Examples of finite-dimensional pointed Hopf algebras in positive characteristic

Nicolás Andruskiewitsch

Universidad of Córdoba, Argentina

Workshop on Quantum Symmetries, ICTP-SAIFR, São Paulo, October 16–18, 2019

Work with Iván Angiono, István Heckenberger

 $\Bbbk = \overline{\Bbbk}$ algebraically closed field.

Plan:

- I. Braided vector spaces and Nichols algebras.
- II. Nichols algebras of decompositions.
- **III.** Nichols algebras of blocks.
- **IV.** Nichols algebras of blocks + points.

- I. Braided vector spaces and Nichols algebras.
- Γ (finitely generated) abelian group, $\Bbbk\Gamma$ its group algebra.

 ${}^{\&\Gamma}_{\&\Gamma}\mathcal{YD}$ = category of Yetter-Drinfeld modules over ${}^{\&\Gamma}$:

- $V = \bigoplus_{g \in \Gamma} V_g$ is a Γ -graded vector space;
- V is a left Γ -module such that $g \cdot V_h = V_h$ (compatibility).

Definition. (V, c) braided vector space: V vector space $+c \in GL(V \otimes V)$ satisfies the braid equation

 $(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id}) = (\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c).$

 $V \in {}^{\Bbbk\Gamma}_{\Bbbk\Gamma} \mathcal{YD} \implies V$ braided vector space:

 $c(v \otimes w) = g \cdot w \otimes v,$ $v \in V_g, w \in V.$

If \mathcal{B} is a Hopf algebra in ${}^{\Bbbk\Gamma}_{\mathbb{k}\Gamma}\mathcal{YD}$, then $\mathcal{B}\#\Bbbk\Gamma$ is a usual Hopf algebra (here # is the Radford-Majid bosonization).

 $\mathcal{B}(V)$ is called the **Nichols algebra** of V.

Remark. $\exists \Omega : T(V) \to T^c(V)$ (quantum symmetrizer) such that $\mathcal{B}(V) = \text{image of } \Omega \implies \text{depends just on } c.$

Problem. Classify V in ${}^{k\Gamma}_{k\Gamma} \mathcal{YD}$ such that the Nichols algebra $\mathcal{B}(V)$ has finite dimension (or finite GKdim).

Note that $\mathcal{B}(V) = T(V)/\mathcal{I}(V)$ where $\mathcal{I}(V)$ is the maximal homogeneous Hopf ideal intersecting trivially $\Bbbk \oplus V$.

But $\mathcal{I}(V)$ is difficult to determine explicitly in general. One needs a variety of indirect techniques to deal with $\mathcal{B}(V)$.

II. Nichols algebras of decompositions.

Let $n \in \mathbb{N}_{>2}$, $\mathbb{I}_n = \{1, 2, \dots, n\}$ and W a braided vector space.

Definition. (Graña) A decomposition of W is a family of subspaces $(W_i)_{i \in \mathbb{I}_n}$, all $\neq 0$, such that

$$W = \bigoplus_{i \in \mathbb{I}_n} W_i, \qquad c(W_i \otimes W_j) = W_j \otimes W_i, \qquad i, j \in \mathbb{I}_n.$$

Remark. (Graña) $V_1, V_2 \in {}^{\Bbbk \Gamma}_{\& \Gamma} \mathcal{YD}, V = V_1 \oplus V_2.$

If
$$c_{V_2,V_1}c_{V_1,V_2} = c_{V_1,V_2}^2 = \operatorname{id}_{V_1 \otimes V_2} \implies \mathcal{B}(V) \simeq \mathcal{B}(V_1) \underline{\otimes} \mathcal{B}(V_2).$$

One goal is to study Nichols algebras of decomposable BVS (assuming the components are known).

Braided vector space (V,c) is of diagonal type if admits a decomposition whose components have dimension 1 (points). That is, \exists a basis $(x_i)_{i \in \mathbb{I}_{\theta}}$ of V and $\mathfrak{q} = (q_{ij})_{i,j \in \mathbb{I}_{\theta}}$ such that

$$c(x_i \otimes x_j) = q_{ij} x_j \otimes x_i, \qquad i, j \in \mathbb{I}_{\theta}.$$

We attach to q its Dynkin diagram (generalized): $\cdots \stackrel{q_i}{\circ} \frac{\widetilde{q}_{ij}}{\circ} \frac{q_j}{\circ} \cdots$

Here $\tilde{q}_{ij} := q_{ij}q_{ji}$. We will assume that the diagram is connected.

