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¢ k is an algebraically closed field, chk = 0.
o The natural numbers are denoted by N and Ng = NUO.

olf k <t € Np, thenIy; = {n € No: k <n <t} and
]It :{1,,t}
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Yetter-Drinfeld modules

Let H be a Hopf algebra. A Yetter-Drinfeld module over H is a
vector space V such that V is an H-module and an H-comodule
and the following compatibility is true:

p(h-v)= h(l)v(,l)S(h(3)) & h(z) * Y(0); heH veV.

If H has bijective antipode then the category of Yetter-Drinfeld

modules KD is a braided tensor category: for V, W € HyD,
cvw(vew)=v_y - w®yvg, veV,weW.

Particularly, if V is an object in /YD then (V,cy,v) is a braided
vector space.
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Assume that H is a Hopf algebra with bijective antipode.

We have the following correspondence:
V € BYD ~+ a Hopf algebra #(V) in YD
The Nichols algebra (V) associates to (V, ¢) is given by
B(V,c)=kDV Bp>2 VO ker &,

where &, is the quantum symmetrizer.
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Let I an abelian group. Consider V=V, & V; € ]ﬁiFyD, where V4
has a basis x;, x» and V, has a basis x3 such that the braid is given

by:

ex1 ® X1 (ex2 +x1) ®x1 @3 @ X
(c(xi®xj))ijer, = |  ex1 @ x (exx+x)®@x  @a®x

g 1x ®x; qfl(Xz +ax1) ®Xx3  qoaxz @ X3

where a, g, g, ¢ € k.

Braided vector space £4(1,¥)

If ¢ .= —2a € N and gy = ¢ = 1 then the braided vector space
above will be denoted by £4(1,9).
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The Nichols algebra #(£4(1,%)) was calculated in [1].

Generators and relations

Let 4 € N and g € k*. The Nichols algebra #(£,(1,%)) is
presented by generators xi, x2, (zn)o<n<w (20 = x3) with defining
relations

2
XoX1 — X1 X2 + §X1’

N

X120 — 49 20X1,

(1)

(2)

ZnZn4+1 — q_l Zn+1Zn, 0<n<9¥9. (3)
X2Zp — QZpX2 — Zp41, 0<n< g, ( )
(5)

X2Zg — QZyX2.
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The Nichols algebra #(£4(1,%)) was calculated in [1].

Generators and relations
Let 4 € N and g € k*. The Nichols algebra #(£,(1,%)) is

presented by generators xi, x2, (zn)o<n<w (20 = x3) with defining

relations
2
XoX1 — X1X2 + §X1’
X120 — 49 20X1,
-1
ZpnZp41 — q " Zn41Zn, 0<n<9¥9.
X2Zp — QZpX2 — Zny1, 0<n<¥,

X2Zg — QZyX2.

B(L£4(1,9)) is called Lestrygonian.

N
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Suppose that ord g =: N < co. The N-dimensional representation
Usp = kN of k[ X, Y] is defined by
Xej = aqjilej, Jj€1lpn,

Yej = €11, Jj€In_1, Yen,= bey,

where e, ..., ey is the canonical basis of kN and a, b € k*.

Simple modules of the quantum plane
Assume that g # 1. Let V be a finite-dimensional simple module of
kq[X, Y]. Then

odmV=1=V~kXorV~k).

odimV >1=ordg=:N<ooand V~U,,.
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Simple modules of the #(£,(1,9))

The following categories are isomorphic:

Irrep B(L£4(1,9)) ~ Irrepkq[X, Y].
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Let A= ®pen,A”, Ao =k, be a finitely graded k-algebra generated
in degree 1.
Definition
A point module for A is a (left) graded module V = @pen, V7 over
A such that

o V is ciclic and generated in degree 0, i.e., V=A- Vo,

o V has Hilbert series hy(t) = 1/(1 — t), in other words
dimy V" =1, for all n > 0.
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We denote a point of the projective space P” over k by
(aozal : ---:a,,).

Point modules of free algebras

Let A =k(xp,x1,...,Xn) be the free associative algebra. The
isomorphism classes of point modules over A are in bijective
correspondence with points in the infinite product

P" x P" x -+ = [][2,P". The correspondence is given by:

V= @jENo<Vj> — (aoJ e a,,vj), where XjVj = aj jVj4+1.
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Consider a point module V' = @jen, (vj) of B(L£4(1,%)).Since
xivj,zovj € (vj+1), i = 1,2 and j € Nyg, we assume that

X1Vj = ajvjy1, xeVj = bjviy1, zvj = ¢jvj41, aj,bj, ¢ €k

Then V is completely determined by (Po, Pi,...) € [[72, P2, where
Pj = (aj . bj . Cj).



If ag # 0 then:

(o> B o«

it
v

Q>
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Lema 1
If ag # 0 then:

i) aj # 0 for all j € Ny, and
ii) V is determined by P; = (1 : by/ap —j/2 : 0).

Lema 2
Suppose that ag = 0.
i) If bj #0, for all J € No, then V' is determined by
Pj:(O 1 quCO/bo).

ii) If by = 0 for some k € Ng then b; =0 for all j € Ng and V' is
determined by P; = (0 : 0 : 1).
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Consider the following subsets of P?:
Y:={(1:b:0)€P?: bck}

and
Z:={0:1:b)cP?>: bck}

Theorem 2
The isomorphism classes of point modules over #(£4(1,9)) are
parametrized by YU ZU{(0 : 0 : 1)}.



O B =

«E»

Q>
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