Active Matter 3 Julia Yeomans University of Oxford

- 1. What is active matter and why is it interesting?
- 2. Background 1: nematic liquid crystals
- 3. Background 2: low Reynolds number hydrodynamics
- 4. Active nematics and active turbulence
- 5. Self-propelled topological defects
- 6. Confining active turbulence
- 7. Bacteria: the hare and the tortoise
- 8. Eukaryotic cells as an active system

(Epithelial) cells: which are the important forces?

Single cell motility

1. Extension

2. Adhesion

3. Translocation

Ladoux and Nicholas Rep Prog Phys 2012

Fritz-Layn, Riel-Mehan, UCSF

Active turbulence: eukaryotic cells

Thank You

Amin Doostmohammadi

Guanming Zhang

Romain Mueller

Sreejith Santhosh

Topological defects in cell layers

Isotropic stress around a topological defect

experiment

simulations

'Turning off' motility

Topological defects in epithelia govern the extrusion of dead cells

T. Beng Saw, A. Doostmohammadi et al, Nature 544 212 (2017)

Topology in biology?

Positions of apoptosis correlated with +1/2 topological defects

High stress drives YAP from nucleus to cytoplasm which is a signal for cell death

Cell dies and is ejected from the monolayer

Questions

Why do isotropic cells give nematic defects?

Why are the defects extensile?

Can we model cell mechanics as an active system?

(Epithelial) cells: which are the important forces?

1. Phase field model

2. Unjamming

3. Velocity and flocking

frame index: 30

Grant, Aranson

Equations of motion

Cahn-Hilliard term: fixes φ_{tp} 1 inside a cell and 0 outside and imposes a surface tension

$$\mathcal{F}_{CH} = \sum_{i} \frac{\gamma}{\lambda} \int d\mathbf{x} \left\{ 4\varphi_i^2 (1 - \varphi_i)^2 + \lambda^2 (\nabla \varphi_i)^2 \right\}$$

Soft constraint on the area

$$\mathcal{F}_{\text{area}} = \sum_{i} \mu \left\{ 1 - \frac{1}{\pi R^2} \int d\mathbf{x} \, \varphi_i^2 \right\}^2$$

penalises overlap between cells

$$\mathcal{F}_{\text{rep}} = \sum_{i} \sum_{j \neq i} \frac{\kappa}{\lambda} \int d\mathbf{x} \; \varphi_i^2 \varphi_j^2$$

favours cell-cell adhesion

$$\mathcal{F}_{adh} = \sum_{i} \sum_{j \neq i} \omega \lambda \int d\mathbf{x} \, \nabla \varphi_i \cdot \nabla \varphi_j$$

Passive forces => relax to minimise free energy

$$\mathbf{f}_{i}^{passive}(\mathbf{x}) = \frac{\delta \mathcal{F}}{\delta \varphi_{i}} \nabla \varphi_{i}$$

Equilibrium is identical hexagons, but the system can get stuck In a jammed state.

Active forces

Active forces

(a) extensile

Polar

intercellular forces

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

Choice of polarisation?

- 1. Gaussian noise
- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

Choice of polarisation?

- 1. Gaussian noise
- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

Choice of polarisation?

1. Gaussian noise

alignment time ~ time to move a cell diameter

- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

Choice of polarisation?

So far we have found little difference except that 2 gives flocking.

- 1. Gaussian noise
- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)

Inter-cellular force

(a) extensile

(b) contractile

Deformation tensor

$$\mathcal{D}_{i} = -\frac{1}{2} \int d\mathbf{x} \left\{ \nabla \varphi_{i} \nabla \varphi_{i}^{T} - \operatorname{Tr}(\nabla \varphi_{i} \nabla \varphi_{i}^{T}) \right\}$$

Nematic stress

$$\sigma_D = -\zeta \sum_i \varphi_i(\mathbf{x}) \mathcal{D}_i$$

Nematic force

$$\mathbf{f}(\mathbf{x})^{\text{nem}} = \nabla \cdot \sigma_D$$

Inter-cellular force

(a) extensile

(b) contractile

Deformation tensor

$$\mathcal{D}_{i} = -\frac{1}{2} \int d\mathbf{x} \left\{ \nabla \varphi_{i} \nabla \varphi_{i}^{T} - \operatorname{Tr}(\nabla \varphi_{i} \nabla \varphi_{i}^{T}) \right\}$$
$$\sigma_{D} = -\zeta \sum_{i} \varphi_{i}(\mathbf{x}) \mathcal{D}_{i}$$

Nematic stress

 $\mathbf{f}(\mathbf{x})^{\text{nem}} = \nabla \cdot \sigma_D$

Nematic force

Phase diagram

strength of inter-cellular force

Phase diagram: polar force in direction of velocity

1. Phase field model

2. Unjamming

3. Velocity and flocking

jammed state

liquid

centre of mass trajectories of the cells

rearrangement rate: average number of cells that change neighbours at each time step

Near unjamming: inter-cellular vs polar driving

frame index: 30

frame index: 30

inter-cellular

polar

Inter-cellular or polar driving doesn't make much difference

Are we seeing a "liquid" or "active turbulence"?

Active turbulence

- 1. Phase field model
- 2. Unjamming
- 3. Velocity and flocking

speed

Inter-cellular

polar

Malinverno et al Nature Materials 16 (2017)

Drosophila egg chamber

Egg chamber rotation

From Sally Horne-Badovinac's lab: Cetera et al. Nature Comms. 5, 5511 (2014)

Drosophila egg chamber

Flocking: polar force slaved to velocity

frame index: 30

Phase diagram: polar force in direction of velocity

Why can circular cells show topological defects

Why can circular cells show topological defects

extensile inter-cellular interactions

bootstrapping nematic order => active turbulence

Topological defects turn up in biological systems – and, at least in model systems, have biological relevance

nucleation sites

• colony shape

- t = 60 mins
- Time
 Or the second s

• apoptosis in epithelial cell layers

- 1. What is active matter and why is it interesting?
- 2. Background 1: nematic liquid crystals
- 3. Background 2: low Reynolds number hydrodynamics
- 4. Active nematics and active turbulence
- 5. Self-propelled topological defects
- 6. Confining active turbulence
- 7. Bacteria: the hare and the tortoise
- 8. Eukaryotic cells as an active system

THANK YOU FOR LISTENING