Point modules

Representations of Lestrygonian Nichols algebra

Dirceu Bagio

(In collaboration with N. Andruskiewitsch, D. Flores and S. Flora)

Federal University of Santa Maria, Brazil

Workshop on Quantum Symmetries

Simple modules 000 Point modules

Sketch

\diamond The Lestrygonian Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G})).$

Simple modules 000 Point modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Sketch

- \diamond The Lestrygonian Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.
- \diamond Finite dimensional simple modules of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.

Simple modules 000 Point modules

Sketch

- \diamond The Lestrygonian Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G})).$
- \diamond Finite dimensional simple modules of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.
- \diamond Point modules of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.

Simple modules 000 Point modules

Sketch

- \diamond The Lestrygonian Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G})).$
- \diamond Finite dimensional simple modules of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.
- \diamond Point modules of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.

Simple modules 000 Point modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation

 $\diamond \ \mathbb{k}$ is an algebraically closed field, ch $\mathbb{k} = 0$.

Simple modules 000 Point modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation

- $\diamond \ \mathbb{k}$ is an algebraically closed field, ch $\mathbb{k} = 0$.
- $\diamond\,$ The natural numbers are denoted by $\mathbb N$ and $\mathbb N_0=\mathbb N\cup 0.$

Notation

- $\diamond \ \mathbb{k}$ is an algebraically closed field, ch $\mathbb{k} = 0$.
- $\diamond~$ The natural numbers are denoted by $\mathbb N$ and $\mathbb N_0=\mathbb N\cup 0.$
- \diamond If $k < t \in \mathbb{N}_0$, then $\mathbb{I}_{k,t} = \{n \in \mathbb{N}_0 : k \leq n \leq t\}$, and $\mathbb{I}_t := \{1, \ldots, t\}.$

Simple modules

Point modules

Yetter-Drinfeld modules Let H be a Hopf algebra.

Simple modules

Point modules

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a vector space V such that V is an H-module and an H-comodule and the following compatibility is true:

Simple modules

Point modules

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a vector space V such that V is an H-module and an H-comodule and the following compatibility is true:

$$\rho(h \cdot v) = h_{(1)}v_{(-1)}S(h_{(3)}) \otimes h_{(2)} \cdot v_{(0)}, \quad h \in H, v \in V.$$

Simple modules

Point modules

Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a vector space V such that V is an H-module and an H-comodule and the following compatibility is true:

$$\rho(h \cdot v) = h_{(1)}v_{(-1)}S(h_{(3)}) \otimes h_{(2)} \cdot v_{(0)}, \quad h \in H, v \in V.$$

If *H* has bijective antipode then the category of Yetter-Drinfeld modules ${}_{H}^{H}\mathcal{YD}$ is a braided tensor category:

Simple modules

Point modules

Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a vector space V such that V is an H-module and an H-comodule and the following compatibility is true:

$$\rho(h \cdot v) = h_{(1)}v_{(-1)}S(h_{(3)}) \otimes h_{(2)} \cdot v_{(0)}, \quad h \in H, v \in V.$$

If *H* has bijective antipode then the category of Yetter-Drinfeld modules ${}^{H}_{H}\mathcal{YD}$ is a braided tensor category: for $V, W \in {}^{H}_{H}\mathcal{YD}$,

Simple modules

Point modules

Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a vector space V such that V is an H-module and an H-comodule and the following compatibility is true:

$$\rho(h \cdot v) = h_{(1)}v_{(-1)}S(h_{(3)}) \otimes h_{(2)} \cdot v_{(0)}, \quad h \in H, v \in V.$$

If *H* has bijective antipode then the category of Yetter-Drinfeld modules ${}^{H}_{H}\mathcal{YD}$ is a braided tensor category: for $V, W \in {}^{H}_{H}\mathcal{YD}$,

$$c_{V,W}(v \otimes w) = v_{(-1)} \cdot w \otimes v_{(0)}, \quad v \in V, w \in W.$$

