
IX Southern-Summer School on Mathematical Biology

Roberto André Kraenkel, IFT

http://www.ift.unesp.br/users/kraenkel

Lecture VI

January 2020

Roberto A. Kraenkel (IFT-UNESP) IX SSSMB Jan 2020 1 / 21

http://www.ift.unesp.br/users/kraenkel


Outline

1 Semi-arid and arid regions

2 Model

3 Hysteresis

4 Glory and Misery of the Model

Roberto A. Kraenkel (IFT-UNESP) IX SSSMB Jan 2020 2 / 21



Outline

1 Semi-arid and arid regions

2 Model

3 Hysteresis

4 Glory and Misery of the Model

Roberto A. Kraenkel (IFT-UNESP) IX SSSMB Jan 2020 2 / 21



Outline

1 Semi-arid and arid regions

2 Model

3 Hysteresis

4 Glory and Misery of the Model

Roberto A. Kraenkel (IFT-UNESP) IX SSSMB Jan 2020 2 / 21



Outline

1 Semi-arid and arid regions

2 Model

3 Hysteresis

4 Glory and Misery of the Model

Roberto A. Kraenkel (IFT-UNESP) IX SSSMB Jan 2020 2 / 21



Vegetation in semi-arid regions

Eremology: science of arid regions.

Figura: Arid and semi-arid regions of the world
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Vegetation in Semi-Arid Regions

Figura: Bahia

Consider the vegetation cover in water-poor
regions.

In this case, water is a limiting factor.
quite different from tropical regions, where
competition for water is irrelevant. One of the
main limiting factor is light.

We want to build a mathematical model —
(simple, please ) — to describe the mutual
relation between water in soil and biomass in
semi-arid regions.

Let us do it
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Klausmeier Model

Figura: Colorado, USA

Figura: Kalahari, Namibia

Water and vegetation, in a first approximation,
entertain a relation similar to predador-prey
dynamics.

The presence of water is incremental for vegetation;

Vegetation consumes water.

But note that water does not originate from water..
It is an abiotic variable.

The usual predator-prey dynamics does not apply.

Consider two variables:
I w ,the amount of water in soil.
I u, the vegetation biomass ( proportional to

the area with vegetation cover).
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Klausmeier Model

Equation for the amount of water in soil
dw
dt

= a︸︷︷︸
precipitation

− bw︸︷︷︸
evaporation

− cu2w︸ ︷︷ ︸
absorption by vegetation

Water in soil increases due to precipitation (a) , evaporates at a constant per volume
rate (b), and is absorbed by vegetation in a per volume rate that depends on u2 (c).
This is phenomenological law coming from lab fittings

Equation for biomass
du
dt

= −du︸︷︷︸
natural death

+ eu2w︸ ︷︷ ︸
absorption of water

Vegetation has a natural death rate, (d ) and absorbs water at a per volume rate (e)
proportional to uw .
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Analysis

dw
dt

= a − bw − cu2w du
dt

= −du + eu2w

Let us begin by defining two new variables, rescaled ones:

W = w

[
e√
b3c

]
U = u

√
bc

T = tb

They are dimensionless.
Plug them into the equations and you will get....
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Analysis of the model

dW
dT

= A−W −WU2

dU
dT

= WU2 − BU

where
A =

ae
√

b3c
and

B = d/b

⇒ the equations depend only on two parameters, instead of five.
What do these equations tell us?
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Analysis of the model

dW
dT

= A−W −WU2 dU
dT

= WU2 − BU

Let us look for fixed points:

The points U∗ e W ∗ such that
I

dW ∗

dT
= 0

I

dU∗

dT
= 0

or
I

A−W ∗ −W ∗(U∗)2 = 0
I

W ∗(U∗)2 − BU∗ = 0
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Analysis of the model

dW
dT

= A−W −WU2 dU
dT

= WU2 − BU

The algebraic equations has three roots:

U∗ = 0

W ∗ = A

If A > 2B

U∗ =
2B

A−
√

A2 − 4B2

W ∗ =
A−
√

A2 − 4B2

2

If A > 2B

U∗ =
2B

A +
√

A2 − 4B2

W ∗ =
A +
√

A2 − 4B2

2
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Analysis of the Model

Interpretation
Our first conclusion:

If A < 2B the only solution is U∗ = 0 e W ∗ = A.
This represents a bare state. A desert.

