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ANN applications
 ANN is already present in our daily life 

 Recommend which messages to show in our social 
network app

 Filter spam from your e-mail 
 Decide which results (and ads) to show in our web 

search
 and in which order 

 Suggest films or books that someone will like
 Decide if we can have a bank loan
 Diagnose if you have a particular disease
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Classical ANN applications

 Learn to read aloud 
 NETtalk (Sejnowski and Rosenberg, 1986) 

 Learn to recognize spoken words 
 SPHINX (Lee, 1989) 

 Learn to drive a car 
 ALVINN (Pomerleau, 1989) 

 Learn to play backgammon 
 TD-GAMMON (Thesaurus, 1992)
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NETtalk
 NETtalk: a parallel network that learns to read 

aloud  (1986)
 Automatic system that learns to speak what is 

written in an English text 
 Maps texts in phonemes 

 Without using natural language processing or rules of 
phonetics 

 Uses a neural network with 1 hidden layer
 Input layer: 7 groups with 29 inputs
 Hidden layer: 80 neurons
 Output layer: 26 neurons
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NETtalk
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Letter to be pronounced
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NETtalk

 Input layer
 Sliding window
 7 groups for the 7 text positions

 29 inputs = 26 letters + 3  punctuation/pause 
marks

 Hidden layer
 Most neurons recognize more than one 

combination of letters
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NETtalk

 Output layer
 Code of the phoneme to pronounce the 

letter in the center of the input window
 Besides silence, sound omission (syllabi), pause and end 

of reading

 Output code depends only on the letters
 Doe not use information about neighbour 

phonemes
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NETtalk
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NETtalk

 Dataset available in the UCI repository
 20008 English words

 Together with their phonetic representations 
with stresses

 250 person-hours were dedicated to create 
and test the dataset
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NETtalk

 Dataset has four predictive attribute for 
each word: 
 Letter representation 
 Phonemic representation 
 Stress and syllabic structure 
 An integer indicating foreign and irregular 

words 
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NETtalk

 Predictive performance
 95% for training data and 78% for test 

data
 Compared with Dectalk

 Rule-based expert systems developed by 
linguists

 Dectalk Presented a better predictive 
performance

 Developed after a decade of studies by linguists
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Reading a poem
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The crow crooked on more beautiful and free,
He journeyed off into the quarter sea.
his radiant ribs girdled empty and very –
least beautiful as dignified to see.

ANN poet

 Jack Hopkins, Researcher from 
University of Cambridge, UK

 ANN was trained with thousands of 
lines of poetry
 More than 7 million words of 20th-century 

English poetry
 Most of the poems came from online books
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ANN poet

 After trained, created several poems
 Researcher asked more than 70 people 

whether the poem was written by
 Human
 ANN

 Poem with more human votes was 
written by an ANN
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Sophia
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ALVINN
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ALVINN

 Autonomous Land Vehicle In a Neural 
Network (1989)
 Autonomous car based on neural networks

 CMU PhD Thesis

 Input received by a camera on top of the 
vehicle

 Travelled 4500 km at 110 Km/h, coast to 
coast, in American public roads
 Except for 80 Km
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ALVINN
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https://www.youtube.com/watch?v=r4JrcVEkink

Autonomous vehicles
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Pesticide spread in a crop field
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Wood classification
 Prototype of system to 

classify wooden board
 100 boards 

 50% good and 50% bad
 14 types of fault

 150 boards/minute or 27,7 
meters/minute

 Predictive accuracy: 97%
 Human operator predictive 

accuracy: 93%
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ANN architecture size
 Large networks:

 Learning can be faster
 Minimum local is easier to avoid 
 Solution space is less restricted
 Fault tolerance is higher

 Small networks:
 Generalization may be better
 Require less computational resources
 Knowledge extraction is easier
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ANN Architecture design

 ANN architecture usually has a strong 
impact on predictive performance
 Neither too large, nor too small

 Alternatives
 Train and error
 Constructive
 Pruning
 Evolutionary
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Explainable AI (XAI)

 ML algorithms induce models with 
different levels of interpretation
 Black box

 Difficult to interpret

 White box
 Easy to interpret
 Explain how decisions are made

 Gray box
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Explainable AI
 Although ANNs have been successfully 

employed in several problems
 They still suffer from significant limitations

 One of them is the lack of comprehensibility 
of what they learned 
 How they make decisions
 Essential in applications that affect human life

 GDPR and LGPD

 There are methods for knowledge extraction from 
ANNs
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Explainable AI

 The methods for extraction knowledge 
from ANNs have some restrictions:
 Distributed learning representation
 Some methods work only with features 

with discrete values
 Difficulty of their application to large 

networks

Data Age
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End-to-End Machine Learning
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Adapted from Rick Caruana, Research 
opportunities in AutoML Microsoft Research

Modify ML
algorithm

Oversample/
Undersampling

Re-code 
Features

Feature
selection

Tune hyper-
parameters

Deal with
missing values

Check 
overfitting

Discover
bugs

They are not independent

AutoML
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AutoML tools
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CreateML
Apple

Amazon
Rekognition

AutoML Books

© André de Carvalho - ICMC/USP 32

31

32



18/12/2019

17

Pajé AutoML
 End-to-end AutoML (AutoDS)
 Main focus

 Data pre-processing
 Expandable
 Explainable ML
 Pipeline
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Data 
QualityData

Structuring

Data
Preprocessing

Visualization
Modelling

Interpretation
Data

Sampling

Pajé Timeline (PhD Thesis)
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Conclusion

 Challenges
 ANN design
 Hyperparameter tuning
 Continuous update
 Interpretability
 Mathematical foundation
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Support
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Questions?
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