Motivation 00 I(2+1)HDN 000 ZZZ

Conclusion 00

Anomalous ZZZ coupling as a sign of dark CP violation in the Three-Higgs Doublet Model

Dorota Sokołowska

International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal, Brazil

> Dark Universe Workshop ICTP-SAIFR, São Paulo, Brazil 22.10.2019

with A. Cordero-Cid, J. Hernandez-Sanchez, V. Keus, S. Moretti, D. Rojas work in progress

Moti	vati	ioi
•0		

I(2 +	1)HDM
000	

Conclusion 00

Motivation

• Standard Model:

- Higgs particle found at the LHC in 2012 \rightarrow very SM-like
- \bullet no signal for New Physics as of 2019
- several issues are still not explained by the SM

• Dark Matter:

- \bullet if Standard Cosmological Model correct: 85% mass missing
- only gravitational interaction observed
- nature of DM unknown
- CP violation:

...

- CPv in the SM not enough to explain BAU
- Many competing models on the market
 - what are distinct signatures?

Motivation	I(2+1)HDM	ZZZ	Conclusion
0•	000	0000	00

3HDM

Three-Higgs Doublet Models:

- three SU(2) doublets, ϕ_1, ϕ_2, ϕ_3
- richer symmetry groups than the 2HDMs
- richer particle spectrum
- stable DM candidate and CP violation \rightarrow unlike the 2HDM
- in this talk

 $\mathbb{Z}_2\text{-symmetric 3HDM}$ with Two Inert and One Higgs doublet:

I(2+1)HDM

3/12

M	0	ti	v	a	t	0	n	
00	С							

I(2 +	1)HDM
•00	

Conclusion 00

I(2+1)HDM

 Z_2 -symmetry in I(2+1)HDM:

 $\phi_1 \to -\phi_1, \ \phi_2 \to -\phi_2, \ \phi_3 \to \phi_3, \ \text{SM fields} \to \text{SM fields}$

 Z_2 -invariant potential:

$$V = \sum_{i}^{3} \left[-|\mu_{i}^{2}|(\phi_{i}^{\dagger}\phi_{i}) + \lambda_{ii}(\phi_{i}^{\dagger}\phi_{i})^{2} \right] + \sum_{ij}^{3} \left[\lambda_{ij}(\phi_{i}^{\dagger}\phi_{i})(\phi_{j}^{\dagger}\phi_{j}) + \lambda_{ij}'(\phi_{i}^{\dagger}\phi_{j})(\phi_{j}^{\dagger}\phi_{i}) \right] \\ + \left(-\mu_{12}^{2}(\phi_{1}^{\dagger}\phi_{2}) + \lambda_{1}(\phi_{1}^{\dagger}\phi_{2})^{2} + \lambda_{2}(\phi_{2}^{\dagger}\phi_{3})^{2} + \lambda_{3}(\phi_{3}^{\dagger}\phi_{1})^{2} + h.c. \right) \\ + \left(\lambda_{4}(\phi_{3}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{3}) + \lambda_{5}(\phi_{1}^{\dagger}\phi_{2})(\phi_{3}^{\dagger}\phi_{3}) + \lambda_{6}(\phi_{1}^{\dagger}\phi_{2})(\phi_{1}^{\dagger}\phi_{1}) \\ + \lambda_{7}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{8}(\phi_{3}^{\dagger}\phi_{1})(\phi_{3}^{\dagger}\phi_{2}) + h.c. \right)$$

- 21 parameters in V
- explicit CP violation: $\mu_{12}^2, \lambda_1, \lambda_2, \lambda_3$ are complex

 \rightarrow 3 independent CPv phases

- Yukawa interaction: "Model I"-type (only ϕ_3 couples to fermions)
- explicit Z_2 -symmetry

ation	I(2+1)HDM	ZZZ	Conclusion
	000	0000	00

Particle Content

 Z_2 -invariant vacuum state:

$$\phi_{1} = \begin{pmatrix} H_{1}^{+} \\ \frac{H_{1}^{0} + iA_{1}^{0}}{\sqrt{2}} \end{pmatrix}, \quad \phi_{2} = \begin{pmatrix} H_{2}^{+} \\ \frac{H_{2}^{0} + iA_{2}^{0}}{\sqrt{2}} \end{pmatrix}, \quad \phi_{3} = \begin{pmatrix} G^{+} \\ \frac{v + h + iG^{0}}{\sqrt{2}} \end{pmatrix}$$