Simple modules

Point modules

Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a vector space V such that V is an H-module and an H-comodule and the following compatibility is true:

$$\rho(h \cdot v) = h_{(1)}v_{(-1)}S(h_{(3)}) \otimes h_{(2)} \cdot v_{(0)}, \quad h \in H, v \in V.$$

If *H* has bijective antipode then the category of Yetter-Drinfeld modules ${}^{H}_{H}\mathcal{YD}$ is a braided tensor category: for $V, W \in {}^{H}_{H}\mathcal{YD}$,

$$c_{V,W}(v \otimes w) = v_{(-1)} \cdot w \otimes v_{(0)}, \quad v \in V, w \in W.$$

Particularly, if V is an object in ${}^{H}_{H}\mathcal{YD}$ then $(V, c_{V,V})$ is a braided vector space.

Point modules

(ロ)、(型)、(E)、(E)、 E) のQ(C)

Assume that H is a Hopf algebra with bijective antipode.

Point modules

Assume that H is a Hopf algebra with bijective antipode.

We have the following correspondence:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Assume that H is a Hopf algebra with bijective antipode.

We have the following correspondence:

 $V \in {}^{H}_{H}\mathcal{YD} \rightsquigarrow$ a Hopf algebra $\mathscr{B}(V)$ in ${}^{H}_{H}\mathcal{YD}$

Assume that H is a Hopf algebra with bijective antipode.

We have the following correspondence:

$$V \in {}^{H}_{H}\mathcal{YD} \rightsquigarrow$$
 a Hopf algebra $\mathscr{B}(V)$ in ${}^{H}_{H}\mathcal{YD}$

The Nichols algebra $\mathscr{B}(V)$ associates to (V, c) is given by

$$\mathscr{B}(V,c) = \Bbbk \oplus V \oplus_{n \geq 2} V^{\otimes n} / \ker \mathfrak{S}_n$$

where \mathfrak{S}_n is the quantum symmetrizer.

Point modules

Let Γ an abelian group. Consider $V = V_1 \oplus V_2 \in {}_{\Bbbk\Gamma}^{\Gamma} \mathcal{YD}$, where V_1 has a basis x_1 , x_2 and V_2 has a basis x_3 such that the braid is given by:

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let Γ an abelian group. Consider $V = V_1 \oplus V_2 \in {}_{\Bbbk\Gamma}^{\Gamma} \mathcal{YD}$, where V_1 has a basis x_1 , x_2 and V_2 has a basis x_3 such that the braid is given by:

$$(c(x_i \otimes x_j))_{i,j \in \mathbb{I}_3} = egin{pmatrix} arepsilon x_1 \otimes x_1 & (arepsilon x_2 + x_1) \otimes x_1 & qx_3 \otimes x_1 \ arepsilon x_1 \otimes x_2 & (arepsilon x_2 + x_1) \otimes x_2 & qx_3 \otimes x_2 \ q^{-1}x_1 \otimes x_3 & q^{-1}(x_2 + ax_1) \otimes x_3 & q_{22}x_3 \otimes x_3 \end{pmatrix}$$

where $a, q_{22}, q, \varepsilon \in \mathbb{k}$.

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let Γ an abelian group. Consider $V = V_1 \oplus V_2 \in {}^{\Bbbk\Gamma}_{\Bbbk\Gamma} \mathcal{YD}$, where V_1 has a basis x_1 , x_2 and V_2 has a basis x_3 such that the braid is given by:

$$(c(x_i \otimes x_j))_{i,j \in \mathbb{I}_3} = \left(egin{array}{ccc} arepsilon x_1 \otimes x_1 & (arepsilon x_2 + x_1) \otimes x_1 & qx_3 \otimes x_1 \ arepsilon x_1 \otimes x_2 & (arepsilon x_2 + x_1) \otimes x_2 & qx_3 \otimes x_2 \ q^{-1}x_1 \otimes x_3 & q^{-1}(x_2 + ax_1) \otimes x_3 & q_{22}x_3 \otimes x_3 \end{array}
ight)$$

where $a, q_{22}, q, \varepsilon \in \mathbb{k}$.

