
Reinforcement Learning

Advanced Institute for Artificial Intelligence

A N N A R EA L I , F E L I P E L E N O, R E I N A L D O B I A N C H I

Content
q Introduction
q MDP and Policies
q Reinforcement Learning and Q-learning
q Deep RL and DQN
q Policy Gradient Methods
q Applications

2

Introduction

Learning
qLearning modifies the agent's decision mechanisms to

improve performance

qLearning is essential for unknown environments
qi.e., when designer lacks omniscience

qLearning is useful as a system construction method
qi.e., expose the agent to reality rather than trying to write it

down
4

Learning Agent
qDesign of a learning agent depends on what feedback

is available
qType of feedback:
q Supervised learning
q Unsupervised learning
q Reinforcement learning

5

Supervised Learning

qConsider a database containing records (X, Y).
§ Variables X = {X1, . . . , Xn} are observed; they are called

features or attributes.
§ Labels are values of a class variable Y.

qWhen every record contains a label, we have supervised
learning.

qSo, learning here is to produce a function g using data:
§ !𝑌 = g(X1, . . . , Xn). Goal: !𝑌 = Y

6

Unsupervised Learning

qWhen every label Y is missing, we have unsupervised
learning.
§ It is typically about finding structure hidden in collections of

unlabeled data.

qGeneral case: some labels missing: semi-supervised
learning.

7

Reinforcement Learning
q Feedback is delayed, occasional
q Time really matters (sequential, non i.i.d data)
q Agent's actions affect the subsequent data it

receives
q Trial and error learning (via experiences)

q Task: to learn from this indirect, delayed reward, to
choose sequences of actions that produce the
greatest cumulative reward in the long run

8

9

10

11

12

13

When we apply RL?

q RL addresses the question of how an
autonomous agent that senses and acts
in its environment can learn to choose
optimal actions to get as much reward
as it can over the long run.

è Applied to Sequential Decision Problems

14

Elements of RL
q Reward signal: indicates what is good in an immediate

sense

q Goal: should specify what we want to achieve, not how
we want to achieve it.

q Value function: specifies what is good in the long run.

q Action choices are made based on value judgments. We
seek actions that bring about states of highest value.

15

MDP and Policies

Sequential decision problem

17

At each time step the decision maker:

1. Observes the state of the system;

s0

Environment
(or System)

State

Decision
Maker
(agent)

Sequential decision problem

18

a0s0

Environment
(or System)Decision

Maker
(agent) Action

At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;

(system evolves to a new state)

Sequential decision problem

19

a0s0

Environment
(or System)

State

Decision
Maker
(agent)

At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;

(system evolves to a new state)
3. Observes the new state and an

immediate reinforcement;

Reward

r0
s1

Sequential decision problem

20

a0s0

Environment
(or System)

State

Decision
Maker
(agent)

At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;

(system evolves to a new state)
3. Observes the new state and an

immediate reinforcement;
Repeat 1 – 3

Reward

r0
s1

Action

a1

r1
s2 …

We want learn how to
map states to actions so
as to maximize the
expected sum of rewards.

MDP – Model Formulation
q An MDP is defined as <S, A, T, R >:
q S is the set of possible states (arbitrary finite set);
q A is the set of allowable actions (arbitrary finite set);
q T: S×A×S → [0,1] is the transition probability

function; t(s,a,s’) = P(s’|s,a) – the probability of
transition from s to s’ given action a

q R: S×A →ℜ is the immediate reward function; r(s,a)
– the reward for taking action a in state s

21

State
q Experience is a sequence of observations,

actions, rewards
𝑜', 𝑎', 𝑟', 𝑜+, 𝑎+, 𝑟+, 𝑜,,⋯𝑜., 𝑎., 𝑟.

q The state is a summary of experience
𝑠 = 𝑓(𝑜', 𝑎', 𝑟', 𝑜+, 𝑎+, 𝑟+, 𝑜,,⋯𝑜., 𝑎., 𝑟.)

q In a fully observed environment
𝑠 = 𝑓(𝑜.)