- ϕ_3 SM-like doublet with SM-like Higgs h
- Z_2 -odd (inert) doublets ϕ_1 and ϕ_2 mix:

$$\begin{pmatrix} S_1\\S_2\\S_3\\S_4 \end{pmatrix} = \mathbf{R}_{4\times 4} \begin{pmatrix} H_1^0\\H_2^0\\A_1^0\\A_2^0 \end{pmatrix}, \quad \begin{pmatrix} S_1^\pm\\S_2^\pm \end{pmatrix} = R_{2\times 2} \begin{pmatrix} H_1^\pm\\H_2^\pm \end{pmatrix}$$

• 4 neutral Z_2 -odd particles

mixing between states of opposite CP-parity

• $S_1 - \mathbf{DM}$ candidate, other dark particles heavier

 \rightarrow interesting DM phenomenology

Mo	ti	va	ti	0	n
00					

I(2+1)HDM	
000	

Conclusion 00

CPV in the Dark Sector

- inert scalars do not couple to fermions
 - \rightarrow CKM matrix as in the SM
- inert scalars have mixed CP-parity

 \rightarrow different interaction with Z compared to CPc 3HDM:

- CPv 3HDM: ZS_1S_2 , ZS_1S_3 , ZS_1S_4 , ZS_2S_3 , ZS_2S_4 , ZS_3S_4
- CPc 3HDM: ZH_1A_1 , ZH_2A_1 , ZH_1A_2 , ZH_2A_2
- \rightarrow but how does it differ from CPc 3HDM+singlet?:
- ZH_1A_1 , ZH_1A_2 , ZH_2A_1 , ZH_2A_2 , ZH_3A_1 , ZH_3A_2
- what is a clear signature of dark CP violation?

Motivation	I(2+1)HDM	ZZZ	Conclusion
00	000	0000	00

ZZZ vertex

$$e\Gamma_{ZZZ}^{\alpha\beta\mu} = ie\frac{p_1^2 - M_Z^2}{M_Z^2} \left[f_4^Z (p_1^{\alpha}g^{\mu\beta} + p_1^{\beta}g^{\mu\alpha}) + f_5^Z \epsilon^{\mu\alpha\beta\rho}(p_2 - p_3)_{\rho} \right]$$

vertices forbidden by Z_2 symmetry: $ZZS_i, G^0ZS_i \Rightarrow$ no SG^0Z, SSZ triangle/bubble diagrams vertices allowed by Z_2 symmetry: $ZS_iS_j \Rightarrow$

only SSS triangle diagrams remain

I(2 +	1)HDM	
000		

Formula for f_4

in the LoopTools notation

$$f_4 = \frac{1}{e} \frac{1}{2\pi^2} \frac{M_Z^2}{q^2 - M_Z^2} \sum_{i,j,k}^{4} \frac{g_{ijk}}{g_{ijk}} \epsilon_{ijk} C_{002}(M_Z^2, M_Z^2, q^2, m_i^2, m_j^2, m_k^2)$$

 g_{ijk} is given by scalar-Z couplings:

$$g_{ijk} = |g_{ZS_iS_j}| |g_{ZS_jS_k}| |g_{ZS_kS_i}| \sim R_{ij}R_{jk}R_{kj}$$

where R_{ij} are elements of the rotation matrix

 \Rightarrow if there is no CP mixing then $g_{ijk} \rightarrow 0$

8/12

Intivation	I(2+1)HDM	ZZZ	Conclusion
00	000	0000	00

Asymmetries

ZZ production at e^+e^- colliders: $e^-(\sigma)e^+(\bar{\sigma}) \to Z(\lambda)Z(\bar{\lambda})$

 $\lambda, \bar{\lambda}$ – helicities of $Z, \sigma, \bar{\sigma}$ – helicities of e^-, e^+

$$A_1 = \frac{\sigma_{+,0} - \sigma_{0,-}}{\sigma_{+,0} + \sigma_{0,-}} \quad \sigma_{\lambda,\bar{\lambda}} = \sum_{\sigma,\bar{\sigma}} \mathcal{M}_{\sigma,\bar{\sigma};\lambda,\bar{\lambda}}(\theta) \mathcal{M}^*_{\sigma,\bar{\sigma};\lambda,\bar{\lambda}}(\theta)$$

Asymmetry depends on the ZZZ coupling: $A_1 = -4\beta\gamma^4 \left[(1+\beta^2)^2 - (2\beta\cos\theta)^2 \right] \mathcal{F}_1(\beta,\theta) \operatorname{Im} f_4$