Remark. If $V \in \frac{\Bbbk \Gamma}{\Bbbk \Gamma} \mathcal{YD}$ is semisimple \implies is of diagonal type.

Theorem (char $\Bbbk = 0$). [Heckenberger] The classification of the $V \in \frac{\Bbbk\Gamma}{\Bbbk\Gamma}\mathcal{YD}$, G a finite abelian group, such that dim $\mathcal{B}(V) < \infty$ is known. **Remark.** The proof uses the technology of Weyl groupoids and (generalized) root systems. Given a decomposition

$$W = \bigoplus_{i \in \mathbb{I}_n} W_i, \qquad c(W_i \otimes W_j) = W_j \otimes W_i, \qquad i, j \in \mathbb{I}_n,$$

such that all W_i are **simple** Yetter-Drinfeld modules over a Hopf algebra H, then it has also a Weyl groupoid [A-Heckenberger-Schneider].

Theorem (char $\Bbbk = 0$). [Heckenberger-Vendramin] The classification of the $W \in {\Bbbk G \atop \& G} \mathcal{YD}$, *G* a finite group, with n > 1 such that dim $\mathcal{B}(W) < \infty$ is known.

III. Nichols algebras of blocks.

Blocks: Indecomposable but not simple braided vector spaces (the easiest ones): $\mathcal{V}(\epsilon, \ell) \in \frac{\mathbb{k}\mathbb{Z}}{\mathbb{k}\mathbb{Z}}\mathcal{YD}$, dim $\mathcal{V}(\epsilon, \ell) = \ell \geq 2$; in a basis $(x_i)_{i \in \mathbb{I}_{\ell}}$ the braiding is

$$c(x_i \otimes x_j) = \begin{cases} \epsilon x_1 \otimes x_i, & j = 1\\ (\epsilon x_j + x_{j-1}) \otimes x_i, & j \ge 2, \end{cases} \qquad i \in \mathbb{I}_{\ell}$$

Theorem (char k = 0). [AAH]

$$\mathsf{GKdim}\,\mathcal{B}(\mathcal{V}(\epsilon,\ell))<\infty\iff\ell=2\,\,\text{and}\,\,\epsilon\in\{\pm1\}.$$

 $\mathcal{V}(\epsilon,2)$ is called an ϵ -block.

Open (char k > 0): GKdim $\mathcal{B}(\mathcal{V}(\epsilon, \ell)) < \infty \iff$???

Proposition (char k = 0). [AAH] $\mathcal{B}(\mathcal{V}(1,2)) = k\langle x_1, x_2 | x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2 \rangle$ (Jordan plane).

 $\{x_1^a x_2^b : a, b \in \mathbb{N}_0\}$ is a basis of $\mathcal{B}(\mathcal{V}(1,2))$.

 $\operatorname{GKdim} \mathcal{B}(\mathcal{V}(1,2)) = 2; \ \mathcal{B}(\mathcal{V}(1,2)) \text{ is a domain.}$

Proposition (char k > 2). [Cibils-Lauda-Witherspoon] $\mathcal{B}(\mathcal{V}(1,2)) = k\langle x_1, x_2 | x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, x_1^p, x_2^p \rangle$ (Jordan plane in char p > 2).

 $\{x_1^a x_2^b : 0 \le a, b < p\} \text{ basis of } \mathcal{B}(\mathcal{V}(1,2)) \implies \dim \mathcal{B}(\mathcal{V}(1,2)) = p^2.$

Now $\mathcal{V}(-1,2)$. Let $x_{21} = \operatorname{ad}_c x_2 x_1 = x_2 x_1 + x_1 x_2$.

Proposition (char k = 0). [AAH] $\mathcal{B}(\mathcal{V}(-1,2)) = k\langle x_1, x_2 | x_1^2, x_2 x_{21} - x_{21} x_2 - x_1 x_{21} \rangle$ (super Jordan plane). $\{x_1^a x_{21}^b x_2^c : a \in \{0,1\}, b, c \in \mathbb{N}_0\}$ is a basis of $\mathcal{B}(\mathcal{V}(-1,2))$. GKdim $\mathcal{B}(\mathcal{V}(-1,2)) = 2$.