Braided vector space $\mathfrak{L}_q(1, \mathscr{G})$

If $\mathscr{G} := -2a \in \mathbb{N}$ and $q_{22} = \varepsilon = 1$ then the braided vector space above will be denoted by $\mathfrak{L}_q(1, \mathscr{G})$.

Simple modules

Point modules

The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ was calculated in [1]. Generators and relations Let $\mathscr{G} \in \mathbb{N}$ and $q \in \Bbbk^{\times}$.

Simple modules

Point modules

The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ was calculated in [1].

Generators and relations

Let $\mathscr{G} \in \mathbb{N}$ and $q \in \mathbb{k}^{\times}$. The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1, \mathscr{G}))$ is presented by generators $x_1, x_2, (z_n)_{0 \le n \le \mathscr{G}}$ $(z_0 = x_3)$ with defining relations

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ was calculated in [1].

Generators and relations

Let $\mathscr{G} \in \mathbb{N}$ and $q \in \mathbb{k}^{\times}$. The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is presented by generators $x_1, x_2, (z_n)_{0 \le n \le \mathscr{G}}$ $(z_0 = x_3)$ with defining relations

$$x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, \tag{1}$$

$$x_1 z_0 - q z_0 x_1,$$
 (2)

$$z_n z_{n+1} - q^{-1} z_{n+1} z_n, \qquad 0 \le n < \mathscr{G}.$$
 (3)

$$\begin{array}{ll} x_2 z_n - q z_n x_2 - z_{n+1}, & 0 \le n < \mathscr{G}, \\ x_2 z_{\mathscr{G}} - q z_{\mathscr{G}} x_2. & (5) \end{array}$$

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ was calculated in [1].

Generators and relations

Let $\mathscr{G} \in \mathbb{N}$ and $q \in \mathbb{k}^{\times}$. The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is presented by generators $x_1, x_2, (z_n)_{0 \le n \le \mathscr{G}}$ $(z_0 = x_3)$ with defining relations

$$x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, \tag{1}$$

$$x_1 z_0 - q z_0 x_1,$$
 (2)

$$z_n z_{n+1} - q^{-1} z_{n+1} z_n, \qquad \qquad 0 \le n < \mathscr{G}.$$
(3)

$$x_2 z_n - q z_n x_2 - z_{n+1}, \qquad 0 \le n < \mathscr{G}, \qquad (4)$$

$$x_2 z_{\mathscr{G}} - q z_{\mathscr{G}} x_2. \tag{5}$$

 $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is called Lestrygonian.

Simple modules

Point modules

Some properties of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$:

Simple modules

Point modules

Some properties of $\mathscr{B}(\mathfrak{L}_q(1, \mathscr{G}))$:

 $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is a domain;

Simple modules

Point modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Some properties of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$:

- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is a domain;
- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ has a PBW-basis

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{N}_0\};\$$

Simple modules

Point modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Some properties of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$:

- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is a domain;
- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ has a PBW-basis

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{N}_0\};\$$

$$\diamond \ \mathsf{GKdim} \ \mathscr{B}(\mathfrak{L}_q(1, \mathscr{G})) = 3 + \mathscr{G}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Some properties of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$:

- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is a domain;
- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ has a PBW-basis

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{N}_0\};\$$

$$\diamond \ \mathsf{GKdim} \ \mathscr{B}(\mathfrak{L}_q(1, \mathscr{G})) = 3 + \mathscr{G}.$$

 $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is graded, with

$$\deg x_1 = \deg x_2 = 1, \quad \deg z_n = n+1, \quad 0 \le n \le \mathscr{G}.$$

Some properties of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$:

- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is a domain;
- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ has a PBW-basis

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{N}_0\};\$$

 $\diamond \ \mathsf{GKdim} \ \mathscr{B}(\mathfrak{L}_q(1, \mathscr{G})) = 3 + \mathscr{G}.$

 $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is graded, with

 $\deg x_1 = \deg x_2 = 1, \quad \deg z_n = n+1, \quad 0 \le n \le \mathscr{G}.$

 \diamond the subalgebra \mathcal{A} generated by x_1 and x_2 is isomorphic to the Jordan plane and has defining relations (1).

