

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO DE QUÍMICA – PPG-EQ

Ion-specific Effects on **Biocolloidal Systems**

Prof. Eduardo Rocha de Almeida Lima

Chemical Engineering Graduate Program – PPG-EQ Rio de Janeiro State University – UERJ – Brazil lima.eduardo@uerj.br limaeduardo.wixsite.com/equerj/home

APS & ICTP-SAIFR Young Physicists Forum on Biological Physics: from Molecular to Macroscopic Scale (Bio2020)

(CTP)

Speaker

- Full Name: Eduardo Rocha de Almeida Lima
- Chemical Engineer UEM (2005)
- D.Sc. In Chemical Engineering UFRJ (2008)
 - Thesis: "Calculation of Physicochemical Properties of Colloidal Systems via Poisson-Boltzmann Equation"
- Post-doc in Chemical Engineering at the University of California Riverside, working with classical DFT (2009).
- > Professor at UERJ since 2010.

Location

• UERJ is located in Rio de Janeiro – RJ - Brazil

Research

✓ LaFIT: Interfacial Phenomena

and Thermodynamics Laboratory

 \checkmark 3 main lines of research:

LaFIT

- Colloids and interfacial phenomena: interfacial tension, properties and stability emulsions, foams and sols. Applications to cosmetics, petroleum and food.
- > Thermodynamics: phase equilibria, asphaltene stability.
- > Modeling and Simulation of Processes: application to analysis and optimization of chemical engineering processes.
- ✓ E-mail: lafit.uerj@gmail.com

Location

• Right in front of Maracanã Stadium

- www.uerj.br
- www.visitriodejaneiro.city

Outline (Lecture 1)

Classical Poisson-Boltzmann equation and DLVO Theory;

> Hofmeister effects;

Thermodynamics properties related to ion specificity.

Mathematicians:

Mathematicians:

Experimental Physicists:

Mathematicians:

Experimental Physicists:

Engineers:

Colloid Science: Introduction

Colloids: definition

✓ Colloids are heterogeneous mixtures composed of at least two different phases: a continuous phase and a dispersed phase.

 \checkmark At least one of these phases presents a dimension between I and I000 nm.

✓ Despite being homogeneous systems, macromolecules solutions are considered colloids due to their dimensions and properties.

Colloids Application

 \checkmark Colloidal systems and phenomena are present in large quantity in nature, in our everyday life and in in industry.

Proteins Solubility

Effects related to protein solubility:

- \checkmark ionic force
- ✓ salt type(Hofmeister effects)
- ✓ _PH
- ✓ Temperature
- ✓ Organic solvents

Protein Solubility: carboxi-hemoglobin Source:Voet & Voet, 1995

Properties of Colloidal Systems

Most colloids are thermodynamically metastable or unstable.

Some authors say that colloids are always thermodynamically unstable, but they forget the **entropic contribution**.

> Overall the stability of colloidal systems is delicate.

$$F = U - TS$$

Properties of Colloidal Systems

The properties of colloidal systems depend on:

- \checkmark Interaction between phases = solvation
- ✓ Interaction between particles:
 - electrostatic (Coulomb, Poisson)

> non-eletrostatic: van der Waals (London), solvation, steric repulsion.

Stability: DLVO Theory

DLVO Theory (Derjaguin-Landau-Verwey-Overbeek)

Two contributions:

✓ van der Waals interactions (Hamaker)✓ Electrostatic interactions

$$W = W^{el} + W^{Ham} + W^{hs}$$

The 3rd contribution refers to hard spheres:

$$W^{hs} = \begin{cases} \infty, para & r < r_i + r_j \\ 0, para & r \ge r_i + r_j \end{cases}$$

Stability: DLVO Theory

Source: Israelachvili (2011)

Different Scales

Source: http://evolution.skf.com/us/bearing-research-going-to-the-atomic-scale/ 20

Different Scales

Barbosa, Lima, Tavares (2017). https://doi.org/10.1016/B978-0-12-409547-2.13915-0

Hamaker interactions

- ✓ van der Waals forces play a central role in colloid science;
- \checkmark van der Waals interaction between two particles: Hamaker
- ✓ Interatomic van der Waals pair potential: $w(r) = -C/r^6$
- \checkmark Summing (integrating) the energies of all the atoms in one body with all the atoms in the other body, we have, e.g.:
- For a molecule near a flat surface:

$$w(D) = -\pi C\rho/6D^3$$

 \succ For a sphere near a flat surface:

$$w(D) = -\frac{\pi^2 C \rho^2 R}{6D}$$
(Hamaker Constant)

