
Convolutional Neural Networks

Alexandre Xavier Falcão

Laboratory of Image Data Science
Institute of Computing — University of Campinas

afalcao@ic.unicamp.br
lids.ic.unicamp.br

1 / 1

Objectives

Learn how Convolutional Neural Networks (CNNs) work and how
to design CNNs for image classification.

Neural networks may be used in all steps, but it is crucial that their
decisions are based on the interest objects rather than on
background image features.

2 / 1

Objectives

Learn how Convolutional Neural Networks (CNNs) work and how
to design CNNs for image classification.

Neural networks may be used in all steps, but it is crucial that their
decisions are based on the interest objects rather than on
background image features.

2 / 1

The real problem related to this example

Automated diagnosis of human intestinal parasites for the 15 most
common species in Brazil.

3 / 1

The real problem related to this example

Examples of intestinal parasites (left) and similar impurities (right).

4 / 1

The image classification problem

Assuming that object detection/segmentation has been solved.

For a given training set I = {Îj}nj=1 of n λ-labeled images from

classes λ(Îj) ∈ {1, 2, . . . , c}, we must find a model that estimates

the label L(Î) of any new (test) image Î .

5 / 1

The main challenge in image classification

Images from distinct classes must be mapped into separated
groups of points in some multidimensional feature space.

6 / 1

Agenda

What are CNNs?

Basic definitions and image processing operations.

CNNs for image classification — how do they work?

How to design and test CNNs, and visualize their neuronal
activity, using pytorch.

Hands-on — image classification in pytorch.

Final remarks.

7 / 1

What are CNNs?

CNNs are artificial neural networks (ANN) with convolutional
layers that can extract image features for classification and
regression problems.

A possible image classification pipeline.
8 / 1

Convolutional layers

A convolutional layer may consist of four basic operations.

However, there are several types of activation, pooling, and
normalization functions.

9 / 1

Basic definitions and image processing operations

Multiband (multichannel) images and adjacency relations.

Kernel, kernel bank, and convolution.

Activation and perceptron (convolution + activation).

Other image processing operations.

Global feature spaces and their transformations.

10 / 1

Multiband images

A 2D multiband image Î is a pair (DI , I) in which I(p) ∈ <m

assigns m scalar values to each pixel p ∈ DI ⊂ Z2.

For m = 3 bands, each pixel p is represented by a point
I(p) = (I1(p), I2(p), I3(p)) ∈ <3.

11 / 1

Adjacency relation

CNNs usually adopt rectangular adjacency relations A such that

A(p) = {q ∈ DI | |xq − xp| ≤
w

2
and |yq − yp| ≤

h

2
}

where p = (xp, yp) ∈ DI ⊂ Z2.

Two examples for pixels p, p = (1, 1) and p = (6, 5), with
w = h = 3, A(p) = {q1, q2, . . . , q9} where q5 = p.

12 / 1

Basic definitions and image processing operations

Multiband (multichannel) images and adjacency relations.

Kernel, kernel bank, and convolution.

Activation and perceptron (convolution + activation).

Other image processing operations.

Global feature spaces and their transformations.

13 / 1

Kernel, kernel bank, and convolution

For an adjacency A, a kernel (filter) (A,W) is a moving image,
where W(qi − p), i = 1, 2, . . . , |A(p)|, assigns weights wi ∈ <m to
the respective adjacent pixels qi ∈ A(p) of any p ∈ DI .

A 3× 3×m filter sliding from top to bottom and left to right over
the image domain DI .

14 / 1

Kernel, kernel bank, and convolution

A kernel bank is just a set of filters and the convolution between
an image Î = (DI , I) and a filter (A,W) creates a grayscale image
Ĵ = (DJ , J),

J(p) =

|A(p)|∑
i=1

〈I(qi),wi 〉,

〈I(qi),wi 〉 =
m∑

k=1

Ik(qi)wi ,k ,

for all p ∈ DI , with DJ forced to be ⊆ DI .