Some properties of $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$:

- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is a domain;
- $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ has a PBW-basis

$$B = \{x_1^{m_1} x_2^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : m_i, n_j \in \mathbb{N}_0\};\$$

 $\diamond \ \mathsf{GKdim} \ \mathscr{B}(\mathfrak{L}_q(1, \mathscr{G})) = 3 + \mathscr{G}.$

 $\diamond \ \mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is graded, with

 $\deg x_1 = \deg x_2 = 1, \quad \deg z_n = n+1, \quad 0 \le n \le \mathscr{G}.$

 \diamond the subalgebra \mathcal{A} generated by x_1 and x_2 is isomorphic to the Jordan plane and has defining relations (1).

Simple modules

Point modules

Quantum plane

Let $\mathbb{k}_q[X, Y]$ be the algebra generated by X and Y with relation XY - qYX.

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum plane

Let $\mathbb{k}_q[X, Y]$ be the algebra generated by X and Y with relation XY - qYX.

 \diamond If q = 1, then this is the polynomial ring in 2 variables; its finite-dimensional simple modules are all one-dimensional and parametrized by the points of the plane.

Simple modules

Point modules

Quantum plane

Let $\Bbbk_q[X, Y]$ be the algebra generated by X and Y with relation XY - qYX.

- \diamond If q = 1, then this is the polynomial ring in 2 variables; its finite-dimensional simple modules are all one-dimensional and parametrized by the points of the plane.
- \diamond Assume that $q \neq 1$;

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum plane

Let $\Bbbk_q[X, Y]$ be the algebra generated by X and Y with relation XY - qYX.

- \diamond If q = 1, then this is the polynomial ring in 2 variables; its finite-dimensional simple modules are all one-dimensional and parametrized by the points of the plane.
- ♦ Assume that $q \neq 1$; then $\Bbbk_q[X, Y]$ is called the quantum plane of parameter q.

Quantum plane

Let $\Bbbk_q[X, Y]$ be the algebra generated by X and Y with relation XY - qYX.

- \diamond If q = 1, then this is the polynomial ring in 2 variables; its finite-dimensional simple modules are all one-dimensional and parametrized by the points of the plane.
- ♦ Assume that $q \neq 1$; then $\mathbb{k}_q[X, Y]$ is called the quantum plane of parameter q.

We define for each $a \in \mathbb{k}^{\times}$ the following one-dimensional modules of $\mathbb{k}_q[X, Y]$:

Simple modules

Point modules

Quantum plane

Let $\Bbbk_q[X, Y]$ be the algebra generated by X and Y with relation XY - qYX.

- \diamond If q = 1, then this is the polynomial ring in 2 variables; its finite-dimensional simple modules are all one-dimensional and parametrized by the points of the plane.
- ♦ Assume that $q \neq 1$; then $\mathbb{k}_q[X, Y]$ is called the quantum plane of parameter q.

We define for each $a \in \mathbb{k}^{\times}$ the following one-dimensional modules of $\mathbb{k}_q[X, Y]$:

$$\mathbb{k}_{a}^{X} = \mathbb{k}: \qquad X \cdot 1 = a, \quad Y \cdot 1 = 0$$
$$\mathbb{k}_{a}^{Y} = \mathbb{k}: \qquad X \cdot 1 = 0, \quad Y \cdot 1 = a.$$

Simple modules

Point modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Suppose that ord $q =: N < \infty$. The *N*-dimensional representation $\mathcal{U}_{a,b} = \mathbb{k}^N$ of $\mathbb{k}_q[X, Y]$ is defined by

Simple modules

Point modules

Suppose that ord $q =: N < \infty$. The *N*-dimensional representation $\mathcal{U}_{a,b} = \mathbb{k}^N$ of $\mathbb{k}_q[X, Y]$ is defined by

 $Xe_j = aq^{j-1}e_j, \quad j \in \mathbb{I}_N,$ $Ye_j = e_{j+1}, \quad j \in \mathbb{I}_{N-1}, \quad Ye_n = be_1,$

where e_1, \ldots, e_N is the canonical basis of \mathbb{k}^N and $a, b \in \mathbb{k}^{\times}$.