Source: Israelachvili (2011) 22

Hamaker Interactions

Geometry of bodies with surfaces <i>D</i> apart (<i>D</i> « <i>R</i>)		Van der Waals Interaction*	
		Energy, W	Force, F = -dW/dD
Two atoms or small molecules	TWO ATOMS or SMALL MOLECULES	C/r ⁶	6C/r ⁷
Two flat surfaces (per unit area)	TWO FLAT SURFACES	$W_{\rm flat} = -A/12\pi D^2$	A/6πD ³
Two spheres or macromolecules of radii R ₁ and R ₂	TWO SPHERES R_1 R_2 $R_2 \gg D$	$\frac{-A}{6D} \left(\frac{R_1 R_2}{R_1 + R_2} \right)$	$\frac{-A}{6D^2} \left(\frac{R_1 R_2}{R_1 + R_2} \right)$ Also $F = 2\pi \left(\frac{R_1 R_2}{R_1 + R_2} \right) W_{\text{flat}}$
Sphere or macro- molecule of radius <i>R</i> near a flat surface	SPHERE ON FLAT	–AR/6D	$-AR/6D^2$ Also $F = 2\pi RW_{\text{flat}}$

Source: Israelachvili (2011)

Electrostatic Contribution: Poisson-Boltzmann Theory

- ✓ Colloidal particles in water usually present charge.
- ✓ Where does this charge come from?
- ✓ For particles in water, is it mostly positive or negative?

- ✓ Where does this charge come from?
 - 1. Selective ions adsorption. e.g.: AgI (s) in KI (aq)

✓ Where does this charge come from?

2. Ionization. E.g.: silica in water $SiO_2 + H_2O \rightarrow H_2SiO_3 \leftrightarrow SiO_3^{2-}(s) + 2H^+(aq.)$

✓ For particles in water, is it mostly positive or negative?

1. Polarizability

2. Hydration

Anions adsorb more than cations.

- ✓ For particles in water, is it mostly positive or negative?
- ✓ Answer: negative

1. Polarizability

2. Hydration

Anions adsorb more than cations.

Electrical Double Layer: Gouy-Chapman Theory

- \checkmark Electric field attracts counterions and repels co-ions.
- \checkmark Thermal energy randomly disperses the ions.
- Combined effect = nonlinear distribution

Boltzmann Distribution

Electrochemical potential near a charged surface (Mcmillan-Mayer reference):

$$\mu_i = \mu_i^0 + k_B T \ln c_i + e z_i \psi$$

Chemical potential at bulk:

$$\mu_{\infty,i} = \mu_i^0 + k_B T \ln c_{\infty,i}$$

Equilibrium: $\mu_i = \mu_{\infty,i}$

Hence:
$$c_i = c_{\infty,i} \exp\left(-\frac{z_i e\psi}{k_B T}\right)$$

Poisson-Boltzmann Equation

✓ Boltzmann distribution:

$$c_i = c_{\infty,i} \exp\left(-\frac{z_i e\psi}{k_B T}\right)$$

Siméon Denis **Poisson** (1781-1840)

✓ Poisson Equation:

$$\mathcal{E}_0 \nabla \cdot (\mathcal{E} \nabla \psi) = -\rho$$
, where $\rho = e \sum_i z_i c_i$

Poisson-Boltzmann Equation:

$$\varepsilon_0 \nabla \cdot (\varepsilon \nabla \psi) = -e \sum_i z_i c_{\infty,i} \exp\left(-\frac{z_i e \psi}{k_B T}\right)$$

Ludwig **Boltzmann** (1844-1906) 32

Boundary Conditions

a) Specified surface electrostatic potential (Dirichlet):

$$\psi|_{surface} = \psi_0 \qquad \psi|_{\infty} = 0$$

b) Specified surface charge density (Neumann):

$$(\varepsilon \nabla \psi)|_{surface} = -\frac{\sigma}{\varepsilon_0} \qquad \nabla \psi|_{\infty} = 0$$

Adimensionalizing PBE

For planar geometry, uniform dielectric constant and symmetric electrolyte (z:z)

$$\frac{\mathrm{d}^{2}\psi}{\mathrm{d}x^{2}} = -\frac{ezc_{\infty}}{\varepsilon_{0}\varepsilon} \left[exp\left(-\frac{ze\psi}{k_{B}T}\right) - exp\left(\frac{ze\psi}{k_{B}T}\right) \right]$$

or

$$\frac{\mathrm{d}^{2}\psi}{\mathrm{d}x^{2}} = \frac{2ezc_{\infty}}{\varepsilon_{0}\varepsilon}\sinh\left(\frac{ze\psi}{k_{B}T}\right)$$