The condition A > 2B ⇒ a > 2d
√

bc
e shows that there must be a

minimum amount of precipitation to sustain vegetation.
Moreover, the higher e the easier to have a state with
vegetation.Recall that e represents the absorption rate. The higher,
the better.
On the other, the higher (b) and the death rate of the population, (d )
easier it is to have a vegetationless solution.
Seems reasonable!
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Analysis of the model

So, let A > 2B
If A > 2B, we can have two more fixed points.

What about their stability?.

The linear stability analysis results in:
I The fixed point U∗ = 0 and W ∗ = A is always stable, even if A ≤ 2B.
I The fixed point

U∗ =
2B

A+
√
A2 − 4B2

, W ∗ =
A+
√
A2 − 4B2

2

is always unstable.
I The fixed point

U∗ =
2B

A−
√
A2 − 4B2

,W ∗ =
A−
√
A2 − 4B2

2

is stable provided B < 2.
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Analysis of the Model

So, if A > 2B, and B < 2, we have two stable fixed points, each of them with its
basin of attraction.

A pictorial view is as follows:

Figura: B is fixed, and we plot U∗ ( the biomass ) in terms of A. The solution
representing a desert (U∗ = 0) and the solution corresponding to vegetation cover
are both stable
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Hysteresis

The existence of a region of bi-stability (A > 2B, B < 2), can take us to the
following situation.

Take a fixed B. Consider that A can change slowly.

Let us begin in the bi-stability region. And let A decrease. At a certain moment, A
will cross the critical value A = 2B.

At this time a sudden transition occurs, a jump, in which U∗ → 0.
Desertification!!!.
Suppose now that A begins again to increase - slowly. As U∗ = 0 is stable, even
with A > 2B we will continue in the "desertic"region, as at the moment of
crossing back the critical point we were in its the basin of attraction..

In summary: if we begin with a certain A, decrease it A < 2B and then come
back to our initial value of A, the state of the system can transit from U∗ 6= 0 to
U∗ = 0.
This is called Hysteresis.
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Hysteresis

Figura: B is fixed. A begins at a value A
′
with U∗ = U

′
, decreases, crosses a critical

point at A = 2B. It goes to , U∗ → 0. When we increase again A, even withA > 2B, we
have U∗ = 0.

Once the "desertic"state is attained it is not sufficient to change the external conditions
back ( in our model, this is the rainfall) in order to get back a vegetation-cover state .
Terrible!
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Glory and Misery of the Model

Glory

Figura: Estimated vegetation cover in the region of Sahara, over a long time span. We
see a sudden change around 5500 BP.

Existence of sudden transitions can be understood rather simply. The
same kind of phenomenon appears in other systems as well.
The model is Simple.
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Glory and Misery of the Model

Misery

Figura: Desertification Region in
China

Figura: Senegal, at the Sahel region,
south to Sahara.

The model is very simple
The transition is towards a completely
vegetationless state. Actual
desertification processes allow for
remnants of vegetation.

The model predicts an infinite
bi-stability region... We could think
that enough rain could reverse
desertification.

There are indeed better models.
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More realistic models

More realistic models give bifurcation diagrams like the one below.

Biomass in terms of the rainfall, in a sta-
tic case.. The blue curve represents two
transition regions. The one to the left im-
plies a vegetation→ desert transition. To
the right , a reversed transition.
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More realist models

Still another curve.

This diagram is similar to the preceding
one, but U∗ does not tend to zero.
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Online Resources

http://ecologia.ib.usp.br/ssmb/

Thank you for your attention
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