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Introduction



Learning
qLearning modifies the agent's decision mechanisms to 

improve performance

qLearning is essential for unknown environments
qi.e., when designer lacks omniscience

qLearning is useful as a system construction method
qi.e., expose the agent to reality rather than trying to write it 

down
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Learning Agent
qDesign of a learning agent depends on what feedback 

is available 
qType of feedback:
q Supervised learning
q Unsupervised learning
q Reinforcement learning
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Supervised Learning

qConsider a database containing records (X, Y).
§ Variables X = {X1, . . . , Xn} are observed; they are called 

features or attributes.
§ Labels are values of a class variable Y.

qWhen every record contains a label, we have supervised 
learning.

qSo, learning here is to produce a function g using data:
§ !𝑌 = g(X1, . . . , Xn).      Goal: !𝑌 = Y
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Unsupervised Learning

qWhen every label Y is missing, we have unsupervised 
learning.
§ It is typically about finding structure hidden in collections of 

unlabeled data.

qGeneral case: some labels missing: semi-supervised 
learning.
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Reinforcement Learning
q Feedback is delayed, occasional 
q Time really matters (sequential, non i.i.d data)
q Agent's actions affect the subsequent data it 

receives
q Trial and error learning (via experiences)

q Task: to learn from this indirect, delayed reward, to 
choose sequences of actions that produce the 
greatest cumulative reward in the long run
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When we apply RL?

q RL addresses the question of how an 
autonomous agent that senses and acts
in its environment can learn to choose 
optimal actions to get as much reward 
as it can over the long run.

è Applied to Sequential Decision Problems

14



Elements of RL
q Reward signal:  indicates what is good in an immediate

sense

q Goal: should specify what we want to achieve, not how
we want to achieve it.

q Value function: specifies what is good in the long run. 

q Action choices are made based on value judgments. We 
seek actions that bring about states of highest value.
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MDP and Policies 



Sequential decision problem
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At each time step the decision maker:

1. Observes the state of the system;

s0
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Maker
(agent)



Sequential decision problem
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At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;

(system evolves to a new state)



Sequential decision problem
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Sequential decision problem
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a0s0

Environment
(or System)

State

Decision
Maker
(agent)

At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;

(system evolves to a new state)
3. Observes the new state and an

immediate reinforcement;
Repeat 1 – 3 

Reward

r0
s1

Action

a1

r1
s2 …

We want learn how to 
map states to actions so 
as to maximize the 
expected sum of rewards.



MDP – Model Formulation
q An MDP is defined as <S, A, T, R >:
q S is the set of possible states (arbitrary finite set);
q A is the set of allowable actions (arbitrary finite set);
q T: S×A×S → [0,1] is the transition probability 

function; t(s,a,s’) = P(s’|s,a) – the probability of 
transition from s to s’ given action a

q R: S×A →ℜ is the immediate reward function; r(s,a) 
– the reward for taking action a in state s
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State
q Experience is a sequence of observations, 

actions, rewards
𝑜', 𝑎', 𝑟', 𝑜+, 𝑎+, 𝑟+, 𝑜,,⋯𝑜., 𝑎., 𝑟.

q The state is a summary of experience
𝑠 = 𝑓(𝑜', 𝑎', 𝑟', 𝑜+, 𝑎+, 𝑟+, 𝑜,,⋯𝑜., 𝑎., 𝑟.)

q In a fully observed environment
𝑠 = 𝑓(𝑜.)
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Example of an MDP
q A = {wait, move(r1,l1,l2), move(r1,l2,l1), move(r1,l4,l1), 

move(r1,l1,l4), move(r1,l3,l2), move(r1,l2,l3), move(r1,l5,l2), 
move(r1,l4,l3), move(r1,l3,l4), move(r1,l5,l4), move(r1,l4,l5)}

q S = {s1, s2, s3, s4, s5}
q t(s1,move(r1,l1,l4),s4)= t(s1,move(r1,l1,l4),s1)= 0.5; 

t(s2,move(r1,l2,l3),s3)=0.8; t(s2,move(r1,l2,l3),s5)=0.2;              
All others t(.) have a value of 1.