Proposition (char k > 2). [AAH2] $\mathcal{B}(\mathcal{V}(-1,2)) = k\langle x_1, x_2 | x_1^2, x_2 x_{21} - x_{21} x_2 - x_1 x_{21}, x_{21}^p, x_2^{2p} \rangle$ (super Jordan plane in char p > 2).

 $\{x_1^a x_{21}^b x_2^c : a \in \mathbb{I}_{0,1}, b \in \mathbb{I}_{0,p-1}, c \in \mathbb{I}_{0,2p-1} \} \text{ basis of } \mathcal{B}(\mathcal{V}(-1,2)) \\ \Longrightarrow \dim \mathcal{B}(\mathcal{V}(-1,2)) = 4p^2.$

IV. Nichols algebras of blocks + points. Let $V \in \frac{\Bbbk \Gamma}{\Bbbk \Gamma} \mathcal{YD}$ with a decomposition

$$V = V_1 \oplus \cdots \oplus V_{\theta}$$

such that each V_i is either an ϵ -block ($\epsilon^2 = 1$) or a point. We assume at least one block.

Theorem (char $\Bbbk = 0$). [AAH] The Nichols algebras GKdim $\mathcal{B}(V) < \infty \iff V$ belongs to a list.

One block and one point.

Let V_1 be an ϵ -block with basis $\{x_1, x_2\}$, $V_2 = \Bbbk x_3$ a point with label q_{22} and $V = V_1 \oplus V_2$. Let $q_{11} := \epsilon \in \{\pm 1\}$. For some $q_{12}, q_{21} \in \Bbbk^{\times}$, $a \in \Bbbk$, the braiding is of the form $(c(x_i \otimes x_j))_{i,j \in \mathbb{I}_3} =$

$$= \begin{pmatrix} \epsilon x_1 \otimes x_1 & (\epsilon x_2 + x_1) \otimes x_1 & q_{12}x_3 \otimes x_1 \\ \epsilon x_1 \otimes x_2 & (\epsilon x_2 + x_1) \otimes x_2 & q_{12}x_3 \otimes x_2 \\ q_{21}x_1 \otimes x_3 & q_{21}(x_2 + ax_1) \otimes x_3 & q_{22}x_3 \otimes x_3 \end{pmatrix}$$

Remark:
$$c_{|V_1 \otimes V_2}^2 = \text{id} \iff q_{21}q_{21} = 1 \text{ and } a = 0.$$

 $\tilde{q}_{12} = q_{21}q_{21} = interaction$ between the block V_1 and V_2 :

weak if $\tilde{q}_{12} = 1$, mild if $\tilde{q}_{12} = -1$, strong if $\tilde{q}_{12} \notin \{\pm 1\}$.

(char k = 0). The *ghost* is a normalized version of *a*:

$$\mathscr{G} = \begin{cases} -2a, & \epsilon = 1, \\ a, & \epsilon = -1. \end{cases} \quad \mathscr{G} \in \mathbb{N} \iff \mathsf{def.} \quad \mathsf{the ghost is } \mathit{discrete.} \end{cases}$$

Lemma. If the interaction is **strong**, then $GKdim \mathcal{B}(V) = \infty$. If it is mild and $\epsilon = 1$, then $GKdim \mathcal{B}(V) = \infty$.

Graphical description. Weak interaction: $\epsilon = 1: \square \underbrace{\mathscr{G}}_{422}^{q_{22}}, \square \underbrace{\mathscr{G}}_{422}^{q_{22}} \otimes \mathbb{G} = 0;$ $\epsilon = -1: \square \underbrace{\mathscr{G}}_{422}^{q_{22}}, \square \underbrace{\mathscr{G}}_{422}^{q_{22}} \otimes \mathbb{G} = 0;$ Mild interaction: $\epsilon = -1: \square \underbrace{(-,\mathscr{G})}_{422}^{q_{22}}$ Theorem (char k = 0). [AAH]

Let V be a braided vector space a block + a point. Then dim $\mathcal{B}(V) < \infty \iff V$ is as in the Table.