Suppose that ord $q =: N < \infty$. The *N*-dimensional representation $U_{a,b} = \mathbb{k}^N$ of $\mathbb{k}_q[X, Y]$ is defined by

 $Xe_j = aq^{j-1}e_j, \quad j \in \mathbb{I}_N,$ $Ye_j = e_{j+1}, \quad j \in \mathbb{I}_{N-1}, \quad Ye_n = be_1,$

where e_1, \ldots, e_N is the canonical basis of \mathbb{k}^N and $a, b \in \mathbb{k}^{\times}$.

Simple modules of the quantum plane

Assume that $q \neq 1$. Let V be a finite-dimensional simple module of $\Bbbk_q[X, Y]$. Then

Suppose that ord $q =: N < \infty$. The *N*-dimensional representation $\mathcal{U}_{a,b} = \mathbb{k}^N$ of $\mathbb{k}_q[X, Y]$ is defined by

 $Xe_j = aq^{j-1}e_j, \quad j \in \mathbb{I}_N,$ $Ye_j = e_{j+1}, \quad j \in \mathbb{I}_{N-1}, \quad Ye_n = be_1,$

where e_1, \ldots, e_N is the canonical basis of \mathbb{k}^N and $a, b \in \mathbb{k}^{\times}$.

Simple modules of the quantum plane

Assume that $q \neq 1$. Let V be a finite-dimensional simple module of $\Bbbk_q[X, Y]$. Then

$$\diamond \ \mathsf{dim} \ V = 1 \Rightarrow V \simeq \Bbbk^X_{\mathsf{a}} \ \mathsf{or} \ V \simeq \Bbbk^Y_{\mathsf{a}}.$$

Suppose that ord $q =: N < \infty$. The *N*-dimensional representation $\mathcal{U}_{a,b} = \mathbb{k}^N$ of $\mathbb{k}_q[X, Y]$ is defined by

 $Xe_j = aq^{j-1}e_j, \quad j \in \mathbb{I}_N,$ $Ye_j = e_{j+1}, \quad j \in \mathbb{I}_{N-1}, \quad Ye_n = be_1,$

where e_1, \ldots, e_N is the canonical basis of \mathbb{k}^N and $a, b \in \mathbb{k}^{\times}$.

Simple modules of the quantum plane

Assume that $q \neq 1$. Let V be a finite-dimensional simple module of $\Bbbk_q[X, Y]$. Then

- $\diamond \ \operatorname{\mathsf{dim}} V = 1 \Rightarrow V \simeq \Bbbk^X_{\mathsf{a}} \ \operatorname{\mathsf{or}} \ V \simeq \Bbbk^Y_{\mathsf{a}}.$
- $\diamond \ \, {
 m dim} \ V > 1 \Rightarrow {
 m ord} \ q =: N < \infty \ \, {
 m and} \ \, V \simeq {\mathcal U}_{a,b}.$

Simple modules

Point modules

Simple modules of the $\mathscr{B}(\mathfrak{L}_q(1, \mathscr{G}))$

The following categories are isomorphic:

Simple modules of the $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$

The following categories are isomorphic:

 $\operatorname{Irrep} \mathscr{B}(\mathfrak{L}_q(1, \mathscr{G})) \simeq \operatorname{Irrep} \Bbbk_q[X, Y].$

Simple modules

Point modules

Let $A = \bigoplus_{n \in \mathbb{N}_0} A^n$, $A_0 = \mathbb{k}$, be a finitely graded \mathbb{k} -algebra generated in degree 1.

