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Notation

� k is an algebraically closed �eld, chk = 0.

� The natural numbers are denoted by N and N0 = N ∪ 0.

� If k < t ∈ N0, then Ik,t = {n ∈ N0 : k ≤ n ≤ t}, and
It := {1, . . . , t}.
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Yetter-Drinfeld modules
Let H be a Hopf algebra.

A Yetter-Drinfeld module over H is a
vector space V such that V is an H-module and an H-comodule
and the following compatibility is true:

ρ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0), h ∈ H, v ∈ V .

If H has bijective antipode then the category of Yetter-Drinfeld
modules H

HYD is a braided tensor category: for V ,W ∈ H
HYD,

cV ,W (v ⊗ w) = v(−1) · w ⊗ v(0), v ∈ V , w ∈W .

Particularly, if V is an object in H
HYD then (V , cV ,V ) is a braided

vector space.
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Assume that H is a Hopf algebra with bijective antipode.

We have the following correspondence:

V ∈ H
HYD  a Hopf algebra B(V ) in H

HYD

The Nichols algebra B(V ) associates to (V , c) is given by

B(V , c) = k⊕ V ⊕n≥2 V
⊗n/ kerSn

where Sn is the quantum symmetrizer.
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Let Γ an abelian group. Consider V = V1 ⊕ V2 ∈ kΓ
kΓYD, where V1

has a basis x1, x2 and V2 has a basis x3 such that the braid is given
by:

(c(xi⊗xj))i ,j∈I3 =

 εx1 ⊗ x1 (εx2 + x1)⊗ x1 qx3 ⊗ x1
εx1 ⊗ x2 (εx2 + x1)⊗ x2 qx3 ⊗ x2

q−1x1 ⊗ x3 q−1(x2 + ax1)⊗ x3 q22x3 ⊗ x3


where a, q22, q, ε ∈ k.

Braided vector space Lq(1,G )

If G := −2a ∈ N and q22 = ε = 1 then the braided vector space
above will be denoted by Lq(1,G ).
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The Nichols algebra B(Lq(1,G )) was calculated in [1].

Generators and relations
Let G ∈ N and q ∈ k×.

The Nichols algebra B(Lq(1,G )) is
presented by generators x1, x2, (zn)0≤n≤G (z0 = x3) with de�ning
relations

x2x1 − x1x2 +
1

2
x21 , (1)

x1z0 − q z0x1, (2)

znzn+1 − q−1 zn+1zn, 0 ≤ n < G . (3)

x2zn − qznx2 − zn+1, 0 ≤ n < G , (4)

x2zG − qzG x2. (5)

B(Lq(1,G )) is called Lestrygonian.
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Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Some properties of B(Lq(1,G )):

� B(Lq(1,G )) is a domain;

� B(Lq(1,G )) has a PBW-basis

B = {xm1
1 xm2

2 znG
G . . . zn11 zn00 : mi , nj ∈ N0};

� GKdim B(Lq(1,G )) = 3 + G .

� B(Lq(1,G )) is graded, with

deg x1 = deg x2 = 1, deg zn = n + 1, 0 ≤ n ≤ G .

� the subalgebra A generated by x1 and x2 is isomorphic to the
Jordan plane and has de�ning relations (1).



Lestrygonian Nichols Algebra Simple modules Point modules

Quantum plane

Let kq[X ,Y ] be the algebra generated by X and Y with relation
XY − qYX .

� If q = 1, then this is the polynomial ring in 2 variables; its
�nite-dimensional simple modules are all one-dimensional and
parametrized by the points of the plane.

� Assume that q 6= 1; then kq[X ,Y ] is called the quantum plane
of parameter q.

We de�ne for each a ∈ k× the following one-dimensional modules
of kq[X ,Y ]:

kXa = k : X · 1 = a, Y · 1 = 0

kYa = k : X · 1 = 0, Y · 1 = a.
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Suppose that ord q =: N <∞. The N-dimensional representation
Ua,b = kN of kq[X ,Y ] is de�ned by

Xej = aqj−1ej , j ∈ IN ,

Yej = ej+1, j ∈ IN−1, Yen = be1,

where e1, . . . , eN is the canonical basis of kN and a, b ∈ k×.

Simple modules of the quantum plane

Assume that q 6= 1. Let V be a �nite-dimensional simple module of
kq[X ,Y ]. Then

� dimV = 1⇒ V ' kXa or V ' kYa .
� dimV > 1⇒ ord q =: N <∞ and V ' Ua,b.
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Simple modules of the B(Lq(1,G ))

The following categories are isomorphic:

Irrep B(Lq(1,G )) ' Irrepkq[X ,Y ].
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Let A = ⊕n∈N0A
n, A0 = k, be a �nitely graded k-algebra generated

in degree 1.

De�nition
A point module for A is a (left) graded module V = ⊕n∈N0V

n over
A such that

◦ V is ciclic and generated in degree 0, i. e., V = A · V 0,

◦ V has Hilbert series hV (t) = 1/(1 − t), in other words
dimk V

n = 1, for all n ≥ 0.
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Lestrygonian Nichols Algebra Simple modules Point modules

We denote a point of the projective space Pn over k by
(a0 : a1 : · · · : an).

Point modules of free algebras

Let A = k〈x0, x1, . . . , xn〉 be the free associative algebra. The
isomorphism classes of point modules over A are in bijective
correspondence with points in the in�nite product
Pn × Pn × · · · =

∏∞
i=0 Pn. The correspondence is given by:

V = ⊕j∈N0〈vj〉 7→ (a0,j : · · · : an,j), where xivj = ai ,jvj+1.
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Consider a point module V = ⊕j∈N0〈vj〉 of B(Lq(1,G )).

Since
xivj , z0vj ∈ 〈vj+1〉, i = 1, 2 and j ∈ N0, we assume that

x1vj = ajvj+1, x2vj = bjvj+1, z0vj = cjvj+1, aj , bj , cj ∈ k.

Then V is completely determined by (P0,P1, . . .) ∈
∏∞

i=0 P2, where
Pj = (aj : bj : cj).
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Lema 1
If a0 6= 0 then:

i) aj 6= 0 for all j ∈ N0, and

ii) V is determined by Pj = (1 : b0/a0 − j/2 : 0).

Lema 2
Suppose that a0 = 0.

i) If bj 6= 0, for all j ∈ N0, then V is determined by
Pj = (0 : 1 : q−jc0/b0).

ii) If bk = 0 for some k ∈ N0 then bj = 0 for all j ∈ N0 and V is
determined by Pj = (0 : 0 : 1).
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Consider the following subsets of P2:

Y := {(1 : b : 0) ∈ P2 : b ∈ k}

and
Z := {(0 : 1 : b) ∈ P2 : b ∈ k}

Theorem 2
The isomorphism classes of point modules over B(Lq(1,G )) are
parametrized by Y ∪ Z ∪ {(0 : 0 : 1)}.
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