q r(s1,wait)= r(s2,wait)= -1; r(s4,wait)= 0; r(s5,wait)= -100; r(s4)=100;
r(s1,move(r1,l1,l2)) = r(s2,move(r1,l2,l1)) = r(s3,move(r1,l3,l4)) = -100;  
r(s4,move(r1,l4,l3)) = r(s4,move(r1,l4,l5)) = r(s5,move(r1,l5,l4)) = -100; 
r(s1,move(r1,l1,l4)) = r(s4,move(r1,l4,l1)) = r(s2,move(r1,l2,l3)) = -1; 
r(s3,move(r1,l3,l2)) = r(s5,move(r1,l5,l2))= -1;   r(s1)=r(s2)=r(s3)=r(s5)=0



goal

p1 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

h1 = ás1, s2, s3, s4, s4, … ñ P(h1 | p1) = 1 ´ 1 ´ 0.8 ´ 1 ´ … = 0.8
h2 = ás1, s2, s5, s5 … ñ P(h2 | p1) = 1 ´ 1 ´ 0.2 ´ 1 ´ … = 0.2

P(h | p1) = 0 for all other h

Example

GoalStart
m

ove(r1,l2,l1)

wait

wait

wait

wait
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Returns: we want to maximize the expected return

q Discounted return: 

𝑅. = 𝑟. + 𝛾𝑟.7' +𝛾𝑟.7+ + ⋯ = ∑9:;< 𝛾9 𝑟.79

where 𝛾, 0 ≤ 𝛾 ≤ 1, is the discount rate.

q 𝛾 describes the preference of an agent for 
current reinforcements over future
reinforcements.
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Value Function V(s)

q The value of a state 𝑉A 𝑠 under a policy 
π is the expected return when starting in 
that state 𝑠 and following the policy π from 
that state onwards:

𝑉A 𝑠 = 𝐸A 𝑅.|𝑠. = 𝑠 = 𝐸A D
9:;

<

𝛾9𝑟.79|𝑠. = 𝑠
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Value Function Q(s,a)
q The value of a state-action pair 𝑄A 𝑠, 𝑎 is the 

expected return starting from that state 𝑠, 
taking that action 𝑎, and thereafter following 
policy 𝜋: 

𝑄A 𝑠, 𝑎 = 𝐸A D
9:;

<

𝛾9𝑟.79|𝑠. = 𝑠, 𝑎. = 𝑎
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r = 0

Start

wait

wait

wait

wait

c = 1

c = 0

c = 100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

Example
p1 = {(s1, move(r1,l1,l2)),

(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

g = 0.9
h1 = ás1, s2, s3, s4, s4, … ñ
Vπ1(h1) = .90(0 –100) + .91(0 –1) + .92(0 –100) + .93 100 + .94 100 + … = 547.9

h2 = ás1, s2, s5, s5 … ñ
Vπ1(h2) = .90(0 –100) + .91(0 – 1) + .92(–100) + .93(–100) + … = –910.1
E[Vπ1(h)] = 0.8 ´ 547.9 + 0.2 ´ (–910.1) = 256.3

Dana Nau: Lecture slides for  Automated Planning.     http://creativecommons.org/licenses/by-nc-sa/2.0/ 



Optimal Value Functions
q Optimal state-value function:

𝑉∗(s)=max
A

𝑉A 𝑠 , ∀𝑠 ∈ 𝑆

q Optimal action-value function: 
𝑄∗ 𝑠, 𝑎 = max

A
𝑄A 𝑠, 𝑎 , ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴

𝑽∗ 𝒔 = 𝐦𝐚𝐱
𝒂

𝑸∗ 𝒔, 𝒂
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MDP – Solution: an optimal policy
q Solution:

qQ*(s,a) = r(s,a) + g V*(s’), "s, s’ÎS, 
"aÎA

31

p*(s)= argmax
aÎA(s)

Q*(s,a)



Policy
qA policy is the agent’s behavior.

q Deterministic policy
𝜋: 𝑆 → 𝐴 ⇒ 𝜋 𝑠 = 𝑎

q Stochastic policy
𝜋: 𝑆×𝐴 → 0,1 ⇒ 𝜋 𝑎|𝑠 = 𝑃(𝑎|𝑠)
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Example
qDiscreet 4x4 environment with obstacles.
qAgent must reach destination D from anywhere in 

the environment.
qD is an absorbing state: V*(D) = 0,  A(D)={ }
qActions: Up, Down, Left, Right
qPenalty for performing an action (any) = −1 (reward)
qBetter policy => shorter path

qExample for g = 1 and deterministic MDP

D
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D

Environment

D

-7 -6 -5 -6

-6 -5 -4 -5

0 -1 -2 -3

-3 -4

Optimal value function:
indicates the expected 
penalties until reaching 
the destination, following 
an optimal policy.

