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Symmetry in nature and in mathematics may be encoded 
by groups of symmetry operations, or more generally by 
the action of Hopf algebras (quantum symmetry). Several 
powerful tools are used for understanding these actions, 
such as Lie theory, group theory, tensor categories, fusion 
categories, and cohomology. The areas to which these 
ideas apply range from such classical subjects as geometry, 
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combinatorics and algebra to quantum computations, vertex 
algebras and conformal fi eld theories.

Despite the growing number of people working on quantum 
symmetries in these different areas and a reasonable number 
of conferences in the respective areas, the cross-pollination of 
these different subjects at a single conference is rare and the 
communities interested in quantum symmetries for different 
reasons do not have substantial overlap.

The goal of this workshop is to bring together specialists and 
young mathematicians specializing in these areas to develop 
newly emerging connections and foster communication 
and sharing of ideas. This event will consist of research and 
panoramic talks related to several subject areas united by their 
applications to quantum symmetries.

There is no registration fee.
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We are interested on the representations of the Drinfeld double

D = D(B(V )#H)

of the bozonization of a Nichols algebra and a Hopf algebra.

Why?
These are natural generalization of (small) quantum groups.
The category of graded D-modules is highest-weight
[Bellamy-Thiel].
Categorification of Z-fusion datum associated with cyclic
complex reflection groups [Bonnafé-Rouquier].
These could give information about the Nichols algebra.
To construct new examples of fusion categories.
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Goals of the talk

BGG Reciprocity
Symmetric Hilbert Series
Tate duality
Braided autoequivalences
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H = finite dimensional Hopf algebra.

The Drinfeld double D(H) of H is
a Hopf algebra which is constructed as a kind of double crossed
product between H and H∗

D(H) = H∗ ./H.

Example: H = kG a group algebra
D(G) = kG ⊗ kG as coalgebras and

δh g = g δg−1hg

for all g, h ∈ G.

ICTP vay
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V = Yetter-Drinfeld module over H ≡ D(H)-module.

The Nichols algebra B(V ) of V is
a graded braided Hopf algebra in the category of D(H)-modules;

B(V ) = T (V )
J

where J is the maximal ideal which is a coideal and generated by
homogeneous element of degree ≥ 2.

ICTP vay
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Example: V3 = 〈x(12), x(23), x(13)〉 over D(S3)

gx(ij) = sgn(g)xg(ij)g−1 and δh · x(ij) = δ(ij),h x(ij)

Example: The Fomin-Kirillov algebra FK3 = B(V3)

x2
(12) = x2

(13) = x2
(23) = 0

x(12)x(13) + x(13)x(23) + x(23)x(12) = 0
x(13)x(12) + x(23)x(13) + x(12)x(23) = 0

ICTP vay
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Properties of finite dimensional Nichols algebras

The homogeneous component of B(V ) maximum degree is
one dimensional:

Bntop(V ) = k{xtop}.

B(V ) is Frobenius whose non-degenerate bilinear form is

B(V )⊗B(V ) mult // B(V )
(xtop)∗

// k

The Hilbert series of B(V ) is symmetric

dimBi(V ) = dimBntop−i(V ).

ICTP vay

The Hilbert series
hM of a graded
module M is
hM =

∑
i dimM i ti

1

xtop

B(V )
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Let V be dual object of V as D(H)-module endowed with the
inverse braiding.

=⇒ Bn(V ) ' Bn(V )∗ as D(H)-modules.

Example: V3 ' V3

hB(V3) = 1 + 3t+ 4t2 + 3t+ 1
B0(V3) 〈1〉

B1(V3) 〈x(12), x(23), x(13)〉

B2(V3) 〈x(12)x(13), x(12)x(23), x(13)x(23), x(13)x(12)〉

B3(V3) 〈x(12)x(13)x(23), x(12)x(13)x(12), x(13)x(12)x(23)〉

B4(V3) 〈xtop〉

ICTP vay
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Properties of the Drinfeld double D = D(B(V )#H)

The bosonization B(V )#H is
a Hopf algebra which is constructed as a kind of crossed product
between H and B(V )

Notation
D := D(B(V )#H)

Properties of D
Triangular decomposition: D ' B(V )⊗D(H)⊗B(V )
Graded: Dn = ⊕n=j−iB

i(V )⊗D(H)⊗Bj(V )
Symmetric algebra

ICTP vay
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Representation theory of D

ICTP vay

Λ = the set of simple D(H)-modules.

Theorem [Bellamy-Thiel, V]
If H is semisimple, then the category of
graded D-modules is a highest weight category
whose set of weights is Λ× Z.
The standard modules are:

M(λ[n]) = D ⊗D≥0 λ[n].

The simple modules are:

L(λ[n]) = top
(
M(λ[n])

)
.

λ

L(λ)

M(λ)
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λV = Bntop(V ) ∈ Λ.