22

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Example of an MDP

Example of an MDP
q A = {wait, move(r1,l1,l2), move(r1,l2,l1), move(r1,l4,l1),

move(r1,l1,l4), move(r1,l3,l2), move(r1,l2,l3), move(r1,l5,l2),
move(r1,l4,l3), move(r1,l3,l4), move(r1,l5,l4), move(r1,l4,l5)}

q S = {s1, s2, s3, s4, s5}
q t(s1,move(r1,l1,l4),s4)= t(s1,move(r1,l1,l4),s1)= 0.5;

t(s2,move(r1,l2,l3),s3)=0.8; t(s2,move(r1,l2,l3),s5)=0.2;
All others t(.) have a value of 1.

q r(s1,wait)= r(s2,wait)= -1; r(s4,wait)= 0; r(s5,wait)= -100; r(s4)=100;
r(s1,move(r1,l1,l2)) = r(s2,move(r1,l2,l1)) = r(s3,move(r1,l3,l4)) = -100;
r(s4,move(r1,l4,l3)) = r(s4,move(r1,l4,l5)) = r(s5,move(r1,l5,l4)) = -100;
r(s1,move(r1,l1,l4)) = r(s4,move(r1,l4,l1)) = r(s2,move(r1,l2,l3)) = -1;
r(s3,move(r1,l3,l2)) = r(s5,move(r1,l5,l2))= -1; r(s1)=r(s2)=r(s3)=r(s5)=0

goal

p1 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

h1 = ás1, s2, s3, s4, s4, … ñ P(h1 | p1) = 1 ´ 1 ´ 0.8 ´ 1 ´ … = 0.8
h2 = ás1, s2, s5, s5 … ñ P(h2 | p1) = 1 ´ 1 ´ 0.2 ´ 1 ´ … = 0.2

P(h | p1) = 0 for all other h

Example

GoalStart
m

ove(r1,l2,l1)

wait

wait

wait

wait

2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Returns: we want to maximize the expected return

q Discounted return:

𝑅. = 𝑟. + 𝛾𝑟.7' +𝛾𝑟.7+ + ⋯ = ∑9:;< 𝛾9 𝑟.79

where 𝛾, 0 ≤ 𝛾 ≤ 1, is the discount rate.

q 𝛾 describes the preference of an agent for
current reinforcements over future
reinforcements.

26

Value Function V(s)

q The value of a state 𝑉A 𝑠 under a policy
π is the expected return when starting in
that state 𝑠 and following the policy π from
that state onwards:

𝑉A 𝑠 = 𝐸A 𝑅.|𝑠. = 𝑠 = 𝐸A D
9:;

<

𝛾9𝑟.79|𝑠. = 𝑠

27

Value Function Q(s,a)
q The value of a state-action pair 𝑄A 𝑠, 𝑎 is the

expected return starting from that state 𝑠,
taking that action 𝑎, and thereafter following
policy 𝜋:

𝑄A 𝑠, 𝑎 = 𝐸A D
9:;

<

𝛾9𝑟.79|𝑠. = 𝑠, 𝑎. = 𝑎

28

r = 0

Start

wait

wait

wait

wait

c = 1

c = 0

c = 100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

Example
p1 = {(s1, move(r1,l1,l2)),

(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

g = 0.9
h1 = ás1, s2, s3, s4, s4, … ñ
Vπ1(h1) = .90(0 –100) + .91(0 –1) + .92(0 –100) + .93 100 + .94 100 + … = 547.9

h2 = ás1, s2, s5, s5 … ñ
Vπ1(h2) = .90(0 –100) + .91(0 – 1) + .92(–100) + .93(–100) + … = –910.1
E[Vπ1(h)] = 0.8 ´ 547.9 + 0.2 ´ (–910.1) = 256.3

Dana Nau: Lecture slides for Automated Planning. http://creativecommons.org/licenses/by-nc-sa/2.0/

Optimal Value Functions
q Optimal state-value function:

𝑉∗(s)=max
A

𝑉A 𝑠 , ∀𝑠 ∈ 𝑆

q Optimal action-value function:
𝑄∗ 𝑠, 𝑎 = max

A
𝑄A 𝑠, 𝑎 , ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴

𝑽∗ 𝒔 = 𝐦𝐚𝐱
𝒂

𝑸∗ 𝒔, 𝒂

30

MDP – Solution: an optimal policy
q Solution:

qQ*(s,a) = r(s,a) + g V*(s’), "s, s’ÎS,
"aÎA

31

p*(s)= argmax
aÎA(s)

Q*(s,a)

Policy
qA policy is the agent’s behavior.

q Deterministic policy
𝜋: 𝑆 → 𝐴 ⇒ 𝜋 𝑠 = 𝑎

q Stochastic policy
𝜋: 𝑆×𝐴 → 0,1 ⇒ 𝜋 𝑎|𝑠 = 𝑃(𝑎|𝑠)

32

Example
qDiscreet 4x4 environment with obstacles.
qAgent must reach destination D from anywhere in

the environment.
qD is an absorbing state: V*(D) = 0, A(D)={ }
qActions: Up, Down, Left, Right
qPenalty for performing an action (any) = −1 (reward)
qBetter policy => shorter path

qExample for g = 1 and deterministic MDP

D

Example

D

D

Environment

D

-7 -6 -5 -6

-6 -5 -4 -5

0 -1 -2 -3

-3 -4

Optimal value function:
indicates the expected
penalties until reaching
the destination, following
an optimal policy.