Nichols algebras of a block & point with finite GKdim, char0

V		GKdim			GKdim
$\mathfrak{L}(1, \mathscr{G})$	$\boxplus \underbrace{\mathscr{G}}_{-\!$	$\mathscr{G}+3$	$\mathfrak{L}(-1, \mathscr{G})$	$\boxplus \underline{\mathscr{G}} \overset{-1}{\bullet}$	2
$\mathfrak{L}_{-}(1, \mathscr{G})$	$\Box \underbrace{\mathscr{G}}_{-\!-\!-\!-\!-} \overset{1}{\bullet}$	𝔄 + 3	$\mathfrak{L}_{-}(-1,\mathscr{G})$	$\square \underline{\mathscr{G}} \underline{-1} \bullet$	$\mathscr{G}+2$
$\mathfrak{L}(\omega,1)$	$\blacksquare _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _$	2	\mathfrak{C}_1	$\square \underline{(-1,1)}^{-1} \bullet$	2

(char k = p > 2). Again the braiding is $(c(x_i \otimes x_j))_{i,j \in \mathbb{I}_3} =$

$$= \begin{pmatrix} \epsilon x_1 \otimes x_1 & (\epsilon x_2 + x_1) \otimes x_1 & q_{12}x_3 \otimes x_1 \\ \epsilon x_1 \otimes x_2 & (\epsilon x_2 + x_1) \otimes x_2 & q_{12}x_3 \otimes x_2 \\ q_{21}x_1 \otimes x_3 & q_{21}(x_2 + ax_1) \otimes x_3 & q_{22}x_3 \otimes x_3 \end{pmatrix}$$

V has **discrete ghost** if $a \in \mathbb{F}_p^{\times}$. In this case, the *ghost* is a normalized version of *a*: we pick a representative $r \in \mathbb{Z}$ of 2a by imposing

$$\mathbf{r} \in \begin{cases} \{1-p,\ldots,-1\}, & \epsilon = 1, \\ \{1,\ldots,2p-1\} \cap 2\mathbb{Z}, & \epsilon = -1; \end{cases} \quad \text{set } \mathscr{G} := \begin{cases} -\mathbf{r}, & \epsilon = 1, \\ \mathbf{r}, & \epsilon = -1. \end{cases}$$

Then \mathscr{G} is called the *ghost*.

Theorem (char k = p > 2). [AAH2]

Let V be a braided vector space a block + a point. If V is as in the Table, then dim $\mathcal{B}(V) < \infty$.

Finite-dimensional Nichols algebras of a block and a point

V	diagram	G	dim K	$\dim \mathcal{B}(V)$
$\mathfrak{L}(1, \mathscr{G})$	$\boxplus \underline{\mathscr{G}} \overset{1}{\bullet}$	discrete	p^{r+1}	p^{r+3}
$\mathfrak{L}(-1, \mathscr{G})$	$\boxplus \underbrace{\mathscr{G}}_{-1}^{-1}$	discrete	2 ^{r+1}	$2^{r+1}p^2$
$\mathfrak{L}(\omega,1)$	$\blacksquare____________________________________$	1	3 ³	$3^{3}p^{2}$
$\mathfrak{L}_{-}(1, \mathscr{G})$	$\Box \underline{\mathscr{G}} \frac{1}{\bullet}$	discrete	$2^{\frac{r}{2}}p^{\frac{r}{2}+1}$	$2^{\frac{r}{2}+2}p^{\frac{r}{2}+3}$
$\mathfrak{L}_{-}(-1,\mathscr{G})$	$\square \underline{\mathscr{G}} \underline{-1}_{\bullet}$	discrete	$2^{\frac{r}{2}+1}p^{\frac{r}{2}}$	$2^{\frac{r}{2}+3}p^{\frac{r}{2}+2}$
\mathfrak{C}_1	$\exists \frac{(-1,1)}{\bullet} $	1	16	64 <i>p</i> ²

To prove the Theorem, observe that

 $V = V_1 \oplus V_2 \implies \mathcal{B}(V) \rightleftharpoons \mathcal{B}(V_1) \implies \mathcal{B}(V) \simeq K \# \mathcal{B}(V_1),$ where $K = \mathcal{B}(V)^{\operatorname{co} \mathcal{B}(V_1)}$. By [HS, Prop. 8.6], $K \simeq \mathcal{B}(K^1)$ where $K^1 = \operatorname{ad}_c \mathcal{B}(V_1)(V_2) \in \frac{\mathcal{B}(V_1) \# \Bbbk \Gamma}{\mathcal{B}(V_1) \# \Bbbk \Gamma} \mathcal{YD}.$

To describe K^1 , we set

$$z_n := (\mathrm{ad}_c x_2)^n x_3, \qquad f_n := (\mathrm{ad}_c x_1)^n x_3, \qquad n \in \mathbb{N}_0.$$

By explicit computing the braiding, we see that this is mostly a symmetric or super symmetric algebra (up to a twist).

