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k = k algebraically closed field.

Plan:

I. Braided vector spaces and Nichols algebras.
II. Nichols algebras of decompositions.

ITI. Nichols algebras of blocks.

IVV. Nichols algebras of blocks + points.



I. Braided vector spaces and Nichols algebras.
I' (finitely generated) abelian group, kI its group algebra.

ﬁ;ﬁyp = category of Yetter-Drinfeld modules over kI

o VV = @gep\/g IS a I'-graded vector space;
e VV is a left I'-module such that ¢g-V;, =V}, (compatibility).

Definition. (V,c) braided vector space:
V' vector space 4+c € GL(V ® V') satisfies the braid equation

(c®id)(id®c)(c®id) = (i[d®c)(c® id) (id ®c).

V € ELyD == V braided vector space:

cv@w) =g -wwv, v e Vy,weV.



If B is a Hopf algebra in £1.YD, then B#kI is a usual Hopf algebra
(here # is the Radford-Majid bosonization).

Definition. V € FLyD == 3 unique (up to isomorphism)
B(V) = ®penB8"(V) (graded) Hopf algebra in £LYD such that

BO(V) ~ k, BY (V) ~V,
B(V) =k(V), Prim(B(V)) = BYH(V).

B(V) is called the Nichols algebra of V.

Remark. dQ : T(V) — T°(V) (quantum symmetrizer)
such that B(V) = image of 2 —= depends just on c.



Problem. Classify V in {L.)D such that the Nichols algebra B(V)
has finite dimension (or finite GKdim).

Note that B(V) =T(V)/Z(V) where Z(V) is the maximal homo-
geneous Hopf ideal intersecting trivially k ® V.

But Z(V) is difficult to determine explicitly in general. One needs
a variety of indirect techniques to deal with B(V).



II. Nichols algebras of decompositions.
Let n € N>, In ={1,2,...,n} and W a braided vector space.

(Grafa) A decomposition of W is a family of sub-
spaces (W;);er,, all # 0, such that

W = ®je1, Wi, c(W; @ W;) = W; @ W, i,J € In.

(Grafa) Vi,Vo € £5-VD, V =V1 & V5.

If CVo V1CVy Vo — 6‘2/1,‘/2 = idV1®V2 —— B(V) ~ B(V1)B(V>5).

One goal is to study Nichols algebras of decomposable BVS
(assuming the components are known).



Braided vector space (V,c) is of diagonal type if admits a
decomposition whose components have dimension 1 (points).
That is, 3 a basis (z;);er, of V and q = (g;j); jer, such that
C(QZZ' 024 CUj) = Qij X4 & x4, 1,9 € .
: L . _ 4 Gij 9
We attach to q its Dynkin diagram (generalized): ---0—0 ---
Here g;; 1= q;;q5;- We will assume that the diagram is connected.

If V € fLYD is semisimple == is of diagonal type.

Theorem (char k = 0). [Heckenberger]
The classification of the V €& ﬁflm), G a finite abelian group,
such that dimB(V) < oo is known.



Remark. The proof uses the technology of Weyl groupoids and
(generalized) root systems. Given a decomposition

W = @jcr, Wi, c(W; @ W;) =W; @ W, i,J € In,

such that all W, are simple Yetter-Drinfeld modules over a Hopf
algebra H, then it has also a Weyl groupoid [A-Heckenberger-
Schneider, Heckenberger-Schneider].

Theorem (char k = 0). [Heckenberger-Vendramin]
The classification of the W € ¥4YD, G a finite group, with n > 1
such that dimB(W) < oo is known.



ITII. Nichols algebras of blocks.

Blocks: Indecomposable but not simple braided vector spaces
(the easiest ones): V(e £) € £2YD, dimV(e,¢) = £ > 2; in a basis
(z;)ier, the braiding is

6513]_@33@‘, ]:1 .
clx; Qx;) = 1 € Iy
(2 @ ) {(ij—l-wjl)@wi, j=>2, ¢

Theorem (char k = 0). [AAH]

GKdimB(V(e, £)) < oo < £=2 and e € {£1}.
V(e,2) is called an e-block.

Open (char k > 0): GKdimB(V(e,?)) < co < 777



Proposition (char k = 0). [AAH]
B(V(1,2)) =k{xq,xp|ro01 — T120 + %m%) (Jordan plane).

{x%2% 1 a,b € Ng} is a basis of B(V(1,2)).
GKdimB(V(1,2)) = 2; B(V(1,2)) is a domain.
Proposition (char k > 2). [Cibils-Lauda-Witherspoon]
B(V(1,2)) = k(z1, za|wory — z120 + 327,24, 25)

(Jordan plane in char p > 2).

