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(Apparent) Information Loss in Black Hole Evaporation
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In a spacetime in which a black hole forms, there will be
entanglement between the state of quantum field observables
inside and outside of the back hole.



Apparent Information Loss (cont.)

In particular, the Hawking particles emitted by the black hole
are entangled with “particles” inside the black hole. After the
black hole evaporates, the final state should be mixed. I have
not understood the discomfort many physicists have with this
conclusion. I particularly do not understand why ideas that
require drastic modifications of local physics in a low curvature
regime (firewalls, fuzzballs) have been embraced as alternatives.

However, one idea that does not require modification in a low
curvature regime is that all the “information” comes out in a
“final burst” at the end of the evaporation process. This idea is
usually dismissed because it is assumed that one would need to
emit as many particles in the burst as there are Hawking
particles, but the energy of each particle should be Planckian,
so one does not have nearly enough energy to carry away the
information.



Possible Information Restoration Via Vacuum
Entanglement

However, a few years ago, Hotta, Schutzhold, and Unruh
showed that this is not necessarily the case: In a 1 + 1
dimensional mirror model of Hawking radiation, they argued
that the information is restored via entanglement of Hawking
particles with late time vacuum fluctuations. This opens the
possibility of having a way of restoring information with little
or no energy cost.

Goal of this work: Estimate the energy cost of such vacuum
entanglement.



How to Define “Particles”

In this talk, I will restrict consideration to a free KG scalar field.
In any globally hyperbolic spacetime with a (global) time
translation symmetry, can define a “one particle Hilbert space”
as the positive frequency solutions to the KG equation with
finite KG norm. One can then define a Fock space associated
with this one-particle Hilbert space and express the quantum
scalar field operator in terms of annihilation and creation
operators on this Fock space.
In a general globally hyperbolic spacetime, one can construct a
representation of the quantum field by a similar construction,
choosing any definition of “positive frequency solutions” such
that (i) the KG product is positive definite on the positive
frequency solutions, (ii) the positive frequency solutions are KG
orthogonal to the negative frequency solutions (≡ complex
conjugate of positive frequency solutions) and (iii) the positive
and negative frequency solutions are suitably “complete.”



1 + 1 Dimensional Minkowski Spacetime
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It is well known that one can use the boost Killing field ba to
define “Rindler quantization” in regions I and II. Similarly, for
a massless (scale invariant) field, can use the dilation conformal
Killing field ka to define “Milne quantization” in regions III and
IV. The boost and dilation Killing fields coincide (up to scale)
on each horizon. This means that a left moving Rindler particle
in wedge I becomes a Milne particle in wedge III! For
convenience, normalize ba and ka so they have surface gravity κ
on the horizon.



Positive Frequencies

Key fact that underlies the calculation of the Hawking and
Unruh effects: Let fIω be a wave packet in region I that is
positive frequency with respect to ba, with frequency peaked
sharply about ω. Let f̄IIω be the wave packet in region II
obtained by wedge reflection of fIω. Then

F1ω = fIω + e−πω/κf̄IIω

and
F2ω = fIIω + e−πω/κf̄Iω

are purely positive frequency with respect to inertial time.



Minkowski Vacuum in Terms of Rindler and Milne
Particles

This relationship between Rindler and Minkowski notions of
positive frequency implies that the Minkowski vacuum |0〉M is
given in terms of Rindler particles by

|0〉M = Πi

(∑
n

e−nπωi/κ|n〉iI |n〉iII

)

Similarly, the Minkowski vacuum |0〉M is given in terms of
Milne particles by

|0〉M = Πi

(∑
n

e−nπωi/κ|n〉iIII |n〉iIV

)

When restricted to any of the 4 wedges, |0〉M is a thermal state
at temperature T = κ/2π.



Moving Mirror Spacetime
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Moving Mirror Spacetime (cont.)

Start with a static mirror and with the quantum field in its
static ground state. During intermediate times, have the mirror
move (in terms of null coordinates v = t+ x, u = t− x)
according to

v = −1

κ
e−κu .

Finally, after a sufficiently long period of motion of this form,
have the mirror move inertially again (shown “at rest” in the
diagram, but it is allowed be moving relative to its original rest
frame).



Two Important Observations

I The state of the field to the future of event at which the
mirror becomes inertial again is identical to the static
vacuum for that inertial mirror motion.

I A purely positive frequency “Hawking wave packet” h with
(inertial) frequency peaked sharply about ω will propagate
backwards in time to a Milne wave packet h̃ of frequency ω

(blue). If we add exp(−πω/κ) times its reflection, ˜̄f1 (red)
about v = 0, we get a purely positive frequency solution
with respect to inertial time.



Particle Creation

Nontrivial particle creation (with respect to given notions of
“in” and “out” particles) starting from |0〉in occurs if an
initially positive frequency solution picks up a negative
frequency part under evolution. Define positive frequency for
“in” states using the usual notion of inertial time translations.
However, define “positive frequency” for “out” states using (i)
inertial time translations for wave packets emerging at “early
times” and Milne/Rindler time translations for wave packets
emerging at times near the retarded time at which the mirror
becomes inertial again. This is consistent if there is a large
“time separation” between these time eras, as I will assume.



Particle Creation (cont.)