D

Optimal policies

Example



Reinforcement Learning



RL Method

37

In Reinforcement Learning (RL), we 
would like an agent to learn to 
behave well in an MDP world, but 
without knowing anything about T 
or R when it starts out

We have to sample experiences and learn by trial and error.



RL elements

q Policy 𝝅: decision on what action to do in state s
q Reward (or reinforcement) function: defines 

goal, and good and bad (immediate) experience 
for learner

q Value function: estimate of total future reward
q Model of the environment: maps states and 

actions onto states
38



RL Method
qReward function
qEnvironmental 

model

qPolicy
qValue function

qEstimate of model 
39

fixed external to agent

adjusted during learning



Design of an RL Agent

qWhen designing an RL agent, we need to: 
q define the reward function, which gives 

indications of what one wants
q choose an RL method:
§Model-free × Model-based
§Off-policy × On-policy
§ Value-based × Policy-based
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Reward Design
We need rewards to guide the agent to achieve 
its goal
qOption 1: Hand-designed reward functions
qThis requires a lot of experience and sensitivity (and luck!)

q Option 2: Learn rewards from demonstrations
q Instead of having a human expert tune a system to achieve 

the desired behavior, the expert can demonstrate desired 
behavior and the agent can tune itself to match the 
demonstration



Model-free versus Model-based
qA model of the environment allows inferences to be 

made about how the environment will behave
qModel-based methods use models and planning. 
qModels are used for planning, which means deciding on a 

course of action by considering possible future situations 
before they are experienced

qModel-free methods learn exclusively from trial-and-
error



Planner
(MDP)

Model (S, A, T, R) Policy

RL Learner
Experiences
<s, a, r, s’> Policy



RL and Planning
q Planning in RL interleaves cycles of learning based 

on experience in the world and experience gained 
via using the model to predict what will happen.

Model

Value/Policy

model learning

acting

direct RL

planning

Experience



On-policy versus Off-policy

qAn on-policy agent learns only about the 
policy that it is executing

qAn off-policy agent learns about a policy or 
policies different from the one that it is 
executing



RL Methods
qModel-based RL
q Build a model of the environment
q Then plan using model

qValue-based RL
q Estimate the optimal value function Q∗(s, a)
q Then calculate the optimal policy π∗ using Q*

qPolicy-based RL
q Search directly for the optimal policy π∗46



Credit Assignment Problem
qGiven a sequence of states and actions, and the final 

sum of time-discounted future rewards, how do we 
infer which actions were effective at producing lots of 
reward and which actions were not effective?

qHow do we assign credit for the observed rewards 
given a sequence of actions over time?

qEvery RL algorithm must address this problem



Q-Learning



A simple algorithm: Q-learning

qKey idea: 
q Update the action-value function Q(s,a) 

using the experience sequences
q Then use Q(s,a) to estimate 𝝅

qCharacteristics: 

Model-free, value-based, off-policy
49



Q-learning
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Initialize Q(s,a) arbitrarily
Observe the current state st
do forever

select an action at and execute it in st
receive immediate reward r(st,at)
observe the new state st+1
update Q(s,a) as follows:

Qt+1(st,at) ¬ (1-a)Qt(st,at) + a[r(st,at) + g maxa Qt(st+1,a)]
st ¬ st+1



Q-learning
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Initialize Q(s,a) arbitrarily
Observe the current state st
do forever

select an action at and execute it in st
receive immediate reward r(st,at)
observe the new state st+1
update Q(s,a) as follows:

Qt+1(st,at) ¬ (1-a)Qt(st,at) + a[r(st,at) + g maxa Qt(st+1,a)]
st ¬ st+1



Learning rate 𝛼
qThe basic form of the update looks like this:

Xt+1 ¬ (1 − a) Xt + a Newt

q We are updating our estimate of X to be mostly like our 
old value of X but adding in a new term New.

q It is a running average of the new terms received on each 
step.

q It is quite typical (and, in fact, required for convergence), 
to start with a large 𝛼, and then decrease it over time.
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Q-Learning
qThere are two iterative processes going on:
q One is the usual kind of averaging we do, when we 

collect a lot of samples and try to estimate their 
mean (using the learning rate).

q The other is the dynamic programming iteration 
done by value iteration, updating the value of a 
state based on the estimated values of its 
successors.