Lemma

M(λ)∗ ' M
(
(λV λ)∗

)
L(λ)∗ ' L(λ∗)

λ

λ

λV · λ
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N = ⊕iN(i) a graded D(H)-module.

 ch•N =
∑
i

ch N(i) ti ∈ Λ[t, t−1].

Problem
Describe ch• L(λ) for all λ ∈ Λ.

ICTP vay
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Diagonal case

H = kΓ a finite abelian group
B(V ) = finite dimensional Nichols algebra of diagonal type

Theorem [Yamane]
λ “typical”, it holds a Weyl-Kac-type formula

ch• L(λ) =
∑
ω̇∈Ẇλ

sgn(ω̇) ch•M(ω̇ · λ).

ICTP vay
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P(λ) = projective cover of L(λ).

Theorem [Holmes-Nakano, B-T, V]
P(λ) admits a standard filtration, i.e.

∃ 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = P(λ) s.t.

∀i Ni/Ni−1 ' M(λi) for some λi ∈ Λ

BGG Reciprocity [B-T, V]

[P(λ) : M(µ)] = [M(µ) : L(λ)]

ICTP vay
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Theorem [Holmes-Nakano, B-T, V]
P(λ) admits a graded standard filtration.

pP(λ),M(µ) and pM(µ),L(λ) ∈ Z[t, t−1] s.t.

ch• P(λ) =
∑
µ

pP(λ),M(µ) ch•M(µ) and

ch•M(µ) =
∑
λ

pM(µ),L(λ) ch• L(λ)

Graded BGG Reciprocity [B-T, V]

pP(µ),M(λ) = pM(λ),L(µ)

where p(t, t−1) = p(t−1, t).
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Example: D(k[x | xn]#kZn) [Chen]
1 + t+ t2 + · · ·+ ti with i ≤ n

ΛD(S3) =

=
{
ε, (e,−), (e,−), (e, ρ), (σ,+), (σ,−), (τ, 0), (τ, 1), (τ, 2)

}
Example: D(FK3#kS3) [Pogorelsky-V.]

hε = 1
h(e,ρ) = 2 + 3t+ 2t2

h(τ,0) = 2 + 3t+ 2t2

h(σ,−) = 3 + 4t+ 3t2

hλ = hB(V3) · dimλ
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Example= D(ufo(7)#kΓ) [Andruskiewistch-Angiono-Mejía-Renz]

Case 11, λ1 = 1, λ2 = ζ

×
4

•

×
3

• • •

×
2

• • •

•
1

• •

•
0

×
1

×
2

×
3

×
4

×
5

Case 12, λ1 = 1, λ2 = ζ4

×
4

•

×
3

• • •

×
2

• • •

•
1

• •

•
0

×
1

×
2

×
3

×
4

×
5

There is another relation we can identify on lattices, given by next example.

Example B.1.2. If λ ∈ I15, we have that L(λ) ⊆ M(λ)/UE1vλ = W , because
λ1 = 1. Besides that, we can see in 5.4.22, using Lemma 5.2.4, that (Uw′)ϕ projects

68

Figure B.1:

By Lemma 5.2.5, the modules U and Uϕ have the same maximal element and
their rank lattice are a 180◦ rotation of each other, as we can see in next example.

Example B.1.1. If λ ∈ I11, then dimL(λ) = 11 and L(λ)ϕ is as in Case 12. The
rank diagram of Cases 11 and 12 are given below.

67
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Question
Are the Hilbert series of simple modules symmetric?
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Ulrich Thiel posed the same question for restricted rational
Cherednik algebras

Hc =
(
k[V ]/k[V ]G

)
⊗ kG⊗

(
k[V ∗]/k[V ∗]G

)
.

Example
Yes, for all the exceptional complex reflection groups and generic
parameters c.

Counterexample
For special parameters c there are simple modules whose Hilbert
series is not symmetric.

ICTP vay
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Theorem [Linckelmann]
For any symmetric algebra A and finitely generated A-modules U
and V , the Tate duality holds(

Êxt
−n
A (U, V )

)∗
' Êxt

n−1
A (V,U).

In particular, it applies for A = D.

ICTP vay
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Problem
Compute the Brauer–Picard group of a fusion category A:

BrPic(A) = {semisimple invertible A-bimodule categories}

Or equivalently, the group of braided autoequivalences of Z(A).

BrPic(A) ' Autbr(Z(A))

Remark

A = H −mod =⇒ Z(A) = D(H)−mod

ICTP vay
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Question
Does this bijection induce a braided autoequivalence in the
category of D(H)-modules?

ICTP vay

Consider the bijection
λ

highest
weight

L(λ)

λ

lowest
weight

Example: D(FK3#S3)
this corresponds to the unique
non-trivial braided autoequivalence of
the category of D(S3)-modules:

(e, ρ) = (τ, 0),
(τ, 0) = (e, ρ) and

λ = λ for the other weights.

[Lentner-Priel, Nikshych-Riepel].
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