Let $A = \bigoplus_{n \in \mathbb{N}_0} A^n$, $A_0 = \mathbb{k}$, be a finitely graded \mathbb{k} -algebra generated in degree 1.

Definition

A point module for A is a (left) graded module $V = \oplus_{n \in \mathbb{N}_0} V^n$ over A such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $A = \bigoplus_{n \in \mathbb{N}_0} A^n$, $A_0 = \mathbb{k}$, be a finitely graded \mathbb{k} -algebra generated in degree 1.

Definition

A point module for A is a (left) graded module $V=\oplus_{n\in\mathbb{N}_0}V^n$ over A such that

• V is ciclic and generated in degree 0, i.e., $V = A \cdot V^0$,

Let $A = \bigoplus_{n \in \mathbb{N}_0} A^n$, $A_0 = \mathbb{k}$, be a finitely graded \mathbb{k} -algebra generated in degree 1.

Definition

A point module for A is a (left) graded module $V = \oplus_{n \in \mathbb{N}_0} V^n$ over A such that

- $\circ~V$ is ciclic and generated in degree 0, i.e., $V = A \cdot V^0$,
- V has Hilbert series $h_V(t) = 1/(1-t)$, in other words $\dim_{\mathbb{K}} V^n = 1$, for all $n \ge 0$.

Point modules

We denote a point of the projective space \mathbb{P}^n over \Bbbk by $(a_0 : a_1 : \cdots : a_n)$.

Point modules

We denote a point of the projective space \mathbb{P}^n over \Bbbk by $(a_0 : a_1 : \cdots : a_n)$.

Point modules of free algebras

Let $A = \mathbb{k}\langle x_0, x_1, \dots, x_n \rangle$ be the free associative algebra. The isomorphism classes of point modules over A are in bijective correspondence with points in the infinite product $\mathbb{P}^n \times \mathbb{P}^n \times \dots = \prod_{i=0}^{\infty} \mathbb{P}^n$.

We denote a point of the projective space \mathbb{P}^n over \Bbbk by $(a_0 : a_1 : \cdots : a_n)$.

Point modules of free algebras

Let $A = \mathbb{k}\langle x_0, x_1, \dots, x_n \rangle$ be the free associative algebra. The isomorphism classes of point modules over A are in bijective correspondence with points in the infinite product $\mathbb{P}^n \times \mathbb{P}^n \times \dots = \prod_{i=0}^{\infty} \mathbb{P}^n$. The correspondence is given by:

$$V = \oplus_{j \in \mathbb{N}_0} \langle v_j
angle \ \mapsto (a_{0,j} : \cdots : a_{n,j}), ext{ where } x_i v_j = a_{i,j} v_{j+1}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Consider a point module $V = \bigoplus_{j \in \mathbb{N}_0} \langle v_j \rangle$ of $\mathscr{B}(\mathfrak{L}_q(1, \mathscr{G}))$.

Consider a point module $V = \bigoplus_{j \in \mathbb{N}_0} \langle v_j \rangle$ of $\mathscr{B}(\mathfrak{L}_q(1, \mathscr{G}))$. Since $x_i v_j, z_0 v_j \in \langle v_{j+1} \rangle$, i = 1, 2 and $j \in \mathbb{N}_0$, we assume that

$$x_1v_j = a_jv_{j+1}, \quad x_2v_j = b_jv_{j+1}, \quad z_0v_j = c_jv_{j+1}, \quad a_j, b_j, c_j \in \mathbb{k}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider a point module $V = \bigoplus_{j \in \mathbb{N}_0} \langle v_j \rangle$ of $\mathscr{B}(\mathfrak{L}_q(1, \mathscr{G}))$. Since $x_i v_j, z_0 v_j \in \langle v_{j+1} \rangle$, i = 1, 2 and $j \in \mathbb{N}_0$, we assume that

$$x_1v_j = a_jv_{j+1}, \quad x_2v_j = b_jv_{j+1}, \quad z_0v_j = c_jv_{j+1}, \quad a_j, b_j, c_j \in \mathbb{k}.$$

Then V is completely determined by $(P_0, P_1, \ldots) \in \prod_{i=0}^{\infty} \mathbb{P}^2$, where $P_j = (a_j : b_j : c_j)$.