{z$2% : 0 < a,b < p} basis of B(V(1,2)) = dimB(V(1,2)) = p°.
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Now V(—l, 2). Let o1 = adcxox1 = Tox] + T122.

Proposition (char k = 0). [AAH]

B(V(-1,2)) = k(z1,z2|2%, zom21 — 22172 — $1721)
(super Jordan plane).

{z928,25 1 a € {0,1},b,c € Ng} is a basis of B(V(-1,2)).
GKdim B(V(—1,2)) = 2.

Proposition (char k > 2). [AAH2]

2
B(V(-1,2)) = k(z1,x5|2%, 20701 — T21T0 — 1221, Thy, 75 )
(super Jordan plane in char p > 2).

{x‘l‘azglxg rac€lp1,b€lpy_1,c€lpop—1} basis of B(V(-1,2))
= dim B(V(-1,2)) = 4p2.
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IV. Nichols algebras of blocks + points.
Let V € £-YD with a decomposition

V=Vi& &V

such that each V; is either an e-block (e2 = 1) or a point.
We assume at least one block.

Theorem (char k = 0). [AAH]
The Nichols algebras GKdimB(V) < co <= V belongs to a list.
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One block and one point.

Let V7 be an e-block with basis {z1,z2}, Vo = kz3 a point with
label goo and V. = V3 & V. Let q11 := € € {£1}. For some
912,921 € k*, a € k, the braiding is of the form (c(z; ®x;)); je1, =

ex] @ x1 (exo+ 1) ®xz1 qrox3 @271
= | ex1 @2 (exo+ 1)@z  q1o23 R 2
2171 ® 3 go1(xo +ax1) @23 o003 ® 3

2

Remark: C\V1®V2

= id <= ¢q21921 =1 and a = 0.

q1> = go19>1 = Interaction between the block V7 and V5:

weak if g1o =1, if g0 = —1, strong if q1» ¢ {:|:1}.
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(chark = 0). The ghost is a normalized version of a:

—2 =1
g = { o ’1 ¢ € N < 4ef the ghost is discrete.
a, e = —1.

Lemma. If the interaction is strong, then GKdim B(V) = ~o.
If it is and e = 1, then GKdim B(V) = oc.

Graphical description. Weak interaction:

e=1: B g q%Q, H 3% when ¥ = 0;

_ . ¢ 422 q22 o

e=—1: B o H o when ¥ = 0;
re=—1: H (=%) 132
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Theorem (char k = 0). [AAH]

Let V be a braided vector space a block + a point. Then
dimB(V) < oo <= V is as in the Table.

Nichols algebras of a block & point with finite GKdim, charO

|4 GKdim Vv GKdim
2(1,9) | B9 o | 9+3 || £(-1,9) | B¢ & 2
(1,9 | B9 | 94+3 | £.(-1,9) | B9 & | 9402
S(w,1) | B—1 % 2 ¢ g bb 2
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(chark = p > 2). Again the braiding is (c(z; ® z;)); jel, =

€x] @ x1 (exo+ 1) ®x1 q1ox3 @ 27
= | er1 ®zo (exo+ 1) ®zp q1073 @ 22
2171 ® 23 go1(x0 +ax1) @3 goor3 ® 3

V has discrete ghost if a € IF;.
In this case, the ghost is a normalized version of a: we pick a
representative r € Z of 2a by imposing

r e { Py~ 1}, € ’ set ¥ = t ¢ ’
(1,....2p—1YN2Z, e=—1; .

Then ¥ is called the ghost.
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Theorem (char k =p > 2). [AAH2]
Let V be a braided vector space a block + a point. If V is as
in the Table, then dimB(V) < .

Finite-dimensional Nichols algebras of a block and a point

|%4 diagram g dim K dimB(V)
£(1,9) B % discrete pr+1 pr+3
e(-1,9) | B 7 "o |discrete | 2t+1 | ortlp2
e(w,1) | B-1 % 1 33 33p?
£ (1,9) 59 2 discrete Q%p%_l_l 2%+2p%+3
£ (-1,9 | & g _01 discrete 2%+1p% 2%+3p%+2
¢, gL 16 64p2
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To prove the Theorem, observe that

V=ViegW — B(V) = B(Vl) — B(V) ~ K#B(Vl),
where K = B(V)COB(Vl). By [HS, Prop. 8.6], K ~ B(K1) where
B(V;)#kI
K =ad:B(V1)(V2) € gy RE VD,
To describe K1, we set

zn i= (adcxo) " 23, frn = (adcxq) " 23, n € Np.

By explicit computing the braiding, we see that this is mostly a
symmetric or super symmetric algebra (up to a twist).
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£(1,9) LetZeNandV ew B— 2§ Let 2, := (adezo)"z3.

Proposition (char k = 0). [AAH].