15 / 1

Convolution

The convolution between a grayscale image Î = (DI , I) and a
3× 3× 1 filter generating a grayscale image Ĵ = (DI , J).

16 / 1

Convolution

The convolution between an image Î = (DI , I) and a bank of b
kernels {(A,Wk)}bk=1 will produce an image Ĵ = (DI , J) with b
bands Jk , k ∈ [1, b],

Jk(p) =

|A(p)|∑
i=1

〈I(qi),wk,i 〉.

The adjacency A is usually fixed for all kernels because the
convolution can be very efficiently computed by matrix
multiplication using parallel programming.

One can also reduce the number of bands from m to b < m by
convolving an image with b filters of size 1× 1×m.

17 / 1

Convolution

The convolution between an image Î = (DI , I) and a bank of b
kernels {(A,Wk)}bk=1 will produce an image Ĵ = (DI , J) with b
bands Jk , k ∈ [1, b],

Jk(p) =

|A(p)|∑
i=1

〈I(qi),wk,i 〉.

The adjacency A is usually fixed for all kernels because the
convolution can be very efficiently computed by matrix
multiplication using parallel programming.

One can also reduce the number of bands from m to b < m by
convolving an image with b filters of size 1× 1×m.

17 / 1

Convolution

The convolution between an image Î = (DI , I) and a bank of b
kernels {(A,Wk)}bk=1 will produce an image Ĵ = (DI , J) with b
bands Jk , k ∈ [1, b],

Jk(p) =

|A(p)|∑
i=1

〈I(qi),wk,i 〉.

The adjacency A is usually fixed for all kernels because the
convolution can be very efficiently computed by matrix
multiplication using parallel programming.

One can also reduce the number of bands from m to b < m by
convolving an image with b filters of size 1× 1×m.

17 / 1

Basic definitions and image processing operations

Multiband (multichannel) images and adjacency relations.

Kernel, kernel bank, and convolution.

Activation and perceptron (convolution + activation).

Other image processing operations.

Global feature spaces and their transformations.

18 / 1

Activation

Among several activation functions, we will adopt the Rectified
Linear Unit (ReLU).

From the output Ĵ = (DI , J) of a convolution, ReLU creates an
image R̂ = (DI ,R), R(p) = (R1(p),R2(p), . . . ,Rb(p)),

Rk(p) = max{0, Jk(p)},

for p ∈ DI and k ∈ [1, b].

19 / 1

Activation

Among several activation functions, we will adopt the Rectified
Linear Unit (ReLU).

From the output Ĵ = (DI , J) of a convolution, ReLU creates an
image R̂ = (DI ,R), R(p) = (R1(p),R2(p), . . . ,Rb(p)),

Rk(p) = max{0, Jk(p)},

for p ∈ DI and k ∈ [1, b].

19 / 1

Activation

Among several activation functions, we will adopt the Rectified
Linear Unit (ReLU).

From the output Ĵ = (DI , J) of a convolution, ReLU creates an
image R̂ = (DI ,R), R(p) = (R1(p),R2(p), . . . ,Rb(p)),

Rk(p) = max{0, Jk(p)},

for p ∈ DI and k ∈ [1, b].

19 / 1

Convolution followed by activation

Transitions from dark to bright are enhanced.
20 / 1

Convolution, bias, and activation

By convolving Î = (DI , I) and the k-th filter {(A,Wk)}, k ∈ [1, b],
adding a bias wk,0 ∈ < to each output Jk(p), and applying a ReLU
operation, we have one perceptron per pixel p ∈ DI (artificial
neuron).

Jk(p) =

|A(p)|∑
i=1

〈I(qi),wk,i 〉

Rk(p) = max{0, Jk(p) + wk,0}
21 / 1

Convolution, bias, and activation

Let X(p) ∈ <|A(p)|×m be a local feature vector

X(p) = (I(q1), I(q2), . . . , I(q|A(p)|))

and P be an affine hyperplane 〈x ,wk〉+ wk,0 = 0 in <|A(p)|×m.

