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i Topics

= Radial Basis Function neural networks
= Hybrid training

= Comparison with MLP neural networks
= Large margin classifiers

= Support Vector Machines

= Limitations

= Alternatives to overcome limitations
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i RBF networks

= So far, the activation function used by all
ANNSs receive
= The internal product between the input and
weight vectors
= Some multi-layer networks use activation
functions that receive different values
= E.g.: the distance between the input and

weight vectors
= Radial Basis Function (RBF) networks
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i RBF networks
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RBF networks typically uses a single hidden layer
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i RBF networks

= Two layers

= First layer
= Non-linear activation functions
« Radial basis functions
= Second layer
= Non-linear or linear activation functions
= Similar to Adaline
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i RBF networks
= RBF XMLP networks

= MLP use hyper-plans to partition the input

space (hidden layer)
= Defined by functions like A2 wx))
= RBF use hyper-ellipsoids to partition the
input space (hidden layer)
= Defined by functions /like ¢(jx; - 1))

= Distance between the input vector and the
centre of a cluster
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i Decision boundaries

MLP RBF
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i RBF networks

= Each node in the hidden layer computes
a radial basis function

= Centre
= Defines the cluster prototype

= Width
= Defines the area covered by the cluster

= Can be much faster than MLP networks
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i RBF networks

= Total input
s U= Xl (hidden layer)
= U= 2wWid(llx-wl)  (output layer)
= Distance measure
= Usually, Euclidean distance

1% - | = \/(Z(xi =)
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i RBF networks

= Hidden layer activation functions
= Non-linear

= Value either increases or decreases when
the total input moves away from the cluster

centre
= Typical functions: v =[x - |
« Gaussian X: input vector
) w: radial function center
_ v o: radial function width
v) =exp(-
$(v) = exp(-5 )
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i RBF networks

= Usually employs hybrid learning

= Unsupervised
= Create clusters
= K-means
= Supervised
= Least Mean Square, LMS
= Singular Value Decomposition, SVD
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i RBF networks

= Main parameters to be defined:
= Number of centres
= Centres position
= Centres width
= Activation functions
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i Large Margin classifiers

= Maximize the separation margin
between different classes
= Support Vector Machines (SVMs)
= Boosting

= Higher generalization capacity

= Based on the statistical learning theory
- Vapnik and Chervonenkis (1968)
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:_L Support Vector Machines

= SVM looks for a hyperplane with
maximum margin
= Originally employed for linearly separable data
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i Support Vector Machines

ANNs SVMs
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i Slack variables

= Further increase the margins
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i Linearly separable problems

= SVMs perform well for linearly separable
problems

= However, in its original format, cannot
handle nonlinearly separable problems

= Some datasets require more complex
than linear decision borders
= For them, the Cover theorem can be used
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i Teorema de Cover

= Conditions:
= Transformation is nonlinear
= Dimension of the new space is high enough
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* Support Vector Machines

= Generalization for nonlinear problems
= Mapping original data to higher dimensional space

= Linear SVM can then be applied 700 = wd(x) + b

Kernel 1
function
ﬁ
Input space - Feature space
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:_L Example

= Suppose dataset with 2 predictive
attributes

= Define 3 location points in the original
set

= Use these points to transform the 2
original attributes into 3 new attributes

= E.g. Distance between each example x;
and each of the 3 location points
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i Kernel functions

= Several
= Gaussian
= Polynomial
= Linear
= Sigmoid
= For specific applications
= Follow Mercer theorem conditions
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i Multiclass classification

= SVMs can induce only binary classifiers
= Other ML algorithms have the same
limitation
= A large number of real problems has
more than 2 classes

= Multiclass strategies are necessary
= Decompositional strategies are often used
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i Quiz 1

= What are limitations of the original SVM?

A) Only works for linearly separable
problems

B) Minimize separation margin

C) Cannot deal with multiclass classification
problems

D) Only works with one of 3 kernek functions
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i

Next:
ANN
applications
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