1
B(V) =k(xy,x2,z3|r001 — 2120 + Ea?%,

L1X3 — q1223L1

—1
“tZt4+1 — 412 #t+1%t;
2149);

ng .
t2pY : my,n; € No}

m m n mn
B = {zq 'z, ngg 2
is a PBW-basis, hence

GKAimB(V) =% + 3

0<t<¥9,
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2(1,9) LetZ eNand V e B— 4 e Let zn = (ad¢xo)"x3.

Proposition (char k > 2). [AAH2]

1
B(V) =k(z1,x0,z3|x001 — 2120 + Ew%,

L1L3 — 41231
—1
Rt2t+1 — 412 ?t+17ts 0<t< g?

21495
xzi,a:g,zf, 0<t<Y¥9);

m m n mn n .
Is a PBW-basis, hence

dimB(V) = p?t+3.
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8(—1.9) LetZ eNandV «w B—2 "o Let 2, := (adexo)"z3.

Proposition (char k = 0). [AAH].

1
B(V) =k(x1,x0,z3|ro01 — 122 + 5:13%,

L1X3 — 4122321

—1
ZtZi41 — Q10 %1%, 0t < g,
ztz, 0<t<Y¥Y,

Z149);

B = {:CTla??Qan;g e Z?lzgo LN, < {O, 1},mj c No}
Is a PBW-basis, hence
GKdim B(V) = 2.
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8(—1,9) LetZ eNandV «w B—2 ¢ . Let 2, := (adez2)"z3.

Proposition (char k > 2). [AAH2]

1
B(V) =k(z1,x0,z3|x001 — 2120 + Ew%,

L1X3 — 4127321

—1
“t2t+1 — 912 *At+1%ts 0<t< (Jﬂ)
21;2, 0<t<Y¥,

“14+9
p _Dp.

wl,ibz,
B = {lexng;g .21120% 1n; €{0,1},m; € g1}
iIs a PBW-basis, hence
dim B(V) = 29+1,2,
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One block and several points.

Theorem (char k = 0). [AAH] Let V =Vi Vo @ --- P Vy be
a decomposable braided vector space, Vi a 1l-block, Vo, ...,V
points, braidings as above. Then

GKdimB(V) < oo <= for every connected component J of

Vo @ - Vpy, either ¥; =0, or else Vj is as in the Table. Also,

GKAImMB(V) =2+ 3 GKdim B(K}).
JeX

Let w € Gk, d; = GKdim B(XK ).
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A block and several points, finite GKdim.

Vi type 9 K 07

s Aq discrete (A))%*L | 9,4+ 1
o A, discrete (Ap)9+1 0
5 Ay 1 Ao 0
it St T Ag_1 | (1,0,....0) | A3, 6 =3 0

Dy, 0 >3

S—13 As (2,0) Da 0
P s((2]1) (1,0) a(2,3) 0
PR s1(2]1) (1,0) s1(2]2) 0
(0,1) a(2,3) 0
oW G w s1(1]3) (1,0,0) (3, 3) 0
ow Wy 0sp(2,4) | (1,0,0) 4(3,3) 0
S5, ¢ G s1(2]1) (1,0) s1(2]2) 2
oS, reGy, N >3 | sl(2]1) (1,0) s1(2]2) 0
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Theorem (char k = 0). [AAH] Let V =Vip Vo & ---d Vy be
a decomposable braided vector space as above, but now Vi a
—1-block. Then GKdimB(V) < o <—

essentially one more example called €, with diagram
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Theorem (char k = p > 2). [AAH2] The following Table gives

examples of finite-dimensional Nichols algebras:

A block and several points, finite dim.

V diagram dimB(V)
£(Ag_1), Blelo . ..o 1% p226
6> 2 0 — 1 vertices p220—-1)(0-2)
(A, 2) [ 2 o —L 4 p2012
C(A(1]0)2; w) Bl e @ 5 p22734
(A(1]0)1; w) Bl e 22432
£(A(1]0)3; w) Bl s p22734
S(A(L[0)1;r) | B-L e 6, reGy,N>3 | p224N2
£(A(2/0)1; w) Ml ew e p22839
2(D(2]1); w) Mol e w Y p22839
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Final remarks. (i). The Nichols algebras in char p > 2 presented
above can be realized in ﬁgyp with G finite. Thus we obtain new
examples of pointed Hopf algebras in char p > 2 not of diagonal
type.

(ii). There are abelian groups G and V € Egyp of the form

V = ®1<i<Vi; c(VieV)=V,;V;, 1<i4,j<06,

such that GKdimB(V) < oo but some of the V;'s are neither
blocks nor points. More precisely the V;'s could be semisimple
but indecomposable in ﬁigyD. These are called pale blocks. See
the Appendix of [AAH] and [A-A-Moya], in preparation.
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