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Radiation emitted by an accelerated charge

Uniformly accelerated charge        
[proper acceleration a] 

Acceleration and radiation:  t

z
➡Radiation concept is observer-dependent: co-

accelerating observers see no acceleration (Rohrlich, 
1961 and Boulware, 1980)

➡Uniformly accelerated  charge radiates (w.r.t. inertial 

observers) with power  (Larmor, 1897) P =
2e2a2

3c3
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Bill Unruh, “Notes on black hole 
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Uniformly accelerating observers in Minkowski vacuum 
experience a thermal bath of elementary particles at a 
temperature proportional to their proper acceleration. 
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The Unruh Effect and bremsstrahlung
Higuchi, Matsas, and Sudarsky, PRD 46 3450 

Inertial Calculation

�(t,x) =

Z
d3k [uk(t,x)ak + h.c.]

ds2 = �dt2 + dx2 + dy2 + dz2

 

 

 

 

 

Â
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ŜI =

Z
d4x

p
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Bill Unruh and Bob Wald, “What happens when an accelerating 
observer detects a Rindler particle”, Phys. Rev. D 29, 1047 (1984). 
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Uniformly accelerated charge        
[proper acceleration a] 

t

z  ➡The Unruh effect is a strictly quantum effect 
while Larmor radiation is a classical one

➡The crucial role played by zero-energy Rindler 
photons in this context  

The Unruh Effect and bremsstrahlung
Landulfo, Fulling, and Matsas, PRD 100 042020 (2019) 
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Quantum Radiation and zero-energy modes

⌃t0

t

x

rara�̂ = j

�̂(t,x) = �ret(t,x)Î + �̂in(t,x),
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⇤
j ) + v⇤j (t,x)â
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† = �̂in.

�̂out
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Ŝ = exp


�i

Z
d4x

p
�g �̂out(x)j(x)

�



Quantum Radiation and zero-energy modes

⌃t0

⌃t1

t

x

|0Min i = Ŝ|0Mouti
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Ŝ = exp


�i

Z
d4x

p
�g �̂out(x)j(x)

�
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|0Min i Ŝ�̂outŜ
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|0Min i Ŝ�̂outŜ
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vacuum)
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➡ We We believe that our results put to rest any doubts questioning the relationship between the 
Unruh effect and the classical Larmor radiation.