53



Trade-off: Exploration vs. Exploitation
Which experimentation strategy produces most 

effective learning?

qThe agent has to exploit what it has already 
experienced in order to obtain reward, but it also 
has to explore in order to gather new information. 

qThe dilemma is that neither exploration nor 
exploitation can be performed exclusively without 
failing at the task.
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Trade-off: Exploration vs. Exploitation
q e-Greedy:

q Softmax action selection (Boltzmann distribution):

55
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A Simple Example of Q-Learning
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0 1
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building
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100≡

A Simple Example of Q-Learning

MDP:
S = {0, 1, 2, 3, 4, 5}
A = A(0) ∪ A(1) ∪ A(2)∪ A(3)∪ A(4)∪ A(5)
T: P(s’|s,a) = 1 "s, s’ÎS, "aÎA(s)
R: as indicated in the graph



A Simple Example of Q-Learning
q “Room” 5  is the goal – an absorbing state
q r(0,.,4) = r(1,.,3) = r(2,.,3) = r(3,.,1) = r(3,.,2) = 0;

r(3,.,4) = r(4,.,0) = r(4,.,3) = r(5,.,5) = 0
r(1,.,5) = r(4,.,5) = 100

q A(0) = {go to 4}; A(1) = {go to 3, go to 5}; 
A(2) = {go to 3}; A(3) = {go to 1, go to 2, go to 4}
A(4) = {go to 0, go to 3, go to 5}; A(5) = { }

q 𝛾 = 0.8 ; 𝛼 = 1  𝑸 𝒔, 𝒂 𝒕7𝟏 = 𝒓 𝒔, 𝒂, 𝒔’ + 𝜸𝐦𝐚𝐱
𝒂’

𝑸 𝒔’, 𝒂’
58
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A Simple Example of Q-Learning

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Initial Q-table

By random selection: a = go to 5
Experience = (1, go to 5, 100, 5)
Q(1,5) = 100 + 0.8 max(Q(5,.))

= 100 + 0.8 * 0 = 100

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100
2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Suppose: initial state = 1
A(1) = {go to 3, go to 5}
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A Simple Example of Q-Learning

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Experience = (3, go to 1, 0, 1)
A(1) = {go to 3, go to 5}

Q(3,1) = 0 + 0.8 max(Q(1,3),Q(1,5))
= 0 + 0.8 * 100 = 80

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100

2 0 0 0 0 0 0

3 0 80 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

New episode: state = 3
A(3) = {go to 1, go to 2, go to 4}
Random selection: a = go to 1
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A Simple Example of Q-Learning

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100

2 0 0 0 0 0 0

3 0 80 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Experience = (1, go to 5, 100, 5)
A(5) = { }

Q(1,5) = 100 + 0.8 max(Q(5,.))
= 100 + 0.8 * 0 = 100

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100
2 0 0 0 0 0 0

3 0 80 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Now state = 1
A(1) = {go to 3, go to 5}
𝜖-greedy: a = go to 5
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A Simple Example of Q-Learning

s    a 0 1 2 3 4 5

0 0 0 0 0 80 0

1 0 0 0 64 0 100

2 0 0 0 64 0 0

3 0 80 51 0 80 0

4 64 0 0 64 0 100

5 0 0 0 0 0 0

If our agent learns more through further episodes, it will finally 
reach convergence values in Q-table like:

V*(0)=80
V*(1)=100
V*(2)=64
V*(3)=80
V*(4)=100
V*(5)=0

𝜋*(0) = go to 4
𝜋*(1) = go to 5
𝜋*(2) = go to 3
𝜋*(3) = go to 4 or 1
𝜋*(4) = go to 5
𝜋*(5) = { } (goal)
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A Simple Example of Q-Learning

𝜋*



Problems with tabular Q-Learning
qIn realistic situations we cannot learn about each 

state!
qToo many states to visit them all in training (slow 

convergence)
qToo many space to hold the Q-tables in memory (demand 

for memory resources)

qInstead, we want to generalize:
qLearn about some small number of training states from 

experience
qGeneralize that experience to new, similar states



Q-learning Algorithm: Possible solutions
q If we know a model:

1. We use the known model to build a simulation.
2. Using Q-learning plus a function approximation 

technique, we learn to behave in the simulated 
environment, which yields a good control policy for the 
original problem

Hot topics: Deep RL, batch-RL, transfer learning!



Deep Reinforcement Learning