D

Optimal policies

Example

Reinforcement Learning

RL Method

37

In Reinforcement Learning (RL), we
would like an agent to learn to
behave well in an MDP world, but
without knowing anything about T
or R when it starts out

We have to sample experiences and learn by trial and error.

RL elements

q Policy 𝝅: decision on what action to do in state s
q Reward (or reinforcement) function: defines

goal, and good and bad (immediate) experience
for learner

q Value function: estimate of total future reward
q Model of the environment: maps states and

actions onto states
38

RL Method
qReward function
qEnvironmental

model

qPolicy
qValue function

qEstimate of model
39

fixed external to agent

adjusted during learning

Design of an RL Agent

qWhen designing an RL agent, we need to:
q define the reward function, which gives

indications of what one wants
q choose an RL method:
§Model-free × Model-based
§Off-policy × On-policy
§ Value-based × Policy-based

40

Reward Design
We need rewards to guide the agent to achieve
its goal
qOption 1: Hand-designed reward functions
qThis requires a lot of experience and sensitivity (and luck!)

q Option 2: Learn rewards from demonstrations
q Instead of having a human expert tune a system to achieve

the desired behavior, the expert can demonstrate desired
behavior and the agent can tune itself to match the
demonstration

Model-free versus Model-based
qA model of the environment allows inferences to be

made about how the environment will behave
qModel-based methods use models and planning.
qModels are used for planning, which means deciding on a

course of action by considering possible future situations
before they are experienced

qModel-free methods learn exclusively from trial-and-
error

Planner
(MDP)

Model (S, A, T, R) Policy

RL Learner
Experiences
<s, a, r, s’> Policy

RL and Planning
q Planning in RL interleaves cycles of learning based

on experience in the world and experience gained
via using the model to predict what will happen.

Model

Value/Policy

model learning

acting

direct RL

planning

Experience

On-policy versus Off-policy

qAn on-policy agent learns only about the
policy that it is executing

qAn off-policy agent learns about a policy or
policies different from the one that it is
executing

RL Methods
qModel-based RL
q Build a model of the environment
q Then plan using model

qValue-based RL
q Estimate the optimal value function Q∗(s, a)
q Then calculate the optimal policy π∗ using Q*

qPolicy-based RL
q Search directly for the optimal policy π∗46

Credit Assignment Problem
qGiven a sequence of states and actions, and the final

sum of time-discounted future rewards, how do we
infer which actions were effective at producing lots of
reward and which actions were not effective?

qHow do we assign credit for the observed rewards
given a sequence of actions over time?

qEvery RL algorithm must address this problem

Q-Learning

A simple algorithm: Q-learning

qKey idea:
q Update the action-value function Q(s,a)

using the experience sequences
q Then use Q(s,a) to estimate 𝝅

qCharacteristics:

Model-free, value-based, off-policy
49

Q-learning

50

Initialize Q(s,a) arbitrarily
Observe the current state st
do forever

select an action at and execute it in st
receive immediate reward r(st,at)
observe the new state st+1
update Q(s,a) as follows:

Qt+1(st,at) ¬ (1-a)Qt(st,at) + a[r(st,at) + g maxa Qt(st+1,a)]
st ¬ st+1

Q-learning

51

Initialize Q(s,a) arbitrarily
Observe the current state st
do forever

select an action at and execute it in st
receive immediate reward r(st,at)
observe the new state st+1
update Q(s,a) as follows:

Qt+1(st,at) ¬ (1-a)Qt(st,at) + a[r(st,at) + g maxa Qt(st+1,a)]
st ¬ st+1

Learning rate 𝛼
qThe basic form of the update looks like this:

Xt+1 ¬ (1 − a) Xt + a Newt

q We are updating our estimate of X to be mostly like our
old value of X but adding in a new term New.

q It is a running average of the new terms received on each
step.

q It is quite typical (and, in fact, required for convergence),
to start with a large 𝛼, and then decrease it over time.

52

Q-Learning
qThere are two iterative processes going on:
q One is the usual kind of averaging we do, when we

collect a lot of samples and try to estimate their
mean (using the learning rate).

q The other is the dynamic programming iteration
done by value iteration, updating the value of a
state based on the estimated values of its
successors.

53

Trade-off: Exploration vs. Exploitation
Which experimentation strategy produces most

effective learning?

qThe agent has to exploit what it has already
experienced in order to obtain reward, but it also
has to explore in order to gather new information.

qThe dilemma is that neither exploration nor
exploitation can be performed exclusively without
failing at the task.

