Lecture 1: Introduction to molecular systems biology

Marko Djordjevic

The Chair for General Physiology and Biophysics, Faculty of Biology, University of Belgrade

(material for the school)

- Lecture 1 (MD1): Introduction to computational systems biology
- Lecture 2 (MD2): Modeling intracellular dynamics (introduction)
- Working session 1: Modeling intracellular dynamics (more advanced): bistability, bifurcations
- Working session 2: Biological rhythms (genetic oscillators): delay and relaxation oscillator
- Lecture 3 (MD3): Modeling gene expression regulation
- Working session 3: Examples of a biophysical approach to bioinformatics

Overview

- Basic molecular biology (brief introduction)
- General discussion: why quantitative biology?
- Non-linearity: feedback loops, cooperativity, allostery

I. Overview of basic molecular biology

Central dogma of molecular biology

DNA -medium for storing information, can be duplicated (during replication). RNA - an intermediate (short lived), synthesized from DNA during transcription. Proteins – translated from RNA, do all useful work in the cell.

genes + intergenic regions

From RNA to protein

Regulation of gene expression

Pattern of gene expression has to change-i.e. it has to be regulated

Transcription factors (TFs)

- TFs interact with DNA

a single amino-acid nucleotide interaction

Transcription regulation

Gene networks

- E. Coli gene network

II. Modeling in biology: why quantitative biology?

Traditional modeling

Scheme of traditional research in biology

Scheme vs. model

Alberts et al, Molecular Biology of the cell.

Information flow model

Central dogma of molecular biology

Emphases that information flows from DNA to RNA to proteins

Biological sequences

- Large amount of data is sequenced
 - ~ 80000 sequenced genomes
 - Bacteriophage (genome ~50000 bps)
 - Bacteria (genome ~5 000 000 bps)
 - Human (chromosome ~50 000 000 bps)
- Informatics resources are necessary for repository and systematization
- Mathematical methods are necessary for sequence analysis

bioinformatics

Can have a close connection between biophysical modeling and bioinformatics

Specific examples in working session 3!

Measuring expression of all genes in genome

Mathematical modeling necessary for testing the hypothesis.

Research scheme in modern biology

Scheme reminds to physics

Understanding dynamics (complicated)

- Relatively easy to measure dynamics for macroscopic systems.
- Hard to measure dynamics of molecules "in-vivo" (but recent advances are making it possible).
- Systems typically employ a large number of components (degrees of freedom) with interactions that are highly non-linear.
- Advanced biophysical techniques from theoretical biophysics are necessary (statistical physics, nonlinear dynamics, stochastic modeling)

III. Role of non-linearity: Feedback loops, allostery and cooperativity

Central dogma of molecular biology

Replication DNA Transcription RNA Translation Protein The Central Dogma

Classical formulation: Information flows from DNA to RNA to proteins For (computational) systems biology feedback loops are crucial.

The Central Dogma of Modern

Molecular Biology

→ RNA

Translation

→ Protein

Transcription

DNA

Replication

Intracellular regulation – general properties

- Nonlinear realationship of output vs. input quantity – linear relationship is generally not a good approximation.
- Allostery and cooperativity often have a crucial role.

Input-output relationship

A and B are arbitrary molecules, AB is their complex: $A + B \rightleftharpoons AB$

Examples:

- *A* Transcription factor
- B DNA
- AB Complex which activates or represses transcription
 - A Small molecule (e.g. oxigen)
 - **B** Receptor (e.g. hemoglobin)
- AB Ligand bound за рецептор
 - A Antibody
 - **B** Antigene
- AB Complex antibody-antigene

Input (ligand concentration) to output (binding probability) relationship

Cooperativity and allostery

Hemoglobin as a model system:

- •Interaction of ligand with receptor
- •Protein structure
- •Molecular model of desease
- •Allostery and cooperativity

Myoglobin – only one oxygen bound Hemoglobin – four oxygens bound

Hemoglobin has much more rapid transition from "OFF" to "ON" state.

OFF state– small oxygen amount bound to receptors

ON state – almost all receptors bound by oxygen

Consequence of cooperativity in interactions (binding of oxygen).

Cooperativity in interactions is related with allostery – Ligand binding at one place in protein, influences binding properties at some other place.

Hill function

n molecules A are cooperatively (together) bound to molecule **B**

$$n A + B \rightleftharpoons nAB$$
$$K_d^{\ n} = \frac{\left[A\right]^n \left[B\right]}{\left[nAB\right]}$$

of ligand to receptor

Problem: hemoglobin vs. myoglobin binding

data from Imai, K. (1990). Biophys Chem 37(1-3): 197-210.

Hill curve, hemoglobin

Experimental data for fractional occupancy of hemoglobin receptors by oxigen are provided in the Excel file.

- a) Show that Hills function fits well this data
- b) What is the Hill constant value?
- c) What is biophysical interpretation of the second parameter in the fit?

Note1: The first column in Excel file is oxygen pressure (proportional to ligand concentration), the second column is fractional receptor occupancy.

Note2: You can do this in any software of your choice, where non-linear regression is available.

Hill curve, myoglobin

The same as for hemoglobin, but now data for mioglobin are provided.

- a) Show that Hills function again fits well this data.
- b) What is now the value of the Hill constant?
- c) Based on this, discuss what is crucial difference between hemoglobin and mioglobin with respect to receptor binding?

Literature:

General:

- Phillips, R., Kondev, J., Theriot, J., & Garcia, H. (2012). *Physical biology of the cell*. Garland Science.
- Ingalls, B. P. (2013). *Mathematical modeling in systems biology: an introduction*. MIT press.
- Sneppen, K., & Zocchi, G. (2005). *Physics in molecular biology*. Cambridge University Press.
- Strogatz, S. (2001). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering.
 Specific:
- Bruce Alberts et. al. (2014). *Molecular Biology of the Cell*.
 W. W. Norton & Company
- Djordjevic, M., Rodic, A., & Graovac, S. (2019). From biophysics to 'omics and systems biology. *European Biophysics Journal*, 1-12.