

1


## RBF networks

- So far, the activation function used by all ANNs receive
- The internal product between the input and weight vectors
- Some multi-layer networks use activation functions that receive different values
- E.g.: the distance between the input and weight vectors
- Radial Basis Function (RBF) networks

3


4


## RBF networks

- RBF $X$ MLP networks
- MLP use hyper-plans to partition the input space (hidden layer)
- Defined by functions like $f\left(\sum w_{\not} x_{j}\right)$
- RBF use hyper-ellipsoids to partition the input space (hidden layer)
- Defined by functions like $\phi\left(/\left|x_{i}-\mu_{i}\right|\right)$
- Distance between the input vector and the centre of a cluster



## RBF networks

- Each node in the hidden layer computes a radial basis function
- Centre
- Defines the cluster prototype
- Width
- Defines the area covered by the cluster
- Can be much faster than MLP networks


## RBF networks

## - Total input

| - $\mathrm{u}=\left\\|\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right\\|$ | (hidden layer) |
| ---: | :--- | ---: |
| $-\mathrm{u}=\sum \mathrm{w}_{\mathrm{i}} \phi_{\mathrm{i}}\left(\left\\|\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right\\|\right)$ | (output layer) |

- Distance measure
- Usually, Euclidean distance

$$
\left\|\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right\|=\sqrt{\left(\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)^{2}\right)}
$$

9

## RBF networks

- Hidden layer activation functions
- Non-linear
- Value either increases or decreases when the total input moves away from the cluster centre
- Typical functions: $\quad v=\|x-\mu\|$
- Gaussian

$$
\phi(\mathrm{v})=\exp \left(-\frac{\mathrm{v}^{2}}{2 \sigma^{2}}\right)
$$

$x$ : input vector
$\mu$ : radial function center
$\sigma$ : radial function width


## RBF networks

- Main parameters to be defined:
- Number of centres
- Centres position
- Centres width
- Activation functions


## Large Margin classifiers

- Maximize the separation margin between different classes
- Support Vector Machines (SVMs)
- Boosting
- Higher generalization capacity
- Based on the statistical learning theory
- Vapnik and Chervonenkis (1968)


## Support Vector Machines

- SVM looks for a hyperplane with maximum margin
- Originally employed for linearly separable data



15



17

Linearly separable problems

- SVMs perform well for linearly separable problems
- However, in its original format, cannot handle nonlinearly separable problems
- Some datasets require more complex than linear decision borders
- For them, the Cover theorem can be used


## - Teorema de Cover

Datasets that are nonlinearly separable in a given space can be transformed to another space in which, with high probability, they
become linearly separable

- Conditions:
- Transformation is nonlinear
- Dimension of the new space is high enough


## Support Vector Machines

- Generalization for nonlinear problems
- Mapping original data to higher dimensional space
- Linear SVM can then be applied



## Example

- Suppose dataset with 2 predictive attributes
- Define 3 location points in the original set
- Use these points to transform the 2 original attributes into 3 new attributes
- E.g. Distance between each example $x_{i}$ and each of the 3 location points


## Kernel functions

- Several
- Gaussian
- Polynomial
- Linear
- Sigmoid
- For specific applications
- Follow Mercer theorem conditions


## Multiclass classification

- SVMs can induce only binary classifiers
- Other ML algorithms have the same limitation
- A large number of real problems has more than 2 classes
- Multiclass strategies are necessary
- Decompositional strategies are often used




