Ecological significance of imperfectly synchronized collective behaviors

Ricardo Martinez-Garcia
(ICTP – SAIFR / IFT - UNESP)
ricardom@ictp-saifr.org

School on Community Ecology: from patterns to principles
Population dynamics is an emergent phenomena

Macroscopic pattern

Logistic growth

\[
\frac{dx}{dt} = rx - \delta x^2
\]

Birth, death & competition

Microscopic processes

Prey predator cycles

\[
\frac{dx}{dt} = \alpha x - \beta xy
\]
\[
\frac{dy}{dt} = \delta xy - \gamma y
\]
How do complex microscopic features translate to macroscopic patterns?

Well-mixed

\[\dot{x} = rx - \delta x^2 \]

Range residency / territoriality

(video from @BoixRichter)

Martinez-Garcia et al. 2019, bioRxiv 712182
How do complex microscopic features translate to macroscopic patterns?

How do complex microscopic features translate to macroscopic patterns?

Self-organized collective behaviors
How do complex microscopic features translate to macroscopic patterns?

Gregarious – solitary transition in the emergence of locust swarms

Calving season in wildebeest
Imperfect \textit{synchronization} is frequent in nature

\textit{Gregarious – solitary transition in the emergence of locust swarms}

Imperfect *synchronization* is frequent in nature

Calving season in wildebeest

How do “microscopic” collective behaviors and their features impact “macroscopic”, population-level patterns?

What are the causes of this self-organized process?

What are the consequences of the self-organized structures on the (eco)system?
D. discoideum: asynchrony in the transition to aggregative multicellularity
Some cells do not participate in the self-organized collective behavior.
Loners die if exposed to prolonged starvation, but they persist for some time.

Theoretical work predicts selective benefits for loners in stochastic environments

HYPOTHESIS

Upon aggregation

\[\alpha \text{ aggregators} \quad 1-\alpha \text{ loners} \]

Aggregator-loner partitioning is a heritable trait

And coupled with environmental heterogeneity could favor diversity

Spatial heterogeneity

And coupled with environmental heterogeneity could favor diversity

Temporal heterogeneity

Martinez-Garcia & Tarnita, J. Theor. Biology, 2017
Are loners a heritable component of *D. discoideum* life-history?

Rossine*, Martinez-Garcia* et al., (in Press)
Loners are a heritable component of \textit{D. discoideum} life-history?

Rossine*, Martinez-Garcia* et al., (in Press)
Q1: What are the mechanistic causes of loners?

Q2: What are the ecological consequences of the collective behavior?
What are the mechanistic causes of loners?

Proposal: loners are the result of stochasticity in the initiation of a quorum-based aggregation

Rossine*, Martinez-Garcia* et al., (in Press)
What are the mechanistic causes of loners?

Rossine*, Martinez-Garcia* et al., (in Press)
Mechanistic toy-model for loners emergence: infinite signal diffusion

\[\hat{\lambda} = \begin{cases} 0, & C < \theta \\ \lambda, & C \geq \theta \end{cases} \]

\[\tilde{v} = \frac{v}{L} \]

\[\dot{p}(t) = -\hat{\lambda}p(t) \]

\[\dot{a}(t) = \hat{\lambda}p(t) - \tilde{v}a(t) \]

Pre-aggregating cells, \(P \)

Stochastic quorum-based transition

Aggregating cells, \(A \)

Movement-based transition

Multicellular, \(M \)

Rossine*, Martinez-Garcia* et al., (in Press)
Loners emerge from imperfect synchronization between two time scales

Infinite diffusion and $N \rightarrow \infty$ limit:

$$\rho_L \propto \begin{cases}
(1 - \frac{\lambda}{\tilde{\nu}}), & \text{if } \lambda < \tilde{\nu} \\
0, & \text{otherwise}
\end{cases}$$

Rossine*, Martinez-Garcia* et al., (in Press)
Different genetic variants differ in partitioning behavior

Rossine*, Martinez-Garcia* et al., (in Press)
What are the ecological **consequences** of the self-organized behavior?

Rossine*, Martinez-Garcia* et al., (in Press)
Effect of mixing on the self-organized process

![Graph showing the effect of mixing on self-organized process](image)

Rossine*, Martinez-Garcia* et al., (in Press)
Effect of mixing on the self-organized process

Rossine*, Martinez-Garcia* et al., (in Press)
Effect of mixing on the self-organized process

Rossine*, Martinez-Garcia* et al., (in Press)
Effect of mixing on the self-organized process

Fraction of strain NC85.2 in the mix

Fraction of the poor aggregator

Rossine*, Martinez-Garcia* et al., (in Press)
Effect of mixing on the self-organized process

Interactions in the developmental process make strains to **DIVERGE** in their aggregation performance

Rossine*, Martinez-Garcia* et al., (in Press)
What are the ecological **consequences** of the self-organized behavior?

Changes in the self-organizing behavior due to mixing have **profound impact on the diversity of the species**

Rossine*, Martinez-Garcia* et al., (in Press)
Further implications

Effect of loners on the integrity of *multicellularity / sociality* against *free-riders*?

Effect of imperfect synchronization on the *persistence of coordinated behaviors*
How do complex microscopic features translate to macroscopic patterns?

Constant birth-death rates

Death prob

Individual age

“Traditional” Moran process

Reproduction vs survival tradeoffs

Death prob

Individual age

Jairo M. Rojas
How do complex microscopic features translate to macroscopic patterns?

Underlying spatial patterns: from microbes to landscapes
How do complex microscopic features translate to macroscopic patterns?

Underlying spatial patterns: from microbes to landscapes

Martinez-Garcia et al., PLOS Comp. Biol., 2018

Martinez-Garcia et al., in press, 2020

Population clustering

20cm

μm

km

50m

Mussel beds

Martinez-Garcia et al., PLOS Comp. Biol., 2018
Looking for postdocs, PhD and Master students!

ricardom@ictp-saifr.org

References:
Martinez-Garcia & Tarnita, PLOS Comp. Biol, 2016
Martinez-Garcia & Tarnita, Journal Theoretical Biology, 2017
Martinez-Garcia et al., PLOS Comp. Biol. 2018
Rossine*, Martinez-Garcia*, et al., PLOS Biology (in Press), 2020

Funding:

Life Sciences Research Foundation
SIMONS Foundation
Thank you!

MOORE Foundation
GORDON AND BETTY
FAPESP