54

Trade-off: Exploration vs. Exploitation
q e-Greedy:

q Softmax action selection (Boltzmann distribution):

55

,
e

e n

b
)b(Q

)a(Q

t

t

å =1
t

t

Choose a on t with probability:

t is the “computational temperature”.

at
* with probability 1- e

random action with probability e{at =
exploitation

exploration

A Simple Example of Q-Learning

56

0 1

4 3
2

5 Deterministic
world

Goal: to go
outside the

building

57

0 1

4 3
2

5 1

3

4

52

0

0

0

0

0

0 0

0 0 100

100≡

A Simple Example of Q-Learning

MDP:
S = {0, 1, 2, 3, 4, 5}
A = A(0) ∪ A(1) ∪ A(2)∪ A(3)∪ A(4)∪ A(5)
T: P(s’|s,a) = 1 "s, s’ÎS, "aÎA(s)
R: as indicated in the graph

A Simple Example of Q-Learning
q “Room” 5 is the goal – an absorbing state
q r(0,.,4) = r(1,.,3) = r(2,.,3) = r(3,.,1) = r(3,.,2) = 0;

r(3,.,4) = r(4,.,0) = r(4,.,3) = r(5,.,5) = 0
r(1,.,5) = r(4,.,5) = 100

q A(0) = {go to 4}; A(1) = {go to 3, go to 5};
A(2) = {go to 3}; A(3) = {go to 1, go to 2, go to 4}
A(4) = {go to 0, go to 3, go to 5}; A(5) = { }

q 𝛾 = 0.8 ; 𝛼 = 1 𝑸 𝒔, 𝒂 𝒕7𝟏 = 𝒓 𝒔, 𝒂, 𝒔’ + 𝜸𝐦𝐚𝐱
𝒂’

𝑸 𝒔’, 𝒂’
58

59

A Simple Example of Q-Learning

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Initial Q-table

By random selection: a = go to 5
Experience = (1, go to 5, 100, 5)
Q(1,5) = 100 + 0.8 max(Q(5,.))

= 100 + 0.8 * 0 = 100

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100
2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Suppose: initial state = 1
A(1) = {go to 3, go to 5}

60

A Simple Example of Q-Learning

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Experience = (3, go to 1, 0, 1)
A(1) = {go to 3, go to 5}

Q(3,1) = 0 + 0.8 max(Q(1,3),Q(1,5))
= 0 + 0.8 * 100 = 80

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100

2 0 0 0 0 0 0

3 0 80 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

New episode: state = 3
A(3) = {go to 1, go to 2, go to 4}
Random selection: a = go to 1

61

A Simple Example of Q-Learning

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100

2 0 0 0 0 0 0

3 0 80 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Experience = (1, go to 5, 100, 5)
A(5) = { }

Q(1,5) = 100 + 0.8 max(Q(5,.))
= 100 + 0.8 * 0 = 100

0 1 2 3 4 5
0 0 0 0 0 0 0

1 0 0 0 0 0 100
2 0 0 0 0 0 0

3 0 80 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Now state = 1
A(1) = {go to 3, go to 5}
𝜖-greedy: a = go to 5

62

A Simple Example of Q-Learning

s a 0 1 2 3 4 5

0 0 0 0 0 80 0

1 0 0 0 64 0 100

2 0 0 0 64 0 0

3 0 80 51 0 80 0

4 64 0 0 64 0 100

5 0 0 0 0 0 0

If our agent learns more through further episodes, it will finally
reach convergence values in Q-table like:

V*(0)=80
V*(1)=100
V*(2)=64
V*(3)=80
V*(4)=100
V*(5)=0

𝜋*(0) = go to 4
𝜋*(1) = go to 5
𝜋*(2) = go to 3
𝜋*(3) = go to 4 or 1
𝜋*(4) = go to 5
𝜋*(5) = { } (goal)

63

0 1

4 3
2

5

1

3

4

52

0

≡

A Simple Example of Q-Learning

𝜋*

Problems with tabular Q-Learning
qIn realistic situations we cannot learn about each

state!
qToo many states to visit them all in training (slow

convergence)
qToo many space to hold the Q-tables in memory (demand

for memory resources)

qInstead, we want to generalize:
qLearn about some small number of training states from

experience
qGeneralize that experience to new, similar states

Q-learning Algorithm: Possible solutions
q If we know a model:

1. We use the known model to build a simulation.
2. Using Q-learning plus a function approximation

technique, we learn to behave in the simulated
environment, which yields a good control policy for the
original problem

Hot topics: Deep RL, batch-RL, transfer learning!

Deep Reinforcement Learning