Simple modules

Point modules

Lema 1 If $a_0 \neq 0$ then:

Simple modules

Point modules

Lema 1 If $a_0 \neq 0$ then: i) $a_j \neq 0$ for all $j \in \mathbb{N}_0$, and

Simple modules 200 Point modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lema 1 If $a_0 \neq 0$ then:

- i) $a_j
 eq 0$ for all $j \in \mathbb{N}_0$, and
- ii) V is determined by $P_j = (1 : b_0/a_0 j/2 : 0)$.

Simple modules 200 Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lema 1 If $a_0 \neq 0$ then: i) $a_j \neq 0$ for all $j \in \mathbb{N}_0$, and ii) V is determined by $P_j = (1 : b_0/a_0 - j/2 : 0)$.

Lema 2 Suppose that $a_0 = 0$.

Simple modules 200 Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lema 1 If $a_0 \neq 0$ then: i) $a_j \neq 0$ for all $j \in \mathbb{N}_0$, and ii) V is determined by $P_j = (1 : b_0/a_0 - j/2 : 0)$. Lema 2 Suppose that $a_0 = 0$. i) If $b_j \neq 0$, for all $j \in \mathbb{N}_0$, then V is determined by $P_i = (0 : 1 : q^{-j}c_0/b_0)$.

Simple modules 200 Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

lema 1 If $a_0 \neq 0$ then: i) $a_i \neq 0$ for all $i \in \mathbb{N}_0$, and ii) V is determined by $P_i = (1 : b_0/a_0 - j/2 : 0)$. Lema 2 Suppose that $a_0 = 0$. i) If $b_i \neq 0$, for all $i \in \mathbb{N}_0$, then V is determined by $P_i = (0 : 1 : q^{-j}c_0/b_0).$ ii) If $b_k = 0$ for some $k \in \mathbb{N}_0$ then $b_i = 0$ for all $i \in \mathbb{N}_0$ and V is determined by $P_i = (0 : 0 : 1)$.

Simple modules

Point modules

Consider the following subsets of \mathbb{P}^2 :

Simple modules

Point modules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Consider the following subsets of \mathbb{P}^2 :

$$Y:=\{(1:b:0)\in \mathbb{P}^2\,:\,b\in \Bbbk\}$$

and

$$Z:=\{({\tt 0}:{\tt 1}:b)\in\mathbb{P}^2\,:\,b\in\Bbbk\}$$

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider the following subsets of \mathbb{P}^2 :

$$Y:=\{(1:b:0)\in \mathbb{P}^2\,:\,b\in \Bbbk\}$$

and

$$Z:=\{({\tt 0}:{\tt 1}:b)\in\mathbb{P}^2\,:\,b\in\Bbbk\}$$

Theorem 2

The isomorphism classes of point modules over $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ are parametrized by $Y \cup Z \cup \{(0 : 0 : 1)\}.$

Simple modules

Point modules

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

References

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

N. Andruskiewitsch, I. Angiono and I. Heckenberger. On finite GK-dimensional Nichols algebras over abelian groups. to appear in Mem. Am. Math. Soc.

Simple modules

Point modules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

References

- N. Andruskiewitsch, I. Angiono and I. Heckenberger. *On finite GK-dimensional Nichols algebras over abelian groups*. to appear in Mem. Am. Math. Soc.
- N. lyudu, *Representation Spaces of the Jordan Plane*. Comm. Algebra. **42** (8), 3507–3540 (2014).
- D. Rogalsky, An introduction to noncommutative projective algebraic geometry. arXiv:1403.3065 (2014).