The initial positive frequency wave packet h̃+ exp(−πω/κ) ˜̄f1
evolves to h+ exp(−πω/κ)f̄1, which gives its decomposition
into positive and negative frequency parts. It follows that the
“out” state is:

Ψ =

(∑
n

e−nπω/κ|n〉h|n〉f1

)
⊗Ψ′

where Ψ′ describes the state of the system with respect to the
modes that are orthogonal to both h and f1 in our one-particle
“out” Hilbert space. This shows that (i) the Hawking radiation
is thermal at temperature T = κ/2π, and (ii) the Milne
radiation is thermal at temperature T = κ/2π, as it must be,
since the field is in the (inertial) vacuum state after the mirror
becomes inertial again. The Hawking particles are entangled
with Milne particles. All of the “information” about the
Hawking radiation is stored in vacuum fluctuations!



The Particle Cost
At first sight, it may appear that information has been restored
at no particle or energy cost, since the information is stored in
the vacuum state, which has no particles or energy. However,
this is not the case because |n〉f1 is entangled with |n〉h rather
than with its reflection |n〉f2 . This means that the Rindler
mode f2 cannot be in a thermal state (or would have to
entangle in some improper way with some other mode, etc.).
We can see more explicitly what goes wrong by considering the
inertial positive frequency mode

F1 =
f1 + e−πω/κf̄2√

1− e−2πω/κ

The annihilation operator for F1 is given in terms of the
annihilation and creation operators for f1 and f2 by

a(F1) =
a(f1)− e−πω/κa†(f2)√

1− e−2πω/κ



The Particle Cost (cont.)

Thus, the expected number of inertial particles in the mode F1

is

〈Ψ|a†(F1)a(F1)|Ψ〉 =
1

1− e−2πω/κ
[
〈Ψ|a†(f1)a(f1)

−e−πω/κa†(f1)a†(f2) − e−πω/κa(f1)a(f2) +

+ e−2πω/κa(f2)a
†(f2)|Ψ〉

]
The terms a†(f1)a

†(f2) and a(f1)a(f2) make vanishing
contribution on account of the form of Ψ. Thus, we obtain,

〈Ψ|N(F1)|Ψ〉 ≥ 〈Ψ|N(f1)|Ψ〉 = 〈Ψ|N(h)|Ψ〉

Thus, there must be at least as many “real” (inertial) particles
emitted modes of the form F1 as there are Hawking particles!



The Energy cost

The mode F1 is not an eigenstate of inertial energy so it is not
obvious how to calculate a rigorous lower bound on the total
energy E associated with “late time” emission. Nevertheless, it
seems clear that we must have

〈E〉 &
∑
i

〈N(Fi1)〉e(Fi1)

where e(Fi1) is the classical energy of the mode Fi1
corresponding to the Hawking mode hi. Since we already know
that there are at least as many F1-particles as Hawking
particles, the key issue is how large e(Fi1) is.



The Energy cost (cont.)

The propagation of h back into the past produces an enormous
blueshift. The energy of h̃ and f̃1 are enormous. If the mirror is
brought to rest at late times, then the energies of f1 and F1 will
be correspondingly enormous, and so will the energy cost of the
vacuum entanglement.
However, suppose that instead of bringing the mirror back to
rest, we let it “glide” at the end of the process, i.e., we
(smoothly) turn off the acceleration without decreasing the
velocity. Then there will be a larger redshift in the forward
propagation of f̃1 to f1 then there is a blueshift in the backward
propagation of h to h̃. Therefore e(Fi1) can be made much
smaller than the energy of the Hawking particles. For a
“gliding” mirror, it should be possible to recover the
information in the Hawking particles via vacuum entanglement
at negligible energy cost.



3 + 1 Dimensional Black Hole Evaporation
In higher dimensions, Milne quantization of scale invariant free
fields with respect to the dilation conformal Killing field can be
done in the future and past light cones of a point. The
Minkowski vacuum takes the same form as in 1 + 1 dimensions
in terms of Milne particles, and is a thermal state of Milne
particles at T = κ/2π when restricted to either the future or
past light cone.
There is no explicit model of an evaporating black hole
spacetime where particle creation calculations can be done to
determine what the Hawking particles are entangled with.
Nevertheless, it is interesting to consider the possibility that the
Hawking particles are entangled with vacuum fluctuations in
the future light cone of the evaporation event:

Ψ =

(∑
n

e−nπω/κ|n〉h|n〉f1

)
⊗Ψ′

where f1 denotes the Milne particle mode entangled with the
Hawking mode h.



3 + 1 Dimensional Black Hole Evaporation (cont.)

The analysis is essentially unchanged from the 1 + 1
dimensional case except that there is no analog of the “gliding
mirror”: The modes f1 must emerge from the order of a Planck
length of the vertex of the light cone of the evaporation event,
so e(f1) and e(F1) must have energy of the order of the Planck
energy. Thus, the energy cost of vacuum entanglement is of the
same order as in the traditional “final burst scenario” to avoid
information loss.



Conclusions

Entanglement with vacuum fluctuations provides an interesting
possibility to avoid information loss in black hole evaporation.
However, such vacuum entanglement necessarily requires a large
amount of particle creation, and the energy cost in 3 + 1
dimensions appears to be comparable to traditional “final burst
scenarios.”


