|_ecture 3: Modeling gene expression
regulation

Marko Djordjevic

The Chair for General Physiology and Biophysics, Faculty of Biology,
University of Belgrade




Example of gene expression regulation
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Lac operon:
Significant expression
only when lactose is
present and glucose is
absent.

> Regulation is exhibited
through interaction of
proteins (transcription
factors) with DNA.




Dependence of transcription activity
(output) from transcription factor
concentration (input)

You sketch all possible configurations of proteins

(regulators) and RNA polymerase (RNAP) on DNA.

For every configuration you write the statistical
weight (see the examples).

Transcriptional activity Is proportional to
equilibrium binding probability of RNAP to
promoter.

That is, to sum of statistical weights which
correspond to activation configurations, divided by
the sum of all statistical weights.



Why equilibrium?
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Example 1: Modeling rudimental
Immune system

Restriction-modification system
INn bacteria



Restriction-modification is a rudimental immune system

QP Bactenophage

Bacterial cell DNA of the host cell is methylated and will not

@ @ be cut by restriction enzyme, but foreign DNA
3 & L Bacterial (e.g. virus that attacks bacteria) is not
e @ ) chromosome methylatted, and becomes destroyed.

R-M systems are often mobile
R-M system

== F
R-M genes can go from one host cell
L to another, and in this way spread

through bacterial population.

host

genome bacteria



Bacterial restriction-modification (R-M) system
of type I

Methylase (M) methylates the same
Endonulease (R) DNA sequences that are cut by the
recognizes and cuts DNA endonuclease, and consequently

SEQUENCES protects them from cleaving.
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Control protein (C) coordinates
expression of R and M genes so that it
Is bound upstream of CR gene and
regulate their expression.




Regulation by the control protein

The control protein exhibits very large cooperativity:
* Only dimmer can bind to DNA
* Only tetramer is bound to DNA in the absence of
RNA polymerase

Over the entire range of control
protein concentrations two dimmers
are simultaniously bound

&

Large cooperativity in binding




Quantitative model

transcription activity

a, b and c are directly related with the biophysical properties of the switch.



Comparison with experiment

E. Bogdanova, M.D. et al., NAR 36,1429 (2008)
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Modeling the system dynamics

|:> generating RC transcript

Transcription activity versus C protein concentration

ac
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E=) synthesis of C protein

E=) synthesis of R protein

C transcripts are translated less efficiently than R transcripts.



Dynamics of establishing equilibrium

= o
()] [ee]
T T

protein concentration
(e}
~

02F

time (minutes)
E. Bogdanova, M.D. et al., NAR 36,1429 (2008)

Endonuclease is synthesized with , u y yckom
BPEMEHCKOM UHTEPBAJIY.



Conclusion R-M system

« Toxic molecule is expressed in a narrow time
Interval, and with delay with respect to
antidote.

* This is exhibitied through large
cooperativity in binding and modulation of
translation efficiency.



Problem




On the figure i1s provided the scheme of the promoter with restrictior
-modification system.

a) Find statistical weights Z,,Z,,Z5 as a function of transcription
factor concentration, RNA polymerase and interaction energies
shown in the figure.

b) By using Shea-Ackers model express TpancKkpuNIMOHY AKTHBHOC
of promoter in termsof Z2,,7Z,,Z,

¢) Write transcription activity in terms of C protein concentration
and parameters suitable for the fit.

d) Graphycally sketch transcription activity in terms of
concentration of C protein



e) Write differential equations that determine concentration of
transcript and protein for gene which is transcribed from this
promoter. Assume the following parameters:

P — KOHYeHmpayuja npomeuHa
M — KOHYeHmpayuja mpaHcKkpunma

A, —KOHCmanma pacnada npomeuna

A~ —KoHcmanma pacnada mpaHcKpunma
K —cmona mpancrayuje

@ (C) — MPAHCKPUNYUOHA AKMUBHOCM npomMmomepda

f) Under assumption that the gene which is transcribed from the
promoter is itself a transcription factor (i.e. C protein regulates
Its own transcription) find equation which determines
equilibrium concentration of C protein.

g) Graphically sketch solution of this equation — use answer d)



Example 2: Modeling biological
oscillators

Represilator, relaxation oscillator



Goodwin oscillator (1965, Brian Goodwin)

/_\ Y (protein)

Z (metabolite)

Large cooperativity is

X (mRNA)
/ necessary,
Brian Ingalls, Mathematical n=8 so that there are

4|: methods in Systems Biology oscillations

Figure 7.16: The Goodwin oscillator. (The dashed blunted arrow indicates repression.) The mRNA (X)) is
translated into an enzyme (Y), which catalyses production of a metabolite (Z), which (indirectly) represses

gene expression. This negative feedback, coupled with the delay inherent in the three-step loop, can result
in oscillatory behavior. @
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Circadian oscillators

© cell bodies (D)

Cross- @
section

photoreceptor
membrane
cross-section

I mm

F

photoreceptor membrane photoreceptor membrane

J

Take note about change of day and night — an
extreme example are photoreceptor cells in spider.



Goldblater model of circadian oscillator

cytosol | nucleus .
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Synthetic oscillators

... Two synthetic gene circuits that show oscillatory
behaviour:

i. Repressilator — an example of oscillatory
circle with delay

ii. Oscillator with relaxation oscillations



Repressilator

- Elowitz and Leibler, 2000.
- 3 pairs of promoters and genes that code repressors
- system can lose its stable state, and exhibit oscillatory behaviour

- delay oscillator since every protein in a loop inhibits its own expression
(with a delay) in 3 steps

———————_

e

Gene 1 \ Gene 2
/—.‘ L I—I'

Promoter 1 | repressor 1 coding region Promoter 2 | repressor 2 coding region |

-

R |
%

/

-

Reporter gene

5

Al
-—I - \
tepressor 3 coding region | Promoter 3 — I

Promotor 3 | reporter coding region |

Cxema Kona

Gene 3




Model: describes time dynamics of changing the concentration of
proteins in a loop;

Assumption: all 3 genes have identical characteristic
p; represses

expression of
m
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Bifurcation analysis:

- Oscillations are favoured by
high level of cooperativity, high
level of expression, approximately
the same degradation rate of
transcripts and proteins

<

Changing the circuit component!
(Lacl, TetR — E. coli; cl — A phage)



Oscillator in cell cycle
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Synthetic circle with relaxaton

oscillations — larger robustness of the system
with respect to delay oscilators

VOLUME 88, NUMBER 14
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FIG. I (color). (a) Schematic for the
synthetic gene oscillator. The Pgy pro-
moter is a mutant of the Pgy promoter
that naturally exists in the virus A phage
[16]. In its natural state, the state of the
virus is regulated by CI dimers which
bind to the three operator sites ORI,
OR2, and OR3; in our design, the OR3
operator is replaced with an operator
region OR3" which has an affinity only
for Lac tetramers. The depicted position
of the Lac operator site is for illustrative
purposes only, since the ideal placement
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