Defining
$$\kappa^2 = \frac{e^2 \sum c_{\infty,i} z_i^2}{\varepsilon_0 \varepsilon k_B T}$$
; $X = \kappa x$; $\varphi = \frac{z_i e \psi}{k_B T}$

Results in
$$\frac{d^2\varphi}{dX^2} = sinh(\varphi)$$

Poisson-Boltzmann X Debye-Hückel

Analytical solution of PBE:

$$\psi(x) = \frac{2k_BT}{ez} \ln\left[\frac{1+\gamma \exp(-\kappa x)}{1-\gamma \exp(-\kappa x)}\right]$$
$$\gamma = tgh\left(\frac{ez\psi_0}{4k_BT}\right) = \frac{\exp\left(\frac{ez\psi_0}{2k_BT}\right) - 1}{\exp\left(\frac{ez\psi_0}{2k_BT}\right) + 1}$$

Debye-Hückel equation = linearization of PBE :

$$\frac{d^2\varphi}{dX^2} = \varphi$$

whose solution is $\psi = \psi_o \exp(-\kappa x)$

Force Between two Particles

From the solution of PBE (ψ) we calculate ionic concentration profiles:

$$c_i = c_{\infty,i} \exp\left(-\frac{z_i e\psi}{k_B T}\right)$$

and the free Energy of the System:

$$A - A^{o}$$

= $\frac{e}{2} \int \psi \sum_{i} c_{i} z_{i} dV + \int \sum_{i} c_{i} U_{i} dV$
+ $k_{B}T \int \sum_{i} \left[c_{i} ln \left(\frac{c_{i}}{c_{\infty,i}} \right) - (c_{i} - c_{\infty,i}) \right] dV$

Mean Force between the particles: $F = -\frac{\partial A}{\partial L} = -\frac{\partial (A - A^o)}{\partial L}$

Numerical Methods for solving PBE

✓ Poisson-Boltzmann Equation:

- elliptic second order partial differential equation;
- > can be solved by discretization methods.

✓ Most used methods:

- Finite difference method
- Finite Volume method
- Finite Element Method

Finite Volume Method

Bi-dimensional finite volume P and its neighbours

Lima et al. (2007), PCCP, 9, 3174 38

Finite Volume Method

$$\frac{\partial}{\partial x} \left(\Gamma_1 \frac{\partial \psi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma_2 \frac{\partial \psi}{\partial y} \right) + S = 0$$

$$\int_{s}^{n} \left(\Gamma \frac{\partial \psi}{\partial x} \right)_{w}^{e} dy + \int_{w}^{e} \left(\Gamma \frac{\partial \psi}{\partial y} \right)_{s}^{n} dx + \int_{s}^{n} \int_{w}^{e} S dx dy = 0$$

$$S = S_P \psi_p + S_c$$

$$\left(\Gamma\frac{\partial\psi}{\partial x}\right)_{w}^{e}\Delta y + \left(\Gamma\frac{\partial\psi}{\partial y}\right)_{s}^{n}\Delta x + (S_{P}\phi_{P} + S_{c})\Delta x\Delta y = 0$$

Lima et al. (2007), PCCP, 9, 3174 39

Hofmeister Effects

 ✓ Ion-specific effects:
 biology, biochemistry, chemistry, chemical engineering ...

 ✓ Hofmeister et al. (1880-1890): Interactions between proteins are more affected by some salts than from others ⇒ lyotropic series or Hofmeister series.

Franz Hofmeister (1850-1922)

monovalent cations	Li ⁺ < Na ⁺ <k<sup>+<rb<sup>+<cs<sup>+</cs<sup></rb<sup></k<sup>
Divalent cations	Mg ²⁺ <ca<sup>2+<sr<sup>2+<ba<sup>2+</ba<sup></sr<sup></ca<sup>
Monovalent anions	Cl- <br<no<sub>3-<l-<scn-< td=""></l-<scn-<></br<no<sub>

Hofmeister Effects

✓ Boström et al. (2002, 2003, 2004, 2005):

 \gg When van der Waals interactions between ions and surface are treated at the same nonlinear level as the double layer interactions, being included at the Poisson-Boltzmann equation, the origin of ionspecific effects finally comes into sight.

Ion-Specific Effects

- \checkmark lon specificity in classical theories:
 - ➢PBE: ion valence
 - ➢DFT: ion valence and ion size.
- ✓ Addressing Hofmeister effects requires other ion-surface interactions as it will be discussed in the next lecture.

Thermodynamic properties related to ion specificity

- ✓ Stability: micellization, coagulation, coalescence.
- Properties: free energy, osmotic pressure, osmotic second virial coefficient.