The distance d(X(p),P) from X(p) to the hyperplane is given by

d(X(p),P) =
〈X(p),wk〉+ wk,0

‖wk‖
=

Jk(p) + wk,0

‖wk‖
22 / 1

Convolution, bias, and activation

The perceptron at p selects Rk(p) as a local feature only when the
activation

〈X(p),wk〉+ wk,0 = Jk(p) + wk,0 > 0,

meaning that, the bias moves P such that X(p) falls in its positive
side.

23 / 1

Convolution, bias, and activation

Therefore, the convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI) — should extract and select pixel
features in parts that best represent the object characteristics from
each class of the image classification problem.

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.

24 / 1

Convolution, bias, and activation

Therefore, the convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI) — should extract and select pixel
features in parts that best represent the object characteristics from
each class of the image classification problem.

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.

24 / 1

Convolution, bias, and activation

Therefore, the convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI) — should extract and select pixel
features in parts that best represent the object characteristics from
each class of the image classification problem.

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.

24 / 1

Convolution, bias, and activation

Therefore, the convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI) — should extract and select pixel
features in parts that best represent the object characteristics from
each class of the image classification problem.

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.

24 / 1

Convolution, bias, and activation

Therefore, the convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI) — should extract and select pixel
features in parts that best represent the object characteristics from
each class of the image classification problem.

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.

24 / 1

Basic definitions and image processing operations

Multiband (multichannel) images and adjacency relations.

Kernel, kernel bank, and convolution.

Activation and perceptron (convolution + activation).

Other image processing operations.

Global feature spaces and their transformations.

25 / 1

Pooling

The activations Rk(p) related to an object of interest might also
appear at nearby positions within and across images.

Max-pooling can aggregate them by transforming R̂ = (DI ,R) into
P̂ = (DI ,P), P(p) = (P1(p),P2(p), . . . ,Pb(p)),

Pk(p) = max
∀q∈B(p)

{Rk(q)},

where B is an adjacency relation.

In this case, the widest component is the plate.

26 / 1

Pooling

The activations Rk(p) related to an object of interest might also
appear at nearby positions within and across images.

Max-pooling can aggregate them by transforming R̂ = (DI ,R) into
P̂ = (DI ,P), P(p) = (P1(p),P2(p), . . . ,Pb(p)),

Pk(p) = max
∀q∈B(p)

{Rk(q)},

where B is an adjacency relation.

In this case, the widest component is the plate.
26 / 1

Pooling

The activations Rk(p) related to an object of interest might also
appear at nearby positions within and across images.

Max-pooling can aggregate them by transforming R̂ = (DI ,R) into
P̂ = (DI ,P), P(p) = (P1(p),P2(p), . . . ,Pb(p)),

Pk(p) = max
∀q∈B(p)

{Rk(q)},

where B is an adjacency relation.

In this case, the widest component is the plate.
26 / 1

Pooling with stride

It is also common to down-sampling the input image with
displacements sx ≥ 1 and sy ≥ 1, called strides.

For a stride sx = sy = 2 and a 3× 3 adjacency relation B, the
image domain DP of P̂ will be DI

2×2 .

27 / 1

Pooling

Other examples that create P̂ = (DI ,P) by pooling are
min-pooling and average pooling.

Min-pooling:

Pk(p) = min
∀q∈B(p)

{Rk(q)}.

Average pooling:

Pk(p) =
1

|B(p)|
∑
∀q∈B(p)

{Rk(q)}.

Indeed, any other image filtering could be used here to eliminate
undesirable features and/or aggregate the desirable ones for better
image classification.

28 / 1

Normalization

Normalizations may be applied to any image Î = (DI , I) with m
bands or, in batch, to a set I = {Îj}nj=1 of m-band images
before/after any step in a convolutional layer.

