa2, a3}, {a1, a2, a3 ± δa3}}, where δai denotes the error
shown in table 1. The error associated with the latter is estimated by shifting all the
a’s simultaneously by its uncertainty. By combining these two errors in αs(M2

Z) in
quadrature, the uncertainty from the lattice spacing is estimated.

The estimated systematic errors are summarized in table 7. Some error sources included
in Analysis (I) are absent thanks to the first-principle nature of this analysis. In addition,
most of the systematic errors are reduced compared to Analysis (I). In particular, the
higher order uncertainty is smaller since a shorter distance region is used; see Fig. 2. The
mass effects turn out to be negligibly small even if we consider the constituent quark mass.
This is because we are probing a sufficiently short-distance region. (Additional analyses on
systematic errors are given in Appendix F.)

As a result of Analysis (II), we obtain

αs(M
2
Z) = 0.1179± 0.0007(stat)+0.0014

−0.0012(sys) . (3.25)

3.4 Summary of results

We have performed two determinations of αs. In Analysis (I), which is a preparatory
analysis, we first took the continuum limit of the lattice data, and then we matched the

28 In Ref. [16], it is shown that the current choice is natural from the viewpoint of analyticity.
29 This range is chosen after studying the stability for various ranges.
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Fitting parameters

i (size) i = 1 (323 × 64) i = 2 (483 × 96) i = 3 (643 × 128)
d (Ni,d) d = 1 (4) d = 2 (3) d = 1 (6) d = 2 (4) d = 1 (8) d = 2 (5)

κ 0.19(15) −0.26(85) 0.27(12) −0.53(88) 0.27(11) −0.57(91)
c0 [GeV] 2.245(11) 2.300(87) 3.012(11) 3.099(89) 3.546(10) 3.631(86)

χ2 χ2/d.o.f. = 8.7/(30− 16) (global fit)
fd f1 = 0.0004(18), f2 = −0.025(32) (common to all i)
A2 A2 = −0.0091(54) GeV3 (common to all i, d)

Table 6. Fitting parameters in Analysis (II). Only statistic errors are shown. Ni,d expresses the
number of data points for direction d of the i-th lattice.

Figure 10. Determined values of κ. Blue (orange) data represent κi,d=1 (κi,d=2). Red curve
represents the running of CFαs(µ2) assuming ΛMS = ΛPDG

MS
and nf = 3. We plot κd,i at µ = a−1

i

for comparison.

To check if the tree-level correction works in a reasonable way, we show the determined
values of κ’s in Fig. 10. In this figure, we compare κd,i with its naively expected value,
CFαs(µ2), while taking the renormalization scale as µ = a−1

i . Note that CF = 4/3 is
multiplied since the LO result in the continuum theory is VQCD(r)|tree = −CFαs/r. In
plotting the running coupling, we assume ΛMS = ΛPDG

MS
and nf = 3. The determined κ’s

are consistent with the naively expected values within the statistical errors, which supports
validity of our analysis. Large statistical errors for κd=2,i stem from the small number of
data for d = 2.

We show the lattice result in the continuum limit [Eq. (3.16)] and the OPE prediction
[Eq. (3.17)] which are determined by the fit in Fig. 11. From the figure, one can see that
the analysis is performed reasonably, and that the OPE calculation and the lattice result
are mutually consistent in the examined region.
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Vcont
latt (r) = Vlatt,d,i(r) − κd,i ( 1

r
− [1

r ]
d,i) + fd

a2
i

r3
− c0,d,i

i=1,2,3 for lattice setup  a1, a2, a3

d=1, 2 directionVOPE(r) = VRF
S (r) + A2r2
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