 $\mathfrak{L}(1,\mathscr{G}): \text{ Let } \mathscr{G} \in \mathbb{N} \text{ and } V \iff \boxplus \underbrace{\mathscr{G}}_{\bullet}^{1} \cdot \text{ Let } z_{n} := (\mathrm{ad}_{c} x_{2})^{n} x_{3}.$ $Proposition (char \Bbbk = 0). \quad [AAH].$ $\mathcal{B}(V) = \Bbbk \langle x_{1}, x_{2}, x_{3} | x_{2}x_{1} - x_{1}x_{2} + \frac{1}{2}x_{1}^{2},$ $x_{1}x_{3} - q_{12}x_{3}x_{1}$ $z_{t}z_{t+1} - q_{12}^{-1}z_{t+1}z_{t}, \quad 0 \leq t < \mathscr{G},$ $z_{1+\mathscr{G}} \rangle;$

 $B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{N}_0\}$ is a PBW-basis, hence $\mathsf{GKdim} \, \mathcal{B}(V) = \mathscr{G} + 3$

$$\mathfrak{L}(1,\mathscr{G})$$
: Let $\mathscr{G} \in \mathbb{N}$ and $V \iff \boxplus - \mathfrak{G} = \overset{1}{\bullet}$. Let $z_n := (\mathrm{ad}_c x_2)^n x_3$.

Proposition (char k > 2). [AAH2]

$$\begin{aligned} \mathcal{B}(V) &= \mathbb{k} \langle x_1, x_2, x_3 | x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, \\ & x_1 x_3 - q_{12} x_3 x_1 \\ & z_t z_{t+1} - q_{12}^{-1} z_{t+1} z_t, \quad 0 \le t < \mathscr{G}, \\ & z_{1} + \mathscr{G}, \\ & x_1^p, x_2^p, z_t^p, \quad 0 \le t < \mathscr{G} \rangle; \end{aligned}$$

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{I}_{0,p-1}\}$$

is a PBW-basis, hence
$$\dim \mathcal{B}(V) = p^{\mathscr{G}+3}.$$

$$\mathfrak{L}(-1, \mathscr{G})$$
: Let $\mathscr{G} \in \mathbb{N}$ and $V \iff \boxplus - \mathfrak{G} - \mathfrak{I}$. Let $z_n := (\operatorname{ad}_c x_2)^n x_3$.

Proposition (char k = 0). [AAH].

$$\begin{aligned} \mathcal{B}(V) &= \mathbb{k} \langle x_1, x_2, x_3 | x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, \\ & x_1 x_3 - q_{12} x_3 x_1 \\ & z_t z_{t+1} - q_{12}^{-1} z_{t+1} z_t, \quad 0 \le t < \mathscr{G}, \\ & z_t^2, \quad 0 \le t < \mathscr{G}, \\ & z_{1+\mathscr{G}}^{} \rangle; \end{aligned}$$

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : n_i \in \{0, 1\}, m_j \in \mathbb{N}_0\}$$

is a PBW-basis, hence
$$\mathsf{GKdim} \,\mathcal{B}(V) = 2.$$

$$\mathfrak{L}(-1, \mathscr{G})$$
: Let $\mathscr{G} \in \mathbb{N}$ and $V \iff \boxplus - \mathfrak{G} - \mathfrak{I}$. Let $z_n := (\mathrm{ad}_c x_2)^n x_3$.

Proposition (char k > 2). [AAH2]

$$\begin{split} \mathcal{B}(V) &= \mathbb{k} \langle x_1, x_2, x_3 | x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, \\ & x_1 x_3 - q_{12} x_3 x_1 \\ & z_t z_{t+1} - q_{12}^{-1} z_{t+1} z_t, \quad 0 \leq t < \mathscr{G}, \\ & z_t^2, \quad 0 \leq t < \mathscr{G}, \\ & z_{1+\mathscr{G}}, \\ & x_1^p, x_2^p; \end{split}$$

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : n_i \in \{0, 1\}, m_j \in \mathbb{I}_{0, p-1}\}$$

is a PBW-basis, hence
$$\dim \mathcal{B}(V) = 2^{\mathscr{G}+1} p^2.$$

One block and several points.

Theorem (char $\Bbbk = 0$). [AAH] Let $V = V_1 \oplus V_2 \oplus \cdots \oplus V_{\theta}$ be a decomposable braided vector space, V_1 a 1-block, V_2, \ldots, V_{θ} points, braidings as above. Then $GKdim \mathcal{B}(V) < \infty \iff$ for every connected component J of $V_2 \oplus \cdots \oplus V_{\theta}$, either $\mathscr{G}_J = 0$, or else V_J is as in the Table. Also,

$$\mathsf{GKdim}\,\mathcal{B}(V) = 2 + \sum_{J \in \mathbb{X}} \mathsf{GKdim}\,\mathcal{B}(K_J).$$

Let $\omega \in \mathbb{G}'_3$, $\mathfrak{d}_J = \operatorname{GKdim} \mathcal{B}(K_J)$.

V_J	type	\mathscr{G}_J	K_J	\mathfrak{d}_J
	A_1	discrete	$(A_1)^{\mathscr{G}_J+1}$	$\mathscr{G}_J + 1$
-1 0	A_1	discrete	$(A_1)^{\mathscr{G}_J+1}$	0
	A_1	1	A_2	0
$\left[\begin{array}{c} -1 \\ \circ \end{array} \right] \left[\begin{array}{c} -1 \\ \end{array} \right] \left[\begin{array}{c} -1 \\ \circ \end{array} \\ \\[\end{array}] \left[\begin{array}{c} -1 \\ \end{array} \\ \\[\end{array}] \left[\begin{array}{c} -1 \\ \end{array} \\ \\[\end{array}] \left[\begin{array}{c} -1 \\ \end{array} \\ \\[\end{array}] \left[\end{array} \\ \\[\end{array}] \left[\begin{array}{c} -1 \\ \end{array} \\ \\[\end{array}] \left[\end{array} \\ \\[\end{array} \\ \\[\end{array}] \left[\end{array} \\ \\[\end{array} \\ \\[\end{array} \\ \\[\end{array}] \left[\end{array} \\ \\[\end{array} \\ \\ \\[\end{array} \\ \\ $	$A_{ heta-1}$	$(1, 0, \dots, 0)$	$A_3, \ \theta = 3$ $D_{\theta}, \ \theta > 3$	0
$ \begin{array}{c c} -1 & -1 \\ \circ & -1 & \circ \end{array} $	A_2	(2,0)	D_4	0
$\begin{bmatrix} -1 & -1 \\ 0 & -1 \\ 0 \end{bmatrix} $	$\mathfrak{sl}(2 1)$	(1, 0)	$\mathfrak{g}(2,3)$	0
$\begin{bmatrix} -1 & \omega^2 & \omega \\ 0 & \underline{\omega^2} & 0 \end{bmatrix}$	$\mathfrak{sl}(2 1)$	(1,0) (0,1)	$\mathfrak{sl}(2 2)$ $\mathfrak{g}(2,3)$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathfrak{sl}(1 3)$	(1, 0, 0)	g(3,3)	0
$ \begin{array}{ c c c c c } -1 & \omega & \omega^2 & \omega^2 & \omega \\ 0 & -\omega & 0 & -\omega^2 & 0 \\ \hline \end{array} $	$\mathfrak{osp}(2,4)$	(1, 0, 0)	g(3,3)	0
$\circ \stackrel{-1}{\overset{r^{-1}}{\longrightarrow}} \stackrel{r}{\circ}$, $r otin \mathbb{G}_{\infty}$	$\mathfrak{sl}(2 1)$	(1,0)	$\mathfrak{sl}(2 2)$	2
$\circ \stackrel{-1}{\overset{r^{-1}}{\longrightarrow}} \stackrel{r}{\circ}$, $r \in \mathbb{G}'_N, N > 3$	$\mathfrak{sl}(2 1)$	(1,0)	$\mathfrak{sl}(2 2)$	0

A block and several points, finite GKdim.

Theorem (char $\Bbbk = 0$). [AAH] Let $V = V_1 \oplus V_2 \oplus \cdots \oplus V_{\theta}$ be a decomposable braided vector space as above, but now V_1 a -1-block. Then GKdim $\mathcal{B}(V) < \infty \iff$

essentially one more example called \mathfrak{C}_2 with diagram

$$\exists \underline{-(-1,1)} \bullet \underline{-1} \underline{-1} \circ$$

Theorem (char k = p > 2). [AAH2] The following Table gives examples of finite-dimensional Nichols algebras:

A block and several points, finite dim.

	diagram	$dim \mathcal{B}(V)$
$\mathfrak{L}(A_{ heta-1})$,	$\boxplus \underline{1} \overset{-1}{\bullet} \underline{-1} \overset{-1}{\circ} \cdots \overset{-1}{\circ} \underbrace{-1} \overset{-1}{\circ} \overset{-1}{\circ}$	$p^{2}2^{6}$
$\theta > 2$	heta-1 vertices	$p^2 2^{(\theta-1)(\theta-2)}$
$\mathfrak{L}(A_2,2)$	$\boxplus \underline{\overset{2}{}} \overset{-1}{\bullet} \underline{\overset{-1}{}} \overset{-1}{\overset{-1}{}} \overset{-1}{\overset{0}{}}$	$p^2 2^{12}$
$\mathfrak{L}(A(1 0)_2;\omega)$	$\boxplus \underline{1} \overset{-1}{\bullet} \underline{\omega} \overset{-1}{\circ}$	$p^2 2^7 3^4$
$\mathfrak{L}(A(1 0)_1;\omega)$	$\boxplus \underline{1} \stackrel{-1}{\bullet} \underline{\omega^2} \stackrel{\omega}{\circ} 0$	$p^2 2^4 3^2$
$\mathfrak{L}(A(1 0)_3;\omega)$	$\boxplus \underline{1} \overset{\omega}{\bullet} \underline{\omega^2} \overset{-1}{\circ}$	$p^2 2^7 3^4$
$\mathfrak{L}(A(1 0)_1;r)$	$\boxplus \underline{-1} \stackrel{-1}{\bullet} \frac{r^{-1}}{r} \stackrel{r}{\circ}$, $r \in \mathbb{G}'_N, N > $ 3	$p^2 2^4 N^2$
$\mathfrak{L}(A(2 0)_1;\omega)$	$\blacksquare ____________________________________$	$p^2 2^8 3^9$
$\mathfrak{L}(D(2 1);\omega)$	$\boxplus \underline{-1} \overset{-1}{\bullet} \underline{-\omega} \overset{\omega^2}{\circ} \underline{-\omega} \overset{\omega^2}{\circ} \omega^2$	$p^2 2^8 3^9$

Final remarks. (i). The Nichols algebras in char p > 2 presented above can be realized in ${}^{\Bbbk G}_{\mathcal{K}G} \mathcal{YD}$ with *G* finite. Thus we obtain new examples of pointed Hopf algebras in char p > 2 not of diagonal type.

(ii). There are abelian groups G and $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ of the form

$$V = \bigoplus_{1 \le i \le \theta} V_i, \qquad c(V_i \otimes V_j) = V_j \otimes V_i, \quad 1 \le i, j \le \theta,$$

such that $GKdim \mathcal{B}(V) < \infty$ but some of the V_i 's are neither blocks nor points. More precisely the V_i 's could be semisimple but indecomposable in ${}^{\Bbbk G}_{\mathcal{K}G}\mathcal{YD}$. These are called **pale blocks**. See the Appendix of [AAH] and [A-A-Moya], in preparation. [AAH] N. Andruskiewitsch, I. Angiono and I. Heckenberger. *On finite GK-dimensional Nichols algebras over abelian groups*. Mem. Amer. Math. Soc., to appear.

[AAH2] N. Andruskiewitsch, I. Angiono and I. Heckenberger. *Examples of finite-dimensional Nichols algebras over abelian groups in positive characteristic*, to appear.

[CLW] C. Cibils, A. Lauve, S. Witherspoon, *Hopf quivers and Nichols algebras in positive characteristic*, Proc. Amer. Math. Soc. 137(12) (2009) 40294041.

[HS] I. Heckenberger and H.-J Schneider, YetterDrinfeld modules over bosonizations of dually paired Hopf algebras, Adv. Math.
244 (2013), 354–394.