They are important to avoid discrepancies among local features
along the network.

They create a new image N̂ = (DI ,N) with m bands or a new set
N = {N̂j}nj=1 of m-band images.

29 / 1

Linear normalization

For N̂ = (DI ,N), N(p) = (N1(p),N2(p), . . . ,Nm(p)),

Nk(p) =
Ik(p)−min∀q∈DI

{Ik(q)}
max∀q∈DI

{Ik(q)} −min∀q∈DI
{Ik(q)}

,

Nk(p) =
Ik(p)−minn

j=1{Ij ,k(p)}
maxnj=1{Ij ,k(p)} −minn

j=1{Ij ,k(p)}
,

k ∈ [1,m] and p ∈ DI , we have a linear normalization.

30 / 1

Divisive normalization

Divisive normalization can enhance subtle and isolated activations
within an adjacency C , creating N̂ = (DI ,N), with

Nk(p) =
Ik(p)√∑
∀q∈C(p) I

2
k (q)

,

for k ∈ [1,m] and p ∈ DI .

C is rectangular with w = 25 and h = 5. The normalized image
before and after residue+ReLU (right).

31 / 1

Divisive normalization

Divisive normalization can enhance subtle and isolated activations
within an adjacency C , creating N̂ = (DI ,N), with

Nk(p) =
Ik(p)√∑
∀q∈C(p) I

2
k (q)

,

for k ∈ [1,m] and p ∈ DI .

C is rectangular with w = 25 and h = 5. The normalized image
before and after residue+ReLU (right).

31 / 1

Batch normalization

Batch normalization is very useful to standardize local features and
eliminate the need of bias learning.

It creates an image N̂ = (DI ,N), with

Nk(p) =
Ik(p)− µk(p)

σk(p)
γ + β,

µk(p) =
1

n

n∑
j=1

Ij ,k(p),

σ2k(p) =
1

n − 1

n∑
j=1

(Ik(p)− µk(p))2,

for k ∈ [1,m], p ∈ DI , and γ, β ∈ < are parameters that can be
learned and even undo this operation. Let γ = 1 and β = 0 be
their default values.

32 / 1

Batch normalization

Batch normalization affects the local feature space with points
Xj(p) from an image set I = {Îj}nj=1 for all pixels p ∈ DI .

Just the centralization of the point cloud already shows that
training can adjust a kernel to select more features from a given
class with no need of bias.

33 / 1

Batch normalization

Batch normalization affects the local feature space with points
Xj(p) from an image set I = {Îj}nj=1 for all pixels p ∈ DI .

Just the centralization of the point cloud already shows that
training can adjust a kernel to select more features from a given
class with no need of bias.

33 / 1

Batch normalization

Batch normalization affects the local feature space with points
Xj(p) from an image set I = {Îj}nj=1 for all pixels p ∈ DI .

Just the centralization of the point cloud already shows that
training can adjust a kernel to select more features from a given
class with no need of bias.

33 / 1

Basic definitions and image processing operations

Multiband (multichannel) images and adjacency relations.

Kernel, kernel bank, and convolution.

Activation and perceptron (convolution + activation).

Other image processing operations.

Global feature spaces and their transformations.

34 / 1

Global feature spaces and their transformations

One may create a global feature vector for image classification
at any step of a convolutional layer.

For example, at the input layer,

X(Î) = B1 _ B2 _ . . . _ Bm ∈ <|DI |×m

results from the concatenation of each band vector Bk of Î ,
k ∈ [1,m], where

Bk = (Ik(p1), Ik(p2), . . . , Ik(p|DI |)) ∈ <|DI |.

This operation is known as flattening.

35 / 1

Global feature spaces and their transformations

One may create a global feature vector for image classification
at any step of a convolutional layer.

For example, at the input layer,

X(Î) = B1 _ B2 _ . . . _ Bm ∈ <|DI |×m

results from the concatenation of each band vector Bk of Î ,
k ∈ [1,m], where

Bk = (Ik(p1), Ik(p2), . . . , Ik(p|DI |)) ∈ <|DI |.

This operation is known as flattening.

35 / 1

Global feature space

For a given set of images, one can use non-linear projections to
visualize the distribution of points in <|DI | formed by the global
feature vectors of those images.

Feature projection (t-SNE) of helminth eggs at the input layer w/o
impurities.

36 / 1

Global feature space

For a given set of images, one can use non-linear projections to
visualize the distribution of points in <|DI | formed by the global
feature vectors of those images.

Feature projection (t-SNE) of helminth eggs at the input layer w/o
impurities.

36 / 1

Global feature space transformations

A CNN essentially transforms the global feature space of the input
images into new spaces along the convolutional and
fully-connected layers.

37 / 1

Global feature space transformations

Even inside each convolutional layer, there are global feature space
transformations.

LN - linear normalization, CO - convolution, BN - batch
normalization, RL - ReLU, PO - pooling, and SVM - support
vector machine.

38 / 1

Global feature space transformations

After applying the previous pipeline using a random kernel bank
with 5× 5× 3 filters, SVM can improve about 3% its performance
on unseen test sets.

Feature projection (t-SNE) of helminth eggs at the output layer
w/o impurities. 39 / 1

Global feature space transformations

After applying the previous pipeline using a random kernel bank
with 5× 5× 3 filters, SVM can improve about 3% its performance
on unseen test sets.

Feature projection (t-SNE) of helminth eggs at the output layer
w/o impurities. 39 / 1

Global feature space transformations

The filters are usually optimized by back-propagation using a MLP
classifier but, deeper is the network, skip connections are required
to avoid vanishing gradients and to recover the accuracy on some
specific classes from previous layers.

Skip connections based on addition (e.g., ResNet) and
concatenation (e.g., Dense Net) to the output of a previous layer.

40 / 1

Global feature space transformations

The filters are usually optimized by back-propagation using a MLP
classifier but, deeper is the network, skip connections are required
to avoid vanishing gradients and to recover the accuracy on some
specific classes from previous layers.

Skip connections based on addition (e.g., ResNet) and
concatenation (e.g., Dense Net) to the output of a previous layer.

40 / 1

Agenda

What are CNNs?

Basic definitions and image processing operations.

CNNs for image classification — how do they work?

How to design, test, and visualize neuronal activity of a CNN
in pytorch.

Hands-on — image classification in pytorch.

Final remarks.

41 / 1

CNNs for image classification

Starting from a global feature space in which the regions that
separate the classes are not clearly defined.

Feature projection (t-SNE) before training a CNN for eight species
of helminth eggs and impurities.

42 / 1

CNNs for image classification

A clear definition of those regions is expected at the last hidden
layer of the CNN.

Feature projection (t-SNE) after training a CNN for eight species
of helminth eggs and impurities.

43 / 1

CNNs for image classification

Another example with a known dataset of 10 digits, MNIST, in
which one can understand the misclassification of outliers.

Feature projections (t-SNE) of the last hidden layer before (left)
and after (right) training.

44 / 1

CNNs for image classification

Even the global feature spaces at the outputs of deeper and
subsequent convolutional layers should show progressively higher
class separation.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities.

45 / 1

CNNs for image classification

Even the global feature spaces at the outputs of deeper and
subsequent convolutional layers should show progressively higher
class separation.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities.

45 / 1

CNNs for image classification

Even the global feature spaces at the outputs of deeper and
subsequent convolutional layers should show progressively higher
class separation.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities.

45 / 1

CNNs for image classification

Even the global feature spaces at the outputs of deeper and
subsequent convolutional layers should show progressively higher
class separation.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities.

45 / 1

Class separation at the last hidden layer

CNNs should then map images from distinct classes into different
hyper-polyhedrons whose faces are the hyperplanes P of the last
hidden layer’s perceptrons.

46 / 1

Class separation at the last hidden layer

The training of a CNN hence specializes perceptrons of the last
hidden layer in each given class.

Neuron projections (MDS, right) colored by their discriminative
power for class 8 versus the others.

47 / 1

Agenda

What are CNNs?

Basic definitions and image processing operations.

CNNs for image classification — how do they work?

How to design, test, and visualize neuronal activity of a CNN
in pytorch. (in python notebook by Italos Estilon de Souza)

Hands-on — image classification in pytorch.

Final remarks.

48 / 1

Final Remarks

Research in deep learning is moving from dealing with training
problems based on backpropagation (e.g., regularization
tricks) to the design of explainable neural networks.

In this context, visual analytics plays a crucial role in
human-machine interaction during training, but feature
projection methods need to improve in processing time and
quality (see UMAP).

It is possible to explore such methods in many tasks, such as
data annotation, filter selection, neuronal layer assessment,
etc.

The ultimate goals for experts should be a better
understanding of deep learning and the ability to intervene
and improve the training process.

49 / 1

Selected works

1 G. Chiachia et al., Learning Person-Specific Representations
From Faces in the Wild, doi: 10.1109/TIFS.2014.2359543 ,
IEEE TIFS, 9(12), 2089-2099, 2014.

2 D. Menotti et al., Deep Representations for Iris, Face, and
Fingerprint Spoofing Detection, doi:
10.1109/TIFS.2015.2398817, IEEE TIFS, 10(4), 864-879,
2015.

3 P. E. Rauber et al., Visualizing the Hidden Activity of
Artificial Neural Networks, doi: 10.1109/TVCG.2016.2598838,
IEEE TVCG, 23 (1), 101-110, Jan. 2017.

4 P.E. Rauber et al., Visualizing Time-Dependent Data Using
Dynamic t-SNE, https://scholar.google.com/scholar?
oi=bibs&cluster=18282991313013439645&btnI=1&hl=en,
EuroVis, 2016.

50 / 1

http://dx.doi.org/10.1109/TIFS.2014.2359543
http://dx.doi.org/10.1109/TIFS.2015.2398817
http://dx.doi.org/10.1109/TIFS.2015.2398817
http://dx.doi.org/10.1109/TVCG.2016.2598838
https://scholar.google.com/scholar?oi=bibs&cluster=18282991313013439645&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=18282991313013439645&btnI=1&hl=en

Selected works

1 P.E. Rauber et al., Projections as visual aids for classification
system design. doi: 10.1177/1473871617713337, Information
Visualization, 17(4), 282-305.

2 A. Z. Peixinho et al., Delaunay Triangulation Data
Augmentation Guided by Visual Analytics for Deep Learning,
doi: 10.1109/SIBGRAPI.2018.00056, SIBGRAPI, 384-391,
2018.

3 B. C. Benato, et al., Semi-Supervised Learning with
Interactive Label Propagation Guided by Feature Space
Projections, doi: 10.1109/SIBGRAPI.2018.00057, SIBGRAPI,
392-399, 2018.

4 R. Garcia et al., A Methodology for Neural Network
Architectural Tuning Using Activation Occurrence Maps, doi:
10.1109/IJCNN.2019.8852223, IJCNN, 1-10, 2019.

51 / 1

http://dx.doi.org/10.1177/1473871617713337
http://dx.doi.org/10.1109/SIBGRAPI.2018.00056
http://dx.doi.org/10.1109/SIBGRAPI.2018.00057
http://dx.doi.org/10.1109/IJCNN.2019.8852223
http://dx.doi.org/10.1109/IJCNN.2019.8852223

	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:
	cronobox:
	cronohours:
	separatortime: :
	cronominutes:
	separatortime: :
	crseconds:

