AWUISyy,

&

)) 0%

® % UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO *®%

UERJ O INSTITUTO DE QUIMICA — PPG-EQ ¢
PPG-EQ

i

O

2
&stapo O°

lon-specific Effects
on Biocolloidal Systems

Prof. Eduardo Rocha de Almeida Lima
Chemical Engineering Graduate Program — PPG-EQ

Rio de Janeiro State University — UER] — Brazil
lima.eduardo@uerj.br

limaeduardo.wixsite.com/equerj/home

APS & ICTP-SAIFR Young Physicists Forum on Biological Physics:
from Molecular to Macroscopic Scale (Bio2020)

[N
' QcnPq

IFT - UNESP NORDITA

S .:FAPESP ICTP) unes p
physics



Outline (Lecture 2)

> The modified Poisson-Boltzmann equation;

> Introduction to Classical Density Functional
Theory;

> Size and electrostatic correlations.



The Modified
Poisson-Boltzmann Equation



The Modified PBE

v Improvement: modifications in order to take
into account several important effects such as
dispersion forces, hydration, ion size effects, and
electric correlation between ions.

v Additional contributions may be divided in two
classes:

» external field contributions: e.g.,, ion-interface
interactions.

» contributions depending on the interaction among
molecules (ions): residual chemical potential.



The Modified Boltzmann Distribution

v Additional terms can be included in the
description of the electrochemical potential:

wi(p, T) = (P, T) + kT Inc; + ezap + Uy + p[®*
Hooi (D, T) = { (0, T) + kpTInco + €z;hoo + plss
v Equilibrium condition: u;(p,T) = pe i (0, T)
v Resulting in:

zie() —Poo) + Ui + 1% — leo s
kaT

Ci = Coo,i exp | —



The Modified PBE

v Modified Boltzmann distribution:

zie(PY —Poo) + Uy + i — loo s
Ci = Coo,i exXp|— kBT

v Combining with Poisson Equation, we have the Modified
Poisson- Boltzmann equation:

zie(W — o)+ U; + ul® — uls?
&V - (eVY) = _ezzicoo,iexp [— oW = Vo) ke 711 - - 'l] — Py
: B

l

v The Boundary conditions are the same as for the

classical PBE. .



van der Waals Interactions
Dispersion interactions between ions and a planar surface
(Parsons, and Ninham, 2010):

x3

Gy =1+ 2 (22 1) e < L P
X)) = — X SE— —_ _ —
Var \ r? b r? re I

And between two spheres (Lima et al., 2007) (without ion
size correction):

Udisp _

1

_Bi _Bi
( ) (
r—r r,—r

where B, is calculated from Lifshitz Theory.

U, =



Scale integration

v’ Inclusion of ionic potential of mean force (PMF) obtained
from molecular dynamics (Horinek and Netz, 2007):

V(x) A

kT (x-x)P  (x- x)8

v'For two plates
U.(x) =V (x)+V(L-X)

4 Cl (X _ C2 k—C3(x—C2)Z + Dle—Da(X—Dz)z

v’ These PMF include:

» van der Waals interactions;
» ionic hydration
» Self-image charge potential



lon Size Correlation in PBE

v" Maodified Boltzmann distribution:
ziep + U; + wi(c(x),0) — wi(cwn(X),0)
kBT

T

Ci = Cxo,j €XP | —
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Alijo, Tavares, Biscaia Jr. ColSuA, 412 (2012) , 29-35



lon Size Correlation in PBE

The size effects are taken into account trough size
correlations terms by using Boublik—-Mansoori—
Carnahan—Starling—Leland equation of state:

res, BMCSL 3 AP _ 2
Wf(C(X), 0’) =g = u’i kBT _ (‘EU — ‘63:2 /‘E?) )Tl_g?’:ggZO'l + 3‘?1 of;
N 26,0, N 3816,07% + 386,012 /&3 + & 073 | E3°
£(1 — &) (1-&)°

+(=1+3&°%012/&3° + 2870, /E37) In(1 — &3)

Ek = g Ziﬂif-‘fjﬂf"
|

& Is the packing factor, given by

0



lon-ion Electrostatic Correlation in PBE

v’ Modified Poisson equation (equivalent to a Poisson—
Fermi equation):

V-D=¢g(ttvs — 1)V = p

where D is the displacement field. For the linear response

regime (for small electric fields), the displacement field is
given by

D=-&Vy & =¢(1—102V%)

L¢ = scaling factor: empirical parameter that establishes a

characteristic length scale in which the electrostatic
correlations are relevant .

Bazant, Storey, Kornyshev, Phys. Rev. Lett. 106 (2011),046102.
|



lon-ion Electrostatic Correlation in PBE

v" Rewriting in Cartesian coordinates:
j -jZ M,

(2 20V OV _ ey  ziC;

Cox4 Ox2 —

that is is the Poisson—Fermi equation.

Additional boundary conditions: correlations are neglected at
the surface:

n-vV(Viy) =

Bazant, Storey, Kornyshev, Phys. Rev. Lett. 106 (2011),046102.
Alijé, Tavares, Biscaia, Secchi, Electrochimica Acta 152 (2015) 84—
92 . 12



Charge Regulation at the Surface

v’ The surface is uniformly charged.

v Basic groups = positive contributions:

i e|H" S —
€z, = [H 1 -, where [HT]; =10"P"exp (— elPS)
HLK s
v" Acid groups = negative contribution:
i —eK,
ez’ = _
He] +K!

v’ Average surface charge: Q= D e+ el

basi cos acidos

Ninham and Parsegian (1971) 13



Charge Regulation at the Surface

v’ Titration curve obtained from charge regulation
model :

e ! 1
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Force between a Lysozyme and a BSA
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Density Functional Theory



Density Functional Theory

“Matter distributes itself in space in

- such a way that, for a given energy, the
| entropy attains a maximum.”

6Slp(r)] =0

J. D. van der Waals, Verhandel. Konink. Akad. Weten.
Amsterdam, Vol. |, No. 8, 58 (1893)

J. S. Rowlinson, Journal of Statistical Physics, Vol. 20,
No. 2, 1979

J. D. van der Waals



Classical DFT x Electronic DFT

Classical DFT

v'Structure and thermo-
physical properties

v’ Statistical Mechanics
v" Density of matter

® van der Waals (1893)
Nobel Prize (1910)

# Onsager (1949)
Nobel Prize(1968)

@ Mermin (1965)-Ebner-
Saam-Stroud (1970)

Electronic DFT
v’ Spectroscopic, electronic
e optoelectronic properties
v Quantum Mechanics
v Electronic density

# Thomas-Fermi (19205)
Nobel Prize(1938)
# Hohenberg and Kohn (1964)
# Kohn and Sham (1965)
Nobel Prize (1998)



Classical Density Functional Theory (DFT)

v Structure and thermodynamic properties from

a molecular perspective.

v’ Can be applied to several kinds of systems:
polymers, electrolytes, polyelectrolytes and

biomacromolecules.

v’ Takes into account microscopic details without

dealing explicitly with thermal fluctuations.



Hohenberg-Kohn Theorem (1964)

v'Originally established in the quantum mechanics of the
ground-state energy of electrons at OK.

v'Generalization to a finite temperature by Mermin (1965).

v'Equally applicable to classical systems (Evans, |979).

“The one-body potential can be uniquely determined by a
density profile that minimizes the grand-potential functional.”

Consequence: the Helmholtz energy can be expressed as a
unique functional of the density profiles.

Hohenberg P, Kohn W (1964) Phys Rev |136:B864
Mermin ND (1965) Phys Rev 127:A1441

Evans R (1979) Adv Phy 28:143 20



Fundamentals of DFT

v Helmholtz Energy = functional of density profiles of

molecules.