Motivation	I(2+1)HDM	ZZZ	Conclusion
00	000	0000	00

f_4 vs masses

21 parameters in the potential \Rightarrow large parameter space to explore

$f_4 \sim g_{ijk} \sim R_{ij} R_{jk} R_{ki}$

- amount of CP violation (\Rightarrow size of f_4) related to mixing between states
- this is related to mass splittings

• large mass splittings preferred

• Problem in CPv 2HDM with h_1, h_2, h_3 :

LHC points towards an alignment limit

$$\Rightarrow h_1 = h_{SM} \text{ and } R_{12} \to 1, R_{23} \to 0, R_{31} \to 0 \Rightarrow g_{ijk} \to 0$$

• no such requirement in the 3HDM

M	ot	iv	at	ic	bn
0	С				

(2+	1)HDM		
000			

Conclusion ●O

Conclusions and Outlook

- **3HDM** with Z_2 symmetry: I(2+1)HDM
- interesting model with rich phenomenology
- CP violation in the dark sector
- non-zero contribution to ZZZ vertex test of CP violation
- large mixing and mass splittings preferred

Conclusion

References

• 3HDM

- [V. Keus, S. King, S. Moretti JHEP 1401 (2014) 052, arXiv:1408.0796; V. Keus, S. F. King,
- S. Moretti and D. Sokolowska, JHEP 1411 (2014) 016, JHEP 1511, 003 (2015), V. Keus, S. F.
- King, S. Moretti and D. Sokolowska, JHEP 1511, 003 (2015), A. Cordero-Cid, J.
- Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. Rojas and D. Sokolowska, JHEP 1612 (2016) 014]

• ZZZ in multi-scalar models

[K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B282, 253 (1987); C.
Gounaris, J. Layssac, F. Renard, Phys. Rev. D61 (2000) 073013; C. Gounaris, J. Layssac, F.
Renard, Phys. Rev. D62 (2000) 073012; B. Grzadkowski, O.M. Ogreid, P. Osland, JHEP1605 (2016) 025;]

• Numerical Tools

[LanHEP, arXiv:1412.5016 [physics.comp-ph]; CalcHEP 3.4, Comput. Phys. Commun. 184 (2013) 1729; LoopTools, Comput. Phys. Commun. 118 (1999) 153]

←□ → < □ → < □ → < □ → < □ → < □ → < □ → </p> ↓ → ○ </p

BACKUP SLIDES

Asymmetry A_1

$$\begin{split} A_1^{ZZ} &= -4\beta\gamma^4 \left[(1+\beta^2)^2 - (2\beta\cos\Theta)^2 \right] \mathcal{F}_1(\beta,\Theta) \,\Im f_4^Z, \\ \mathcal{F}_1(\beta,\Theta) &= \frac{N_0 + N_1\cos\Theta + N_2\cos^2\Theta + N_3\cos^3\Theta}{D_0 + D_1\cos\Theta + D_2\cos^2\Theta + D_3\cos^3\Theta + D_4\cos^4\Theta} \end{split}$$

$$N_0 = (1 + \beta^2) \xi_1, \qquad N_1 = -2\beta^2 (\xi_1 - \xi_2), \qquad (1a)$$

$$N_2 = (\beta^2 - 3) \xi_1, \qquad N_3 = 2 (\xi_1 - \xi_2), \qquad (1b)$$

$$D_0 = (1 + \beta^2)^2 (\xi_3 + \xi_4), \qquad D_1 = 2 (1 - \beta^4) \xi_3, \qquad (1c)$$

$$D_2 = -(3+6\beta^2 - \beta^4)(\xi_3 + \xi_4), \quad D_3 = -4(1-\beta^2)\xi_3, \quad (1d)$$

$$D_4 = 4(\xi_3 + \xi_4),$$
 (1e)

with

$$\xi_1 = \sin \theta_W \cos \theta_W (1 - 6\sin^2 \theta_W + 12\sin^4 \theta_W), \qquad (2a)$$

$$\xi_2 = 16\sin^7 \theta_W \cos \theta_W, \tag{2b}$$

$$\xi_3 = 1 - 8\sin^2\theta_W + 24\sin^4\theta_W - 32\sin^6\theta_W,$$
 (2c)

$$\xi_4 = 32\sin^8\theta_W. \tag{2d}$$

Other asymmetries