F = F[p(7)]

v Molecular density profile: ensemble average of

instantaneous molecular densities (Wu, 2006):

p(?) = 25(7—7,) >

21



Fundamentals of DFT

v Central task: derive an analytical expression for
the grand potential of an open system as a
functional of the density profiles:

N
QLo = Fl@N + . [ 0@l - @]
i=1 '

One-body potential

v The equilibrium density profile of inhomogeneous
fluid is given by the minimum condition (Euler-

Lagrange equation ): 5Q[{p: ()]
L

_,. =0
6p; (1) e -




Fundamentals of DFT

Or in terms of Helmholtz free energy (F):

6F[(pi(1)]
Spi (1)
The ideal contribution for the Helmholtz energy is:

+ () — w(¥) = 0

BRI = B — [ p@pe@)dF = | p ()7 + [ p@Inlp ()N dF
= [ @ inlp (] - 1} 07

Solving for the density profiles:

5 FEX ; =
p;(7) = exp [ﬁﬂi — B — p 5p[.((§’)(r)] ]
" 23



Density Functional Theory (DFT)
The Helmholtz functional can be split in four parts:

i ex ex ex
F=F -\|-hs-|-FC+e|}
|

Fex

The electrostatic contribution is composed by two

contributions:

» Direct Coulomb interactions: ng

. . ex
> Electrostatic correlations: el

24



Density Functional Theory (DFT)

Using the same notation as for PB Theory, the Euler-Lagrange

functions for the density of ions are given by:

5F€X
ci(x) = exp [( — WY (x) — 6c-(x)> /kBT]

Defining the mean electrostatic potential:

ex

ziey(x) = Wi(0) + 5

25



DFT x Boltzmann Distribution

v" Neglecting size correlations: 5FhiX/5Ci =0

and electrostatic correlations: éFe(IeX / 5Ci =0

v Helmholtz energy F simplifies to that used in Poisson-
Boltzmann theory and the expression for the density
profile of ions simplifies to

zieyp(x)
koT

Ci(x) — Co,j €XD [_

that is the classical Boltzmann distribution »



Short range repulsion

v Different Approaches usually used for the short
range repulsion contribution to the excess
Helmholtz free energy:

FMT ->Rosenfeld’s fundamental
measure theory

FWF = Forsman,Woodward and
Freasier methods

White Bear 2 modification of FMT
using EoS for bulk hard-sphere
fluids by Boublik, Mansoori,

Carnahan, Starling and Leland
(BMCSL).

short
range

repulsion ,

27



Density Functional Theory

Approaches used for the ion-ion electrostatic
correlations

WCA  >Weighted correlation
approach

BFD - bulk fluid density
approach

RFD  —reference fluid density
approach

CCDFT = contact-corrected DFT
approach

DHH - hole corrected Debye-
Huckel theory

Electrostatic
Correlations

28



Density Functional Theory (DFT)
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Picard Method

» Conventional method to converge to the
equilibrium density profiles = Picard method.

pi,in(k) (?) - pi,out(k—l) (F)f T pi(k_l) (?)(1 o f)

» This method belongs to the class of successive
substitution methods and uses a “mixture
parameter’ f that is the weight of a weighted
average between the new and old estimates of p.

30



Some results applying the
Classical Theories



Counterion Concentration profile

C/C,

111 salt; @, = 2; C, =0.1 mol/L; D = 2A
Tavares, Bostrom, Lima, Biscaia. FPE (2010).

32



Counterion Concentration profile
(b) '

20 -

C/C,

10 -

2:2 salt; o, = 2; C, = 0.1 mol/L; D = 2A
Tavares, Brostrom, Lima, Biscaia. FPE (2010). 33



lonic Concentration profiles

S ‘ I ] ' |' 7
B ---= PBE I

4 - DFT 1
[ ' o ¢ Monte Carlo °

x/D

|:1 salt; Q = 0.35 C/m?%;, C_=2mol/L;T =298.15K.;D =4.25 A.
Barbosa, Lima, Tavares (2017).doi: 10.1016/B978-0-12-409547-2.13915-0.

Monte Carlo results from Torrie and Valleau (1